/usr/include/trilinos/Zoltan2_PartitioningSolution.hpp is in libtrilinos-zoltan2-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/*! \file Zoltan2_PartitioningSolution.hpp
\brief Defines the PartitioningSolution class.
*/
#ifndef _ZOLTAN2_PARTITIONINGSOLUTION_HPP_
#define _ZOLTAN2_PARTITIONINGSOLUTION_HPP_
namespace Zoltan2 {
template <typename Adapter>
class PartitioningSolution;
}
#include <Zoltan2_Environment.hpp>
#include <Zoltan2_Solution.hpp>
#include <Zoltan2_GreedyMWM.hpp>
#include <Zoltan2_Algorithm.hpp>
#include <Zoltan2_CoordinatePartitioningGraph.hpp>
#include <cmath>
#include <algorithm>
#include <vector>
#include <limits>
#ifdef _MSC_VER
#define NOMINMAX
#include <windows.h>
#endif
namespace Zoltan2 {
/*! \brief A PartitioningSolution is a solution to a partitioning problem.
It is initialized by a PartitioningProblem,
written to by an algorithm, and may be read by the user or by
a data migration routine in an input adapter.
\todo Problem computes metrics using the Solution. Should
Solution have a pointer to the metrics, since it may persist after
the Problem is gone?
\todo save an RCB tree, so it can be used in repartitioning, and
supplied to the caller.
\todo doxyfy the comments in this file.
*/
template <typename Adapter>
class PartitioningSolution : public Solution
{
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef typename Adapter::gno_t gno_t;
typedef typename Adapter::scalar_t scalar_t;
typedef typename Adapter::lno_t lno_t;
typedef typename Adapter::part_t part_t;
typedef typename Adapter::user_t user_t;
#endif
/*! \brief Constructor when part sizes are not supplied.
*
* The Solution constructor may require global communication.
* The rest of the Solution methods do not.
*
* \param env the environment for the application
* \param comm the communicator for the problem associated with
* this solution
* \param nUserWeights the number of weights supplied by the
* application for each object.
* \param algorithm Algorithm, if any, used to compute the solution.
*
* It is possible that part sizes were supplied on other processes,
* so this constructor does do a check to see if part sizes need
* to be globally calculated.
*/
PartitioningSolution( const RCP<const Environment> &env,
RCP<const Comm<int> > &comm,
int nUserWeights,
const RCP<Algorithm<Adapter> > &algorithm = Teuchos::null);
/*! \brief Constructor when part sizes are supplied.
*
* The Solution constructor may require global communication.
* The rest of the Solution methods do not.
*
* \param env the environment for the application
* \param comm the communicator for the problem associated with
* this solution
* \param nUserWeights the number of weights supplied
* by the application
* \param reqPartIds reqPartIds[i] is a list of
* of part numbers for weight index i.
* \param reqPartSizes reqPartSizes[i] is the list
* of part sizes for weight i corresponding to parts in
* reqPartIds[i]
* \param algorithm Algorithm, if any, used to compute the solution.
*
* If <tt>reqPartIds[i].size()</tt> and <tt>reqPartSizes[i].size()</tt>
* are zero for
* all processes, it is assumed that part sizes for weight
* dimension "i" are uniform.
*
* If across the application there are some part numbers that are not
* included in the reqPartIds lists, then those part sizes are assumed
* to be 1.0.
*
* \todo handle errors that may arise - like duplicate part numbers
*/
PartitioningSolution(const RCP<const Environment> &env,
RCP<const Comm<int> > &comm,
int nUserWeights, ArrayView<ArrayRCP<part_t> > reqPartIds,
ArrayView<ArrayRCP<scalar_t> > reqPartSizes,
const RCP<Algorithm<Adapter> > &algorithm = Teuchos::null);
////////////////////////////////////////////////////////////////////
// Information that the algorithm may wish to query.
/*! \brief Returns the global number of parts desired in the solution.
*/
size_t getTargetGlobalNumberOfParts() const { return nGlobalParts_; }
/*! \brief Returns the actual global number of parts provided in setParts().
*/
size_t getActualGlobalNumberOfParts() const { return nGlobalPartsSolution_; }
/*! \brief Returns the number of parts to be assigned to this process.
*/
size_t getLocalNumberOfParts() const { return nLocalParts_; }
/*! \brief If parts are divided across processes, return the fraction of
a part on this process.
\return zero if parts are not split across processes, approximate
fraction of the part otherwise.
\todo More useful to get number of processes owning part? Or
not useful at all - remove this?
*/
scalar_t getLocalFractionOfPart() const { return localFraction_; }
/*! \brief Is the part-to-process distribution is one-to-one.
\return true if Process p owns part p for all p, and false if the part
to process distribution is more complex.
If this is true, then getPartDistribution() and getProcDistribution()
return NULL pointers. If either of the latter two methods is non-NULL,
then this method returns false.
*/
bool oneToOnePartDistribution() const { return onePartPerProc_; }
/*! \brief Return a distribution by part.
\return If any parts are
divided across processes, then a mapping \c A is returned.
\c A such that \c A[i] is the lowest numbered process
owning part \c i. The length of the array is one greater than the
global number of parts.
The value of the last element is the global number of processes.
Parts are divided across processes only if there are fewer parts
than processes and the caller did not define "num_local_parts" for
each process. In this case, parts are divided somewhat evenly
across the processes. This situation is more likely to arise in
Zoltan2 algorithms than in user applications.
If either oneToOnePartDistribution() is true or getProcDistribution() is
non-NULL, then this method returns a NULL pointer. The three are mutually
exclusive and collective exhaustive.
*/
const int *getPartDistribution() const {
if (partDist_.size() > 0) return &partDist_[0];
else return NULL;
}
/*! \brief Return a distribution by process.
\return If the mapping of parts to processes is not one-to-one, and
if parts are not divided across processes, then the mapping
\c A is returned. \c A such that \c A[i] is the first part
assigned to process \c i.
(Parts are assigned sequentially to processes.)
However if <tt> A[i+1]</tt> is equal to \c A[i], there
are no parts assigned to process \c i. The length of the array is
one greater than the number of processes. The last element of
the array is the global number of parts.
If the mapping is one-to-one, or if parts are divided across processes,
then this method returns NULL pointer, and either
oneToOnePartDistribution() or getPartDistribution() describes the mapping.
*/
const part_t *getProcDistribution() const {
if (procDist_.size() > 0) return &procDist_[0];
else return NULL;
}
/*! \brief Get the number of criteria (object weights)
\return the number of criteria for which the solution has part sizes.
*/
int getNumberOfCriteria() const { return nWeightsPerObj_; }
/*! \brief Determine if balancing criteria has uniform
part sizes. (User can specify differing part sizes.)
\param idx A value from 0 to one less than the number of weights per
object.
\return true if part sizes are uniform for this criteria.
*/
bool criteriaHasUniformPartSizes(int idx) const { return pSizeUniform_[idx];}
/*! \brief Get the size for a given weight index and a given part.
\param idx A value from 0 to one less than the number of weights per
object.
\param part A value from 0 to one less than the global number of parts
to be computed
\return The size for that part. Part sizes for a given weight
dimension sum to 1.0.
\todo It would be useful to algorithms to get the sum of
part sizes from a to b, or the sum or a list of parts.
