This file is indexed.

/usr/include/trilinos/Zoltan2_OrderingSolution.hpp is in libtrilinos-zoltan2-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_OrderingSolution.hpp
    \brief Defines the OrderingSolution class.
*/

#ifndef _ZOLTAN2_ORDERINGSOLUTION_HPP_
#define _ZOLTAN2_ORDERINGSOLUTION_HPP_

#include <Zoltan2_Standards.hpp>
#include <Zoltan2_Solution.hpp>

namespace Zoltan2 {

/*! \brief The class containing ordering solutions.

    Template parameters:
    \li \c gno_t    data type for application global Ids
    \li \c lno_t    data type for local indices and local counts

The ordering solution always contains the permutation and the inverse permutation. These should be accessed through the accessor methods defined in this class, such as getPermutation(). Some ordering algorithms may compute and store other information. Currently, only serial ordering of the local data is supported.

In Zoltan2, perm[i]=j means index i in the reordered vector/matrix corresponds to index j in the old ordering. In Matlab notation, A(perm,perm) is the reordered matrix. This is consistent with SuiteSparse (AMD) and several other ordering packages. Unfortunately, this notation may conflict with a few other packages (such as Ifpack2). 

*/

template <typename lno_t, typename gno_t>
  class OrderingSolution : public Solution
{
public:

  /*! \brief Constructor allocates memory for the solution.
   */
  OrderingSolution(
    size_t perm_size // This should be equal to nlids
  )
  {
    HELLO;
    perm_size_ = perm_size;
    gids_   = ArrayRCP<gno_t>(perm_size_);
    perm_  = ArrayRCP<lno_t>(perm_size_);
    invperm_  = ArrayRCP<lno_t>(perm_size_);
    havePerm_ = false;
    haveInverse_ = false;
  }

  /*! \brief Do we have the direct permutation?
   */
  bool havePerm()
  {
    return havePerm_; 
  }

  /*! \brief Set havePerm (intended for ordering algorithms only)
   */
  void setHavePerm(bool status)
  {
    havePerm_ = status; 
  }


  /*! \brief Do we have the inverse permutation?
   */
  bool haveInverse()
  {
    return haveInverse_; 
  }

  /*! \brief Set haveInverse (intended for ordering algorithms only)
   */
  void setHaveInverse(bool status)
  {
    haveInverse_ = status; 
  }

  /*! \brief Compute direct permutation from inverse.
   */
  void computePerm()
  {
    if (haveInverse_) {
      for(size_t i=0; i<perm_size_; i++) {
        perm_[invperm_[i]] = i;
      }
      havePerm_ = true;
    }
    else {
      // TODO: throw exception
      std::cerr << "No inverse!" << std::endl;
    }
  }

  /*! \brief Compute inverse permutation.
   */
  void computeInverse()
  {
    if (havePerm_) {
      for(size_t i=0; i<perm_size_; i++) {
        invperm_[perm_[i]] = i;
      }
      havePerm_ = true;
    }
    else {
      // TODO: throw exception
      std::cerr << "No perm!" << std::endl;
    }
  }


  //////////////////////////////////////////////
  // Accessor functions, allowing algorithms to get ptrs to solution memory.
  // Algorithms can then load the memory.
  // Non-RCP versions are provided for applications to use.

  /*! \brief Get (local) size of permutation.
   */
  inline size_t getPermutationSize() {return perm_size_;}

  /*! \brief Get (local) permuted GIDs by RCP.
   */
  inline ArrayRCP<gno_t>  &getGidsRCP()  {return gids_;}

  /*! \brief Get (local) permutation by RCP.
   *  If inverse = true, return inverse permutation.
   *  By default, perm[i] is where new index i can be found in the old ordering.
   *  When inverse==true, perm[i] is where old index i can be found in the new ordering.
   */
  inline ArrayRCP<lno_t> &getPermutationRCP(bool inverse=false) 
  {
    if (inverse)
      return invperm_;
    else
      return perm_;
  }

  /*! \brief Get (local) permuted GIDs by const RCP.
   */
  inline ArrayRCP<gno_t>  &getGidsRCPConst()  const
  {
    return const_cast<ArrayRCP<gno_t>& > (gids_);
  }

  /*! \brief Get (local) permutation by const RCP.
   *  If inverse = true, return inverse permutation.
   *  By default, perm[i] is where new index i can be found in the old ordering.
   *  When inverse==true, perm[i] is where old index i can be found in the new ordering.
   */
  inline ArrayRCP<lno_t> &getPermutationRCPConst(bool inverse=false) const
  {
    if (inverse)
      return const_cast<ArrayRCP<lno_t>& > (invperm_);
    else
      return const_cast<ArrayRCP<lno_t>& > (perm_);
  }

  /*! \brief Get pointer to (local) GIDs.
   */
  inline gno_t  *getGids()
  {
    return gids_.getRawPtr();
  }

  /*! \brief Get pointer to (local) permutation.
   *  If inverse = true, return inverse permutation.
   *  By default, perm[i] is where new index i can be found in the old ordering.
   *  When inverse==true, perm[i] is where old index i can be found in the new ordering.
   */
  inline lno_t *getPermutation(bool inverse = false)
  {
    if (inverse)
      return invperm_.getRawPtr();
    else
      return perm_.getRawPtr();
  }

protected:
  // Ordering solution consists of permutation vector(s).
  // Either perm or invperm should be computed by the algorithm.
  size_t perm_size_;
  ArrayRCP<gno_t>  gids_; // TODO: Remove?
  // For now, assume permutations are local. Revisit later (e.g., for Scotch)
  bool havePerm_;    // has perm_ been computed yet?
  bool haveInverse_; // has invperm_ been computed yet?
  ArrayRCP<lno_t> perm_;    // zero-based local permutation
  ArrayRCP<lno_t> invperm_; // inverse of permutation above
};

}

#endif