/usr/include/trilinos/Zoltan2_MeshAdapter.hpp is in libtrilinos-zoltan2-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/*! \file Zoltan2_MeshAdapter.hpp
\brief Defines the MeshAdapter interface.
*/
#ifndef _ZOLTAN2_MESHADAPTER_HPP_
#define _ZOLTAN2_MESHADAPTER_HPP_
#include <Zoltan2_Adapter.hpp>
#include "Tpetra_DefaultPlatform.hpp"
#include "TpetraExt_MatrixMatrix.hpp"
namespace Zoltan2 {
/*! \brief Enumerate entity types for meshes: Regions, Faces, Edges, or
* Vertices
*/
enum MeshEntityType {
MESH_VERTEX,
MESH_EDGE,
MESH_FACE,
MESH_REGION
};
/*! \brief Enumerate entity topology types for meshes:
* points,lines,polygons,triangles,quadrilaterals,
* polyhedrons, tetrahedrons, hexhedrons, prisms, or pyramids
*/
enum EntityTopologyType {
POINT, // a 0D entity (e.g. a vertex)
LINE_SEGMENT, // a 1D entity (e.g. an edge)
POLYGON, // a general 2D entity
TRIANGLE, // a specific 2D entity bounded by 3 edge entities
QUADRILATERAL, // a specific 2D entity bounded by 4 edge entities
POLYHEDRON, // a general 3D entity
TETRAHEDRON, // a specific 3D entity bounded by 4 triangle entities
HEXAHEDRON, // a specific 3D entity bounded by 6 quadrilateral
// entities
PRISM, // a specific 3D entity bounded by a combination of 3
//quadrilateral entities and 2 triangle entities
PYRAMID // a specific