*/
scalar_t getCriteriaPartSize(int idx, part_t part) const {
if (pSizeUniform_[idx])
return 1.0 / nGlobalParts_;
else if (pCompactIndex_[idx].size())
return pSize_[idx][pCompactIndex_[idx][part]];
else
return pSize_[idx][part];
}
/*! \brief Return true if the two weight indices have the same
* part size information.
\param c1 A value from 0 through one less than the number of weights.
\param c2 A value from 0 through one less than the number of weights.
\return If weight index \c c1 and weight index \c c2 have
the same part size information, the \c true is returned, otherwise
\c false is returned.
It may be a problem for some algorithms if there are multiple weight
dimensions with differing part size constraints to be satisfied.
*/
bool criteriaHaveSamePartSizes(int c1, int c2) const;
////////////////////////////////////////////////////////////////////
// Method used by the algorithm to set results.
/*! \brief The algorithm uses setParts to set the solution.
*
* \param gnoList A list of global numbers.
*
* \param partList The part assigned to gnoList[i] by the algorithm
* should be in partList[i]. The partList is allocated and written
* by the algorithm.
*
* \param dataDidNotMove The algorithm did not change the order of the
* data provided by the model; that is, it did not move the data
* to other processes or reorganize within the process. Thus,
* the gnoList and partList are ordered in the same way as the
* array provided by the model. Setting this flag to true avoids
* processing to remap the data to the original process that provided
* the data.
*
* The global numbers supplied by the algorithm do not need to be
* those representing the global Ids of that process. But
* all global numbers should be assigned a part by exactly one
* process.
*
* setParts() must be called by all processes in the problem, as
* the part for each global identifier supplied by each process
* in its InputAdapter is found and saved in this PartitioningSolution.
*/
void setParts(ArrayRCP<part_t> &partList);
////////////////////////////////////////////////////////////////////
/*! \brief Remap a new partition for maximum overlap with an input partition.
*
* Assumptions for this version:
* input part assignment == processor rank for every local object.
* assuming nGlobalParts <= num ranks
* TODO: Write a version that takes the input part number as input;
* this change requires input parts in adapters to be provided in
* the Adapter.
* TODO: For repartitioning, compare to old remapping results; see Zoltan1.
*/
void RemapParts();
////////////////////////////////////////////////////////////////////
/* Return the weight of objects staying with a given remap.
* If remap is NULL, compute weight of objects staying with given partition
*/
long measure_stays(part_t *remap, int *idx, part_t *adj, long *wgt,
part_t nrhs, part_t nlhs)
{
long staying = 0;
for (part_t i = 0; i < nrhs; i++) {
part_t k = (remap ? remap[i] : i);
for (part_t j = idx[k]; j < idx[k+1]; j++) {
if (i == (adj[j]-nlhs)) {
staying += wgt[j];
break;
}
}
}
return staying;
}
////////////////////////////////////////////////////////////////////
// Results that may be queried by the user, by migration methods,
// or by metric calculation methods.
// We return raw pointers so users don't have to learn about our
// pointer wrappers.
/*! \brief Return the communicator associated with the solution.
*/
inline const RCP<const Comm<int> > &getCommunicator() const { return comm_;}
/*! \brief Return the environment associated with the solution.
*/
inline const RCP<const Environment> &getEnvironment() const { return env_;}
/*! \brief Returns the part list corresponding to the global ID list.
*/
const part_t *getPartListView() const {
if (parts_.size() > 0) return parts_.getRawPtr();
else return NULL;
}
/*! \brief Returns the process list corresponding to the global ID list.
\return The return value is a NULL pointer if part IDs are
synonomous with process IDs.
*/
const int *getProcListView() const {
if (procs_.size() > 0) return procs_.getRawPtr();
else return NULL;
}
/*! \brief returns the part box boundary list.
*/
std::vector<Zoltan2::coordinateModelPartBox<scalar_t, part_t> > &
getPartBoxesView() const
{
return this->algorithm_->getPartBoxesView();
}
//! \brief Return the part overlapping a given point in space;
// when a point lies on a part boundary, the lowest part
// number on that boundary is returned.
// Note that not all partitioning algorithms will support
// this method.
//
// \param dim : the number of dimensions specified for the point in space
// \param point : the coordinates of the point in space; array of size dim
// \return the part number of a part overlapping the given point
part_t pointAssign(int dim, scalar_t *point) const
{
part_t p;
try {
if (this->algorithm_ == Teuchos::null)
throw std::logic_error("no partitioning algorithm has been run yet");
p = this->algorithm_->pointAssign(dim, point);
}
Z2_FORWARD_EXCEPTIONS
return p;
}
//! \brief Return an array of all parts overlapping a given box in space.
// This method allocates memory for the return argument, but does not
// control that memory. The user is responsible for freeing the
// memory.
//
// \param dim : (in) the number of dimensions specified for the box
// \param lower : (in) the coordinates of the lower corner of the box;
// array of size dim
// \param upper : (in) the coordinates of the upper corner of the box;
// array of size dim
// \param nPartsFound : (out) the number of parts overlapping the box
// \param partsFound : (out) array of parts overlapping the box
void boxAssign(int dim, scalar_t *lower, scalar_t *upper,
size_t &nPartsFound, part_t **partsFound) const
{
try {
if (this->algorithm_ == Teuchos::null)
throw std::logic_error("no partitioning algorithm has been run yet");
this->algorithm_->boxAssign(dim, lower, upper, nPartsFound, partsFound);
}
Z2_FORWARD_EXCEPTIONS
}
/*! \brief returns communication graph resulting from geometric partitioning.
*/
void getCommunicationGraph(ArrayRCP <part_t> &comXAdj,
ArrayRCP <part_t> &comAdj) const
{
try {
if (this->algorithm_ == Teuchos::null)
throw std::logic_error("no partitioning algorithm has been run yet");
this->algorithm_->getCommunicationGraph(this, comXAdj, comAdj);
}
Z2_FORWARD_EXCEPTIONS
}
/*! \brief Get the parts belonging to a process.
* \param procId a process rank
* \param numParts on return will be set the number of parts belonging
* to the process.
* \param partMin on return will be set to minimum part number
* \param partMax on return will be set to maximum part number
*
* Normally \c numParts is at least one. But if there are more processes
* than parts, one of two things can happen. Either there are processes
* with no parts, and so \c numParts will be zero, or a part may be
* split across more than one process, in which \c numParts will
* be non-zero but less than 1.
*
* In the latter case, \c numParts is 1.0 divided by the number of
* processes that share the part.
*/
void getPartsForProc(int procId, double &numParts, part_t &partMin,
part_t &partMax) const
{
env_->localInputAssertion(__FILE__, __LINE__, "invalid process id",
procId >= 0 && procId < comm_->getSize(), BASIC_ASSERTION);
procToPartsMap(procId, numParts, partMin, partMax);
}
/*! \brief Get the processes containing a part.
* \param partId a part number from 0 to one less than the global number
* of parts.
* \param procMin on return will be set to minimum proc number
* \param procMax on return will be set to maximum proc number
*
* Normally \c procMin and \c procMax are the same value and a part
* is assigned to one process. But if there are more processes than
* parts, it's possible that a part will be divided across more than
* one process.
