/usr/include/trilinos/Zoltan2_OrderingSolution.hpp is in libtrilinos-zoltan2-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/*! \file Zoltan2_OrderingSolution.hpp
\brief Defines the OrderingSolution class.
*/
#ifndef _ZOLTAN2_ORDERINGSOLUTION_HPP_
#define _ZOLTAN2_ORDERINGSOLUTION_HPP_
#include <Zoltan2_Standards.hpp>
#include <Zoltan2_Solution.hpp>
namespace Zoltan2 {
/*! \brief The class containing ordering solutions.
Template parameters:
\li \c gno_t data type for application global Ids
\li \c lno_t data type for local indices and local counts
The ordering solution always contains the permutation and the inverse permutation. These should be accessed through the accessor methods defined in this class, such as getPermutation(). Some ordering algorithms may compute and store other information. Currently, only serial ordering of the local data is supported.
In Zoltan2, perm[i]=j means index i in the reordered vector/matrix corresponds to index j in the old ordering. In Matlab notation, A(perm,perm) is the reordered matrix. This is consistent with SuiteSparse (AMD) and several other ordering packages. Unfortunately, this notation may conflict with a few other packages (such as Ifpack2).
*/
template <typename lno_t, typename gno_t>
class OrderingSolution : public Solution
{
public:
/*! \brief Constructor allocates memory for the solution.
*/
OrderingSolution(
size_t perm_size // This should be equal to nlids
)
{
HELLO;
perm_size_ = perm_size;
gids_ = ArrayRCP<gno_t>(perm_size_);
perm_ = ArrayRCP<lno_t>(perm_size_);
invperm_ = ArrayRCP<lno_t>(perm_size_);
havePerm_ = false;
haveInverse_ = false;
}
/*! \brief Do we have the direct permutation?
*/
bool havePerm()
{
return havePerm_;
}
/*! \brief Set havePerm (intended for ordering algorithms only)
*/
void setHavePerm(bool status)
{
havePerm_ = status;
}
/*! \brief Do we have the inverse permutation?
*/
bool haveInverse()
{
return haveInverse_;
}
/*! \brief Set haveInverse (intended for ordering algorithms only)
*/
void setHaveInverse(bool status)
{
haveInverse_ = status;
}
/*! \brief Compute direct permutation from inverse.
*/
void computePerm()
{
if (haveInverse_) {
for(size_t i=0; i<perm_size_; i++) {
perm_[invperm_[i]] = i;
}
havePerm_ = true;
}
else {
// TODO: throw exception
std::cerr << "No inverse!" << std::endl;
}
}
/*! \brief Compute inverse permutation.
*/
void computeInverse()
{
if (havePerm_) {
for(size_t i=0; i<perm_size_; i++) {
invperm_[perm_[i]] = i;
}
havePerm_ = true;
}
else {
// TODO: throw exception
std::cerr << "No perm!" << std::endl;
}
}
//////////////////////////////////////////////
// Accessor functions, allowing algorithms to get ptrs to solution memory.
// Algorithms can then load the memory.
// Non-RCP versions are provided for applications to use.
/*! \brief Get (local) size of permutation.
*/
inline size_t getPermutationSize() {return perm_size_;}
/*! \brief Get (local) permuted GIDs by RCP.
*/
inline ArrayRCP<gno_t> &getGidsRCP() {return gids_;}
/*! \brief Get (local) permutation by RCP.
* If inverse = true, return inverse permutation.
* By default, perm[i] is where new index i can be found in the old ordering.
* When inverse==true, perm[i] is where old index i can be found in the new ordering.
*/
inline ArrayRCP<lno_t> &getPermutationRCP(bool inverse=false)
{
if (inverse)
return invperm_;
else
return perm_;
}
/*! \brief Get (local) permuted GIDs by const RCP.
*/
inline ArrayRCP<gno_t> &getGidsRCPConst() const
{
return const_cast<ArrayRCP<gno_t>& > (gids_);
}
/*! \brief Get (local) permutation by const RCP.
* If inverse = true, return inverse permutation.
* By default, perm[i] is where new index i can be found in the old ordering.
* When inverse==true, perm[i] is where old index i can be found in the new ordering.
*/
inline ArrayRCP<lno_t> &getPermutationRCPConst(bool inverse=false) const
{
if (inverse)
return const_cast<ArrayRCP<lno_t>& > (invperm_);
else
return const_cast<ArrayRCP<lno_t>& > (perm_);
}
/*! \brief Get pointer to (local) GIDs.
*/
inline gno_t *getGids()
{
return gids_.getRawPtr();
}
/*! \brief Get pointer to (local) permutation.
* If inverse = true, return inverse permutation.
* By default, perm[i] is where new index i can be found in the old ordering.
* When inverse==true, perm[i] is where old index i can be found in the new ordering.
*/
inline lno_t *getPermutation(bool inverse = false)
{
if (inverse)
return invperm_.getRawPtr();
else
return perm_.getRawPtr();
}
protected:
// Ordering solution consists of permutation vector(s).
// Either perm or invperm should be computed by the algorithm.
size_t perm_size_;
ArrayRCP<gno_t> gids_; // TODO: Remove?
// For now, assume permutations are local. Revisit later (e.g., for Scotch)
bool havePerm_; // has perm_ been computed yet?
bool haveInverse_; // has invperm_ been computed yet?
ArrayRCP<lno_t> perm_; // zero-based local permutation
ArrayRCP<lno_t> invperm_; // inverse of permutation above
};
}
#endif
|