*/
void getProcsForPart(part_t partId, part_t &procMin, part_t &procMax) const
{
env_->localInputAssertion(__FILE__, __LINE__, "invalid part id",
partId >= 0 && partId < nGlobalParts_, BASIC_ASSERTION);
partToProcsMap(partId, procMin, procMax);
}
private:
void partToProc(bool doCheck, bool haveNumLocalParts, bool haveNumGlobalParts,
int numLocalParts, int numGlobalParts);
void procToPartsMap(int procId, double &numParts, part_t &partMin,
part_t &partMax) const;
void partToProcsMap(part_t partId, int &procMin, int &procMax) const;
void setPartDistribution();
void setPartSizes(ArrayView<ArrayRCP<part_t> > reqPartIds,
ArrayView<ArrayRCP<scalar_t> > reqPartSizes);
void computePartSizes(int widx, ArrayView<part_t> ids,
ArrayView<scalar_t> sizes);
void broadcastPartSizes(int widx);
RCP<const Environment> env_; // has application communicator
RCP<const Comm<int> > comm_; // the problem communicator
//part box boundaries as a result of geometric partitioning algorithm.
RCP < std::vector <Zoltan2::coordinateModelPartBox <scalar_t, part_t> > > partBoxes;
part_t nGlobalParts_;// target global number of parts
part_t nLocalParts_; // number of parts to be on this process
scalar_t localFraction_; // approx fraction of a part on this process
int nWeightsPerObj_; // if user has no weights, this is 1 TODO: WHY???
// If process p is to be assigned part p for all p, then onePartPerProc_
// is true. Otherwise it is false, and either procDist_ or partDist_
// describes the allocation of parts to processes.
//
// If parts are never split across processes, then procDist_ is defined
// as follows:
//
// partId = procDist_[procId]
// partIdNext = procDist_[procId+1]
// globalNumberOfParts = procDist_[numProcs]
//
// meaning that the parts assigned to process procId range from
// [partId, partIdNext). If partIdNext is the same as partId, then
// process procId has no parts.
//
// If the number parts is less than the number of processes, and the
// user did not specify "num_local_parts" for each of the processes, then
// parts are split across processes, and partDist_ is defined rather than
// procDist_.
//
// procId = partDist_[partId]
// procIdNext = partDist_[partId+1]
// globalNumberOfProcs = partDist_[numParts]
//
// which implies that the part partId is shared by processes in the
// the range [procId, procIdNext).
//
// We use std::vector so we can use upper_bound algorithm
bool onePartPerProc_; // either this is true...
std::vector<int> partDist_; // or this is defined ...
std::vector<part_t> procDist_; // or this is defined.
bool procDistEquallySpread_; // if procDist_ is used and
// #parts > #procs and
// num_local_parts is not specified,
// parts are evenly distributed to procs
// In order to minimize the storage required for part sizes, we
// have three different representations.
//
// If the part sizes for weight index w are all the same, then:
// pSizeUniform_[w] = true
// pCompactIndex_[w].size() = 0
// pSize_[w].size() = 0
//
// and the size for part p is 1.0 / nparts.
//
// If part sizes differ for each part in weight index w, but there
// are no more than 64 distinct sizes:
// pSizeUniform_[w] = false
// pCompactIndex_[w].size() = number of parts
// pSize_[w].size() = number of different sizes
//
// and the size for part p is pSize_[pCompactIndex_[p]].
//
// If part sizes differ for each part in weight index w, and there
// are more than 64 distinct sizes:
// pSizeUniform_[w] = false
// pCompactIndex_[w].size() = 0
// pSize_[w].size() = nparts
//
// and the size for part p is pSize_[p].
//
// NOTE: If we expect to have similar cases, i.e. a long list of scalars
// where it is highly possible that just a few unique values appear,
// then we may want to make this a class. The advantage is that we
// save a long list of 1-byte indices instead of a long list of scalars.
ArrayRCP<bool> pSizeUniform_;
ArrayRCP<ArrayRCP<unsigned char> > pCompactIndex_;
ArrayRCP<ArrayRCP<scalar_t> > pSize_;
////////////////////////////////////////////////////////////////
// The algorithm sets these values upon completion.
ArrayRCP<part_t> parts_; // part number assigned to localid[i]
bool haveSolution_;
part_t nGlobalPartsSolution_; // global number of parts in solution
////////////////////////////////////////////////////////////////
// The solution calculates this from the part assignments,
// unless onePartPerProc_.
ArrayRCP<int> procs_; // process rank assigned to localid[i]
////////////////////////////////////////////////////////////////
// Algorithm used to compute the solution;
// needed for post-processing with pointAssign or getCommunicationGraph
const RCP<Algorithm<Adapter> > algorithm_; //
};
////////////////////////////////////////////////////////////////////
// Definitions
////////////////////////////////////////////////////////////////////
template <typename Adapter>
PartitioningSolution<Adapter>::PartitioningSolution(
const RCP<const Environment> &env,
RCP<const Comm<int> > &comm,
int nUserWeights,
const RCP<Algorithm<Adapter> > &algorithm)
: env_(env), comm_(comm),
partBoxes(),
nGlobalParts_(0), nLocalParts_(0),
localFraction_(0), nWeightsPerObj_(),
onePartPerProc_(false), partDist_(), procDist_(),
procDistEquallySpread_(false),
pSizeUniform_(), pCompactIndex_(), pSize_(),
parts_(), haveSolution_(false), nGlobalPartsSolution_(0),
procs_(), algorithm_(algorithm)
{
nWeightsPerObj_ = (nUserWeights ? nUserWeights : 1); // TODO: WHY?? WHY NOT ZERO?
setPartDistribution();
// We must call setPartSizes() because part sizes may have
// been provided by the user on other processes.
ArrayRCP<part_t> *noIds = new ArrayRCP<part_t> [nWeightsPerObj_];
ArrayRCP<scalar_t> *noSizes = new ArrayRCP<scalar_t> [nWeightsPerObj_];
ArrayRCP<ArrayRCP<part_t> > ids(noIds, 0, nWeightsPerObj_, true);
ArrayRCP<ArrayRCP<scalar_t> > sizes(noSizes, 0, nWeightsPerObj_, true);
setPartSizes(ids.view(0, nWeightsPerObj_), sizes.view(0, nWeightsPerObj_));
env_->memory("After construction of solution");
}
template <typename Adapter>
PartitioningSolution<Adapter>::PartitioningSolution(
const RCP<const Environment> &env,
RCP<const Comm<int> > &comm,
int nUserWeights,
ArrayView<ArrayRCP<part_t> > reqPartIds,
ArrayView<ArrayRCP<scalar_t> > reqPartSizes,
const RCP<Algorithm<Adapter> > &algorithm)
: env_(env), comm_(comm),
partBoxes(),
nGlobalParts_(0), nLocalParts_(0),
localFraction_(0), nWeightsPerObj_(),
onePartPerProc_(false), partDist_(), procDist_(),
procDistEquallySpread_(false),
pSizeUniform_(), pCompactIndex_(), pSize_(),
parts_(), haveSolution_(false), nGlobalPartsSolution_(0),
procs_(), algorithm_(algorithm)
{
nWeightsPerObj_ = (nUserWeights ? nUserWeights : 1); // TODO: WHY?? WHY NOT ZERO?
setPartDistribution();
setPartSizes(reqPartIds, reqPartSizes);
env_->memory("After construction of solution");
}
template <typename Adapter>
void PartitioningSolution<Adapter>::setPartDistribution()
{
// Did the caller define num_global_parts and/or num_local_parts?
const ParameterList &pl = env_->getParameters();
size_t haveGlobalNumParts=0, haveLocalNumParts=0;
int numLocal=0, numGlobal=0;
double val;
const Teuchos::ParameterEntry *pe = pl.getEntryPtr("num_global_parts");
if (pe){
val = pe->getValue<double>(&val); // TODO: KDD Skip this double get
haveGlobalNumParts = 1; // TODO: KDD Should be unnecessary once
numGlobal = static_cast<int>(val); // TODO: KDD paramlist handles long long.
nGlobalParts_ = part_t(numGlobal); // TODO: KDD also do below.
}
pe = pl.getEntryPtr("num_local_parts");
if (pe){
val = pe->getValue<double>(&val);
haveLocalNumParts = 1;
numLocal = static_cast<int>(val);
nLocalParts_ = part_t(numLocal);
}
try{
// Sets onePartPerProc_, partDist_, and procDist_
partToProc(true, haveLocalNumParts, haveGlobalNumParts,
numLocal, numGlobal);
}
Z2_FORWARD_EXCEPTIONS
int nprocs = comm_->getSize();
int rank = comm_->getRank();
if (onePartPerProc_){
nGlobalParts_ = nprocs;
nLocalParts_ = 1;
}
else if (partDist_.size() > 0){ // more procs than parts
nGlobalParts_ = partDist_.size() - 1;
int pstart = partDist_[0];
for (part_t i=1; i <= nGlobalParts_; i++){
int pend = partDist_[i];
if (rank >= pstart && rank < pend){
int numOwners = pend - pstart;
nLocalParts_ = 1;
localFraction_ = 1.0 / numOwners;
break;
}
pstart = pend;
}
}
else if (procDist_.size() > 0){ // more parts than procs
nGlobalParts_ = procDist_[nprocs];
nLocalParts_ = procDist_[rank+1] - procDist_[rank];
}
else {
throw std::logic_error("partToProc error");
}
}
template <typename Adapter>
void PartitioningSolution<Adapter>::setPartSizes(
ArrayView<ArrayRCP<part_t> > ids, ArrayView<ArrayRCP<scalar_t> > sizes)
{
int widx = nWeightsPerObj_;
bool fail=false;
size_t *countBuf = new size_t [widx*2];
ArrayRCP<size_t> counts(countBuf, 0, widx*2, true);
fail = ((ids.size() != widx) || (sizes.size() != widx));
for (int w=0; !fail && w < widx; w++){
counts[w] = ids[w].size();
if (ids[w].size() != sizes[w].size()) fail=true;
}
env_->globalBugAssertion(__FILE__, __LINE__, "bad argument arrays", fail==0,
COMPLEX_ASSERTION, comm_);
// Are all part sizes the same? This is the common case.
ArrayRCP<scalar_t> *emptySizes= new ArrayRCP<scalar_t> [widx];
pSize_ = arcp(emptySizes, 0, widx);
ArrayRCP<unsigned char> *emptyIndices= new ArrayRCP<unsigned char> [widx];
pCompactIndex_ = arcp(emptyIndices, 0, widx);
bool *info = new bool [widx];
pSizeUniform_ = arcp(info, 0, widx);
for (int w=0; w < widx; w++)
pSizeUniform_[w] = true;
if (nGlobalParts_ == 1){
return; // there's only one part in the whole problem
}
size_t *ptr1 = counts.getRawPtr();
size_t *ptr2 = counts.getRawPtr() + widx;
try{
reduceAll<int, size_t>(*comm_, Teuchos::REDUCE_MAX, widx, ptr1, ptr2);
}
Z2_THROW_OUTSIDE_ERROR(*env_);
bool zero = true;
for (int w=0; w < widx; w++)
if (counts[widx+w] > 0){
zero = false;
pSizeUniform_[w] = false;
}
if (zero) // Part sizes for all criteria are uniform.
return;
// Compute the part sizes for criteria for which part sizes were
// supplied. Normalize for each criteria so part sizes sum to one.
int nprocs = comm_->getSize();
int rank = comm_->getRank();
for (int w=0; w < widx; w++){
if (pSizeUniform_[w]) continue;
// Send all ids and sizes to one process.
// (There is no simple gather method in Teuchos.)
part_t length = ids[w].size();
part_t *allLength = new part_t [nprocs];
Teuchos::gatherAll<int, part_t>(*comm_, 1, &length,
nprocs, allLength);
if (rank == 0){
int total = 0;
for (int i=0; i < nprocs; i++)
total += allLength[i];
part_t *partNums = new part_t [total];
scalar_t *partSizes = new scalar_t [total];
ArrayView<part_t> idArray(partNums, total);
ArrayView<scalar_t> sizeArray(partSizes, total);
if (length > 0){
for (int i=0; i < length; i++){
*partNums++ = ids[w][i];
*partSizes++ = sizes[w][i];
}
}
for (int p=1; p < nprocs; p++){
if (allLength[p] > 0){
Teuchos::receive<int, part_t>(*comm_, p,
allLength[p], partNums);
Teuchos::receive<int, scalar_t>(*comm_, p,
allLength[p], partSizes);
partNums += allLength[p];
partSizes += allLength[p];
}
}
delete [] allLength;
try{
computePartSizes(w, idArray, sizeArray);
}
Z2_FORWARD_EXCEPTIONS
delete [] idArray.getRawPtr();
delete [] sizeArray.getRawPtr();
}
else{
delete [] allLength;
if (length > 0){
Teuchos::send<int, part_t>(*comm_, length, ids[w].getRawPtr(), 0);
Teuchos::send<int, scalar_t>(*comm_, length, sizes[w].getRawPtr(), 0);
}
}
broadcastPartSizes(w);
}
}
template <typename Adapter>
void PartitioningSolution<Adapter>::broadcastPartSizes(int widx)
{
env_->localBugAssertion(__FILE__, __LINE__, "preallocations",
pSize_.size()>widx &&
pSizeUniform_.size()>widx && pCompactIndex_.size()>widx,
COMPLEX_ASSERTION);
int rank = comm_->getRank();
int nprocs = comm_->getSize();
part_t nparts = nGlobalParts_;
if (nprocs < 2)
return;
char flag=0;
if (rank == 0){
if (pSizeUniform_[widx] == true)
flag = 1;
else if (pCompactIndex_[widx].size() > 0)
flag = 2;
else
flag = 3;
}
try{
Teuchos::broadcast<int, char>(*comm_, 0, 1, &flag);
}
Z2_THROW_OUTSIDE_ERROR(*env_);
if (flag == 1){
if (rank > 0)
pSizeUniform_[widx] = true;
return;
}
if (flag == 2){
// broadcast the indices into the size list
unsigned char *idxbuf = NULL;
if (rank > 0){
idxbuf = new unsigned char [nparts];
env_->localMemoryAssertion(__FILE__, __LINE__, nparts, idxbuf);
}
else{
env_->localBugAssertion(__FILE__, __LINE__, "index list size",
pCompactIndex_[widx].size() == nparts, COMPLEX_ASSERTION);
idxbuf = pCompactIndex_[widx].getRawPtr();
}
try{
// broadcast of unsigned char is not supported
Teuchos::broadcast<int, char>(*comm_, 0, nparts,
reinterpret_cast<char *>(idxbuf));
}
Z2_THROW_OUTSIDE_ERROR(*env_);
if (rank > 0)
pCompactIndex_[widx] = arcp(idxbuf, 0, nparts, true);
// broadcast the list of different part sizes
unsigned char maxIdx=0;
for (part_t p=0; p < nparts; p++)
if (idxbuf[p] > maxIdx) maxIdx = idxbuf[p];
int numSizes = maxIdx + 1;
scalar_t *sizeList = NULL;
if (rank > 0){
sizeList = new scalar_t [numSizes];
env_->localMemoryAssertion(__FILE__, __LINE__, numSizes, sizeList);
}
else{
env_->localBugAssertion(__FILE__, __LINE__, "wrong number of sizes",
numSizes == pSize_[widx].size(), COMPLEX_ASSERTION);
sizeList = pSize_[widx].getRawPtr();
}
try{
Teuchos::broadcast<int, scalar_t>(*comm_, 0, numSizes, sizeList);
}
Z2_THROW_OUTSIDE_ERROR(*env_);
if (rank > 0)
pSize_[widx] = arcp(sizeList, 0, numSizes, true);
return;
}
if (flag == 3){
// broadcast the size of each part
scalar_t *sizeList = NULL;
if (rank > 0){
sizeList = new scalar_t [nparts];
env_->localMemoryAssertion(__FILE__, __LINE__, nparts, sizeList);
}
else{
env_->localBugAssertion(__FILE__, __LINE__, "wrong number of sizes",
nparts == pSize_[widx].size(), COMPLEX_ASSERTION);
sizeList = pSize_[widx].getRawPtr();
}
try{
Teuchos::broadcast<int, scalar_t >(*comm_, 0, nparts, sizeList);
}
Z2_THROW_OUTSIDE_ERROR(*env_);
if (rank > 0)
pSize_[widx] = arcp(sizeList, 0, nparts);
return;
}
}
template <typename Adapter>
void PartitioningSolution<Adapter>::computePartSizes(int widx,
ArrayView<part_t> ids, ArrayView<scalar_t> sizes)
{
int len = ids.size();
if (len == 0){
pSizeUniform_[widx] = true;
return;
}
env_->localBugAssertion(__FILE__, __LINE__, "bad array sizes",
len>0 && sizes.size()==len, COMPLEX_ASSERTION);
env_->localBugAssertion(__FILE__, __LINE__, "bad index",
widx>=0 && widx<nWeightsPerObj_, COMPLEX_ASSERTION);
env_->localBugAssertion(__FILE__, __LINE__, "preallocations",
pSize_.size()>widx &&
pSizeUniform_.size()>widx && pCompactIndex_.size()>widx,
COMPLEX_ASSERTION);
// Check ids and sizes and find min, max and average sizes.
// If sizes are very close to uniform, call them uniform parts.
part_t nparts = nGlobalParts_;
unsigned char *buf = new unsigned char [nparts];
env_->localMemoryAssertion(__FILE__, __LINE__, nparts, buf);
memset(buf, 0, nparts);
ArrayRCP<unsigned char> partIdx(buf, 0, nparts, true);
scalar_t epsilon = 10e-5 / nparts;
scalar_t min=sizes[0], max=sizes[0], sum=0;
for (int i=0; i < len; i++){
part_t id = ids[i];
scalar_t size = sizes[i];
env_->localInputAssertion(__FILE__, __LINE__, "invalid part id",
id>=0 && id<nparts, BASIC_ASSERTION);
env_->localInputAssertion(__FILE__, __LINE__, "invalid part size", size>=0,
BASIC_ASSERTION);
// TODO: we could allow users to specify multiple sizes for the same
// part if we add a parameter that says what we are to do with them:
// add them or take the max.
env_->localInputAssertion(__FILE__, __LINE__,
"multiple sizes provided for one part", partIdx[id]==0, BASIC_ASSERTION);
partIdx[id] = 1; // mark that we have a size for this part
if (size < min) min = size;
if (size > max) max = size;
sum += size;
}
if (sum == 0){
// User has given us a list of parts of size 0, we'll set
// the rest to them to equally sized parts.
scalar_t *allSizes = new scalar_t [2];
env_->localMemoryAssertion(__FILE__, __LINE__, 2, allSizes);
ArrayRCP<scalar_t> sizeArray(allSizes, 0, 2, true);
int numNonZero = nparts - len;
allSizes[0] = 0.0;
allSizes[1] = 1.0 / numNonZero;
for (part_t p=0; p < nparts; p++)
buf[p] = 1; // index to default part size
for (int i=0; i < len; i++)
buf[ids[i]] = 0; // index to part size zero
pSize_[widx] = sizeArray;
pCompactIndex_[widx] = partIdx;
return;
}
if (max - min <= epsilon){
pSizeUniform_[widx] = true;
return;
}
// A size for parts that were not specified:
scalar_t avg = sum / nparts;
// We are going to merge part sizes that are very close. This takes
// computation time now, but can save considerably in the storage of
// all part sizes on each process. For example, a common case may
// be some parts are size 1 and all the rest are size 2.
scalar_t *tmp = new scalar_t [len];
env_->localMemoryAssertion(__FILE__, __LINE__, len, tmp);
memcpy(tmp, sizes.getRawPtr(), sizeof(scalar_t) * len);
ArrayRCP<scalar_t> partSizes(tmp, 0, len, true);
std::sort(partSizes.begin(), partSizes.end());
// create a list of sizes that are unique within epsilon
Array<scalar_t> nextUniqueSize;
nextUniqueSize.push_back(partSizes[len-1]); // largest
scalar_t curr = partSizes[len-1];
int avgIndex = len;
bool haveAvg = false;
if (curr - avg <= epsilon)
avgIndex = 0;
for (int i=len-2; i >= 0; i--){
scalar_t val = partSizes[i];
if (curr - val > epsilon){
nextUniqueSize.push_back(val); // the highest in the group
curr = val;
if (avgIndex==len && val > avg && val - avg <= epsilon){
// the average would be in this group
avgIndex = nextUniqueSize.size() - 1;
haveAvg = true;
}
}
}
partSizes.clear();
size_t numSizes = nextUniqueSize.size();
int sizeArrayLen = numSizes;
if (numSizes < 64){
// We can store the size for every part in a compact way.
// Create a list of all sizes in increasing order
if (!haveAvg) sizeArrayLen++; // need to include average
scalar_t *allSizes = new scalar_t [sizeArrayLen];
env_->localMemoryAssertion(__FILE__, __LINE__, sizeArrayLen, allSizes);
ArrayRCP<scalar_t> sizeArray(allSizes, 0, sizeArrayLen, true);
int newAvgIndex = sizeArrayLen;
for (int i=numSizes-1, idx=0; i >= 0; i--){
if (newAvgIndex == sizeArrayLen){
if (haveAvg && i==avgIndex)
newAvgIndex = idx;
else if (!haveAvg && avg < nextUniqueSize[i]){
newAvgIndex = idx;
allSizes[idx++] = avg;
}
}
allSizes[idx++] = nextUniqueSize[i];
}
env_->localBugAssertion(__FILE__, __LINE__, "finding average in list",
newAvgIndex < sizeArrayLen, COMPLEX_ASSERTION);
for (int i=0; i < nparts; i++){
buf[i] = newAvgIndex; // index to default part size
}
sum = (nparts - len) * allSizes[newAvgIndex];
for (int i=0; i < len; i++){
int id = ids[i];
scalar_t size = sizes[i];
int index;
// Find the first size greater than or equal to this size.
if (size < avg && avg - size <= epsilon)
index = newAvgIndex;
else{
typename ArrayRCP<scalar_t>::iterator found =
std::lower_bound(sizeArray.begin(), sizeArray.end(), size);
env_->localBugAssertion(__FILE__, __LINE__, "size array",
found != sizeArray.end(), COMPLEX_ASSERTION);
index = found - sizeArray.begin();
}
buf[id] = index;
sum += allSizes[index];
}
for (int i=0; i < sizeArrayLen; i++){
sizeArray[i] /= sum;
}
pCompactIndex_[widx] = partIdx;
pSize_[widx] = sizeArray;
}
else{
// To have access to part sizes, we must store nparts scalar_ts on
// every process. We expect this is a rare case.
tmp = new scalar_t [nparts];
env_->localMemoryAssertion(__FILE__, __LINE__, nparts, tmp);
sum += ((nparts - len) * avg);
for (int i=0; i < nparts; i++){
tmp[i] = avg/sum;
}
for (int i=0; i < len; i++){
tmp[ids[i]] = sizes[i]/sum;
}
pSize_[widx] = arcp(tmp, 0, nparts);
}
}
template <typename Adapter>
void PartitioningSolution<Adapter>::setParts(ArrayRCP<part_t> &partList)
{
env_->debug(DETAILED_STATUS, "Entering setParts");
size_t len = partList.size();
// Find the actual number of parts in the solution, which can
// be more or less than the nGlobalParts_ target.
// (We may want to compute the imbalance of a given solution with
// respect to a desired solution. This solution may have more or
// fewer parts that the desired solution.)
part_t lMax = std::numeric_limits<part_t>::min();
part_t lMin = std::numeric_limits<part_t>::max();
part_t gMax, gMin;
for (size_t i = 0; i < len; i++) {
if (partList[i] < lMin) lMin = partList[i];
if (partList[i] > lMax) lMax = partList[i];
}
Teuchos::reduceAll<int, part_t>(*comm_, Teuchos::REDUCE_MIN, 1, &lMin, &gMin);
Teuchos::reduceAll<int, part_t>(*comm_, Teuchos::REDUCE_MAX, 1, &lMax, &gMax);
nGlobalPartsSolution_ = gMax - gMin + 1;
parts_ = partList;
// Now determine which process gets each object, if not one-to-one.
if (!onePartPerProc_){
int *procs = new int [len];
env_->localMemoryAssertion(__FILE__, __LINE__, len, procs);
procs_ = arcp<int>(procs, 0, len);
part_t *parts = partList.getRawPtr();
if (procDist_.size() > 0){ // parts are not split across procs
int procId;
for (size_t i=0; i < len; i++){
partToProcsMap(parts[i], procs[i], procId);
}
}
else{ // harder - we need to split the parts across multiple procs
lno_t *partCounter = new lno_t [nGlobalPartsSolution_];
env_->localMemoryAssertion(__FILE__, __LINE__, nGlobalPartsSolution_,
partCounter);
int numProcs = comm_->getSize();
//MD NOTE: there was no initialization for partCounter.
//I added the line below, correct me if I am wrong.
memset(partCounter, 0, sizeof(lno_t) * nGlobalPartsSolution_);
for (typename ArrayRCP<part_t>::size_type i=0; i < partList.size(); i++)
partCounter[parts[i]]++;
lno_t *procCounter = new lno_t [numProcs];
env_->localMemoryAssertion(__FILE__, __LINE__, numProcs, procCounter);
int proc1;
int proc2 = partDist_[0];
for (part_t part=1; part < nGlobalParts_; part++){
proc1 = proc2;
proc2 = partDist_[part+1];
int numprocs = proc2 - proc1;
double dNum = partCounter[part];
double dProcs = numprocs;
//cout << "dNum:" << dNum << " dProcs:" << dProcs << endl;
double each = floor(dNum/dProcs);
double extra = fmod(dNum,dProcs);
for (int proc=proc1, i=0; proc<proc2; proc++, i++){
if (i < extra)
procCounter[proc] = lno_t(each) + 1;
else
procCounter[proc] = lno_t(each);
}
}
delete [] partCounter;
for (typename ArrayRCP<part_t>::size_type i=0; i < partList.size(); i++){
if (partList[i] >= nGlobalParts_){
// Solution has more parts that targeted. These
// objects just remain on this process.
procs[i] = comm_->getRank();
continue;
}
part_t partNum = parts[i];
proc1 = partDist_[partNum];
proc2 = partDist_[partNum + 1];
int proc;
for (proc=proc1; proc < proc2; proc++){
if (procCounter[proc] > 0){
procs[i] = proc;
procCounter[proc]--;
break;
}
}
env_->localBugAssertion(__FILE__, __LINE__, "part to proc",
proc < proc2, COMPLEX_ASSERTION);
}
delete [] procCounter;
}
}
// Now that parts_ info is back on home process, remap the parts.
// TODO: The parts will be inconsistent with the proc assignments after
// TODO: remapping. This problem will go away after we separate process
// TODO: mapping from setParts. But for MueLu's use case, the part
// TODO: remapping is all that matters; they do not use the process mapping.
int doRemap = 0;
const Teuchos::ParameterEntry *pe =
env_->getParameters().getEntryPtr("remap_parts");
if (pe) doRemap = pe->getValue(&doRemap);
if (doRemap) RemapParts();
haveSolution_ = true;
env_->memory("After Solution has processed algorithm's answer");
env_->debug(DETAILED_STATUS, "Exiting setParts");
}
template <typename Adapter>
void PartitioningSolution<Adapter>::procToPartsMap(int procId,
double &numParts, part_t &partMin, part_t &partMax) const
{
if (onePartPerProc_){
numParts = 1.0;
partMin = partMax = procId;
}
else if (procDist_.size() > 0){
partMin = procDist_[procId];
partMax = procDist_[procId+1] - 1;
numParts = procDist_[procId+1] - partMin;
}
else{
// find the first p such that partDist_[p] > procId
std::vector<int>::const_iterator entry;
entry = std::upper_bound(partDist_.begin(), partDist_.end(), procId);
size_t partIdx = entry - partDist_.begin();
int numProcs = partDist_[partIdx] - partDist_[partIdx-1];
partMin = partMax = int(partIdx) - 1;
numParts = 1.0 / numProcs;
}
}
template <typename Adapter>
void PartitioningSolution<Adapter>::partToProcsMap(part_t partId,
int &procMin, int &procMax) const
{
if (partId >= nGlobalParts_){
// setParts() may be given an initial solution which uses a
// different number of parts than the desired solution. It is
// still a solution. We keep it on this process.
procMin = procMax = comm_->getRank();
}
else if (onePartPerProc_){
procMin = procMax = int(partId);
}
else if (procDist_.size() > 0){
if (procDistEquallySpread_) {
// Avoid binary search.
double fProcs = comm_->getSize();
double fParts = nGlobalParts_;
double each = fParts / fProcs;
procMin = int(partId / each);
while (procDist_[procMin] > partId) procMin--;
while (procDist_[procMin+1] <= partId) procMin++;
procMax = procMin;
}
else {
// find the first p such that procDist_[p] > partId.
// For now, do a binary search.
typename std::vector<part_t>::const_iterator entry;
entry = std::upper_bound(procDist_.begin(), procDist_.end(), partId);
size_t procIdx = entry - procDist_.begin();
procMin = procMax = int(procIdx) - 1;
}
}
else{
procMin = partDist_[partId];
procMax = partDist_[partId+1] - 1;
}
}
template <typename Adapter>
bool PartitioningSolution<Adapter>::criteriaHaveSamePartSizes(
int c1, int c2) const
{
if (c1 < 0 || c1 >= nWeightsPerObj_ || c2 < 0 || c2 >= nWeightsPerObj_ )
throw std::logic_error("criteriaHaveSamePartSizes error");
bool theSame = false;
if (c1 == c2)
theSame = true;
else if (pSizeUniform_[c1] == true && pSizeUniform_[c2] == true)
theSame = true;
else if (pCompactIndex_[c1].size() == pCompactIndex_[c2].size()){
theSame = true;
bool useIndex = pCompactIndex_[c1].size() > 0;
if (useIndex){
for (part_t p=0; theSame && p < nGlobalParts_; p++)
if (pSize_[c1][pCompactIndex_[c1][p]] !=
pSize_[c2][pCompactIndex_[c2][p]])
theSame = false;
}
else{
for (part_t p=0; theSame && p < nGlobalParts_; p++)
if (pSize_[c1][p] != pSize_[c2][p])
theSame = false;
}
}
return theSame;
}
/*! \brief Compute the assignment of parts to processes.
* \param doCheck if true, do a global check to reconcile the
* numLocalParts and numGlobalParts values on all processes.
* If false, we assume numLocalParts and numGlobalParts are
* the same across processes.
* \param haveNumLocalParts true if this process set the num_local_parts
* parameter, false otherwise
* \param numLocalParts the number of local parts specified for this
* process as a parameter, if any
* \param haveNumGlobalParts true if this process set the num_global_parts
* parameter, false otherwise
* \param numGlobalParts the number of global parts specified by this
* process as a parameter, if any
*/
template <typename Adapter>
void PartitioningSolution<Adapter>::partToProc(
bool doCheck, bool haveNumLocalParts, bool haveNumGlobalParts,
int numLocalParts, int numGlobalParts)
{
#ifdef _MSC_VER
typedef SSIZE_T ssize_t;
#endif
int nprocs = comm_->getSize();
ssize_t reducevals[4];
ssize_t sumHaveGlobal=0, sumHaveLocal=0;
ssize_t sumGlobal=0, sumLocal=0;
ssize_t maxGlobal=0, maxLocal=0;
ssize_t vals[4] = {haveNumGlobalParts, haveNumLocalParts,
numGlobalParts, numLocalParts};
partDist_.clear();
procDist_.clear();
if (doCheck){
try{
reduceAll<int, ssize_t>(*comm_, Teuchos::REDUCE_SUM, 4, vals, reducevals);
}
Z2_THROW_OUTSIDE_ERROR(*env_);
sumHaveGlobal = reducevals[0];
sumHaveLocal = reducevals[1];
sumGlobal = reducevals[2];
sumLocal = reducevals[3];
env_->localInputAssertion(__FILE__, __LINE__,
"Either all procs specify num_global/local_parts or none do",
(sumHaveGlobal == 0 || sumHaveGlobal == nprocs) &&
(sumHaveLocal == 0 || sumHaveLocal == nprocs),
BASIC_ASSERTION);
}
else{
if (haveNumLocalParts)
sumLocal = numLocalParts * nprocs;
if (haveNumGlobalParts)
sumGlobal = numGlobalParts * nprocs;
sumHaveGlobal = haveNumGlobalParts ? nprocs : 0;
sumHaveLocal = haveNumLocalParts ? nprocs : 0;
maxLocal = numLocalParts;
maxGlobal = numGlobalParts;
}
if (!haveNumLocalParts && !haveNumGlobalParts){
onePartPerProc_ = true; // default if user did not specify
return;
}
if (haveNumGlobalParts){
if (doCheck){
vals[0] = numGlobalParts;
vals[1] = numLocalParts;
try{
reduceAll<int, ssize_t>(
*comm_, Teuchos::REDUCE_MAX, 2, vals, reducevals);
}
Z2_THROW_OUTSIDE_ERROR(*env_);
maxGlobal = reducevals[0];
maxLocal = reducevals[1];
env_->localInputAssertion(__FILE__, __LINE__,
"Value for num_global_parts is different on different processes.",
maxGlobal * nprocs == sumGlobal, BASIC_ASSERTION);
}
if (sumLocal){
env_->localInputAssertion(__FILE__, __LINE__,
"Sum of num_local_parts does not equal requested num_global_parts",
sumLocal == numGlobalParts, BASIC_ASSERTION);
if (sumLocal == nprocs && maxLocal == 1){
onePartPerProc_ = true; // user specified one part per proc
return;
}
}
else{
if (maxGlobal == nprocs){
onePartPerProc_ = true; // user specified num parts is num procs
return;
}
}
}
// If we are here, we do not have #parts == #procs.
if (sumHaveLocal == nprocs){
//
// We will go by the number of local parts specified.
//
try{
procDist_.resize(nprocs+1);
}
catch (std::exception &e){
throw(std::bad_alloc());
}
part_t *procArray = &procDist_[0];
try{
part_t tmp = part_t(numLocalParts);
gatherAll<int, part_t>(*comm_, 1, &tmp, nprocs, procArray + 1);
}
Z2_THROW_OUTSIDE_ERROR(*env_);
procArray[0] = 0;
for (int proc=0; proc < nprocs; proc++)
procArray[proc+1] += procArray[proc];
}
else{
//
// We will allocate global number of parts to the processes.
//
double fParts = numGlobalParts;
double fProcs = nprocs;
if (fParts < fProcs){
try{
partDist_.resize(size_t(fParts+1));
}
catch (std::exception &e){
throw(std::bad_alloc());
}
int *partArray = &partDist_[0];
double each = floor(fProcs / fParts);
double extra = fmod(fProcs, fParts);
partDist_[0] = 0;
for (part_t part=0; part < numGlobalParts; part++){
int numOwners = int(each + ((part<extra) ? 1 : 0));
partArray[part+1] = partArray[part] + numOwners;
}
env_->globalBugAssertion(__FILE__, __LINE__, "#parts != #procs",
partDist_[numGlobalParts] == nprocs, COMPLEX_ASSERTION, comm_);
}
else if (fParts > fProcs){
// User did not specify local number of parts per proc;
// Distribute the parts evenly among the procs.
procDistEquallySpread_ = true;
try{
procDist_.resize(size_t(fProcs+1));
}
catch (std::exception &e){
throw(std::bad_alloc());
}
part_t *procArray = &procDist_[0];
double each = floor(fParts / fProcs);
double extra = fmod(fParts, fProcs);
procArray[0] = 0;
for (int proc=0; proc < nprocs; proc++){
part_t numParts = part_t(each + ((proc<extra) ? 1 : 0));
procArray[proc+1] = procArray[proc] + numParts;
}
env_->globalBugAssertion(__FILE__, __LINE__, "#parts != #procs",
procDist_[nprocs] == numGlobalParts, COMPLEX_ASSERTION, comm_);
}
else{
env_->globalBugAssertion(__FILE__, __LINE__,
"should never get here", 1, COMPLEX_ASSERTION, comm_);
}
}
}
////////////////////////////////////////////////////////////////////
// Remap a new part assignment vector for maximum overlap with an input
// part assignment.
//
// Assumptions for this version:
// input part assignment == processor rank for every local object.
// assuming nGlobalParts_ <= num ranks
// TODO: Write a version that takes the input part number as input;
// this change requires input parts in adapters to be provided in
// the Adapter.
// TODO: For repartitioning, compare to old remapping results; see Zoltan1.
template <typename Adapter>
void PartitioningSolution<Adapter>::RemapParts()
{
size_t len = parts_.size();
part_t me = comm_->getRank();
int np = comm_->getSize();
if (np < nGlobalParts_) {
if (me == 0)
std::cout << "Remapping not yet supported for "
<< "num_global_parts " << nGlobalParts_
<< " > num procs " << np << std::endl;
return;
}
// Build edges of a bipartite graph with np + nGlobalParts_ vertices,
// and edges between a process vtx and any parts to which that process'
// objects are assigned.
// Weight edge[parts_[i]] by the number of objects that are going from
// this rank to parts_[i].
// We use a std::map, assuming the number of unique parts in the parts_ array
// is small to keep the binary search efficient.
// TODO We use the count of objects to move; should change to SIZE of objects
// to move; need SIZE function in Adapter.
std::map<part_t, long> edges;
long lstaying = 0; // Total num of local objects staying if we keep the
// current mapping. TODO: change to SIZE of local objs
long gstaying = 0; // Total num of objects staying in the current partition
for (size_t i = 0; i < len; i++) {
edges[parts_[i]]++; // TODO Use obj size instead of count
if (parts_[i] == me) lstaying++; // TODO Use obj size instead of count
}
Teuchos::reduceAll<int, long>(*comm_, Teuchos::REDUCE_SUM, 1,
&lstaying, &gstaying);
//TODO if (gstaying == Adapter::getGlobalNumObjs()) return; // Nothing to do
part_t *remap = NULL;
int nedges = edges.size();
// Gather the graph to rank 0.
part_t tnVtx = np + nGlobalParts_; // total # vertices
int *idx = NULL; // Pointer index into graph adjacencies
int *sizes = NULL; // nedges per rank
if (me == 0) {
idx = new int[tnVtx+1];
sizes = new int[np];
sizes[0] = nedges;
}
if (np > 1)
Teuchos::gather<int, int>(&nedges, 1, sizes, 1, 0, *comm_);
// prefix sum to build the idx array
if (me == 0) {
idx[0] = 0;
for (int i = 0; i < np; i++)
idx[i+1] = idx[i] + sizes[i];
}
// prepare to send edges
int cnt = 0;
part_t *bufv = NULL;
long *bufw = NULL;
if (nedges) {
bufv = new part_t[nedges];
bufw = new long[nedges];
// Create buffer with edges (me, part[i]) and weight edges[parts_[i]].
for (typename std::map<part_t, long>::iterator it = edges.begin();
it != edges.end(); it++) {
bufv[cnt] = it->first; // target part
bufw[cnt] = it->second; // weight
cnt++;
}
}
// Prepare to receive edges on rank 0
part_t *adj = NULL;
long *wgt = NULL;
if (me == 0) {
//SYM adj = new part_t[2*idx[np]]; // need 2x space to symmetrize later
//SYM wgt = new long[2*idx[np]]; // need 2x space to symmetrize later
adj = new part_t[idx[np]];
wgt = new long[idx[np]];
}
Teuchos::gatherv<int, part_t>(bufv, cnt, adj, sizes, idx, 0, *comm_);
Teuchos::gatherv<int, long>(bufw, cnt, wgt, sizes, idx, 0, *comm_);
delete [] bufv;
delete [] bufw;
// Now have constructed graph on rank 0.
// Call the matching algorithm
int doRemap;
if (me == 0) {
// We have the "LHS" vertices of the bipartite graph; need to create
// "RHS" vertices.
for (int i = 0; i < idx[np]; i++) {
adj[i] += np; // New RHS vertex number; offset by num LHS vertices
}
// Build idx for RHS vertices
for (part_t i = np; i < tnVtx; i++) {
idx[i+1] = idx[i]; // No edges for RHS vertices
}
#ifdef KDDKDD_DEBUG
cout << "IDX ";
for (part_t i = 0; i <= tnVtx; i++) std::cout << idx[i] << " ";
std::cout << std::endl;
std::cout << "ADJ ";
for (part_t i = 0; i < idx[tnVtx]; i++) std::cout << adj[i] << " ";
std::cout << std::endl;
std::cout << "WGT ";
for (part_t i = 0; i < idx[tnVtx]; i++) std::cout << wgt[i] << " ";
std::cout << std::endl;
#endif
// Perform matching on the graph
part_t *match = new part_t[tnVtx];
for (part_t i = 0; i < tnVtx; i++) match[i] = i;
part_t nmatches =
Zoltan2::GreedyMWM<part_t, long>(idx, adj, wgt, tnVtx, match);
#ifdef KDDKDD_DEBUG
std::cout << "After matching: " << nmatches << " found" << std::endl;
for (part_t i = 0; i < tnVtx; i++)
std::cout << "match[" << i << "] = " << match[i]
<< ((match[i] != i &&
(i < np && match[i] != i+np))
? " *" : " ")
<< std::endl;
#endif
// See whether there were nontrivial changes in the matching.
bool nontrivial = false;
if (nmatches) {
for (part_t i = 0; i < np; i++) {
if ((match[i] != i) && (match[i] != (i+np))) {
nontrivial = true;
break;
}
}
}
// Process the matches
if (nontrivial) {
remap = new part_t[nGlobalParts_];
for (part_t i = 0; i < nGlobalParts_; i++) remap[i] = -1;
bool *used = new bool[np];
for (part_t i = 0; i < np; i++) used[i] = false;
// First, process all matched parts
for (part_t i = 0; i < nGlobalParts_; i++) {
part_t tmp = i + np;
if (match[tmp] != tmp) {
remap[i] = match[tmp];
used[match[tmp]] = true;
}
}
// Second, process unmatched parts; keep same part number if possible
for (part_t i = 0; i < nGlobalParts_; i++) {
if (remap[i] > -1) continue;
if (!used[i]) {
remap[i] = i;
used[i] = true;
}
}
// Third, process unmatched parts; give them the next unused part
for (part_t i = 0, uidx = 0; i < nGlobalParts_; i++) {
if (remap[i] > -1) continue;
while (used[uidx]) uidx++;
remap[i] = uidx;
used[uidx] = true;
}
delete [] used;
}
delete [] match;
#ifdef KDDKDD_DEBUG
cout << "Remap vector: ";
for (part_t i = 0; i < nGlobalParts_; i++) cout << remap[i] << " ";
std::cout << std::endl;
#endif
long newgstaying = measure_stays(remap, idx, adj, wgt,
nGlobalParts_, np);
doRemap = (newgstaying > gstaying);
std::cout << "gstaying " << gstaying << " measure(input) "
<< measure_stays(NULL, idx, adj, wgt, nGlobalParts_, np)
<< " newgstaying " << newgstaying
<< " nontrivial " << nontrivial
<< " doRemap " << doRemap << std::endl;
}
delete [] idx;
delete [] sizes;
delete [] adj;
delete [] wgt;
Teuchos::broadcast<int, int>(*comm_, 0, 1, &doRemap);
if (doRemap) {
if (me != 0) remap = new part_t[nGlobalParts_];
Teuchos::broadcast<int, part_t>(*comm_, 0, nGlobalParts_, remap);
for (size_t i = 0; i < len; i++) {
parts_[i] = remap[parts_[i]];
}
}
delete [] remap; // TODO May want to keep for repartitioning as in Zoltan
}
} // namespace Zoltan2
#endif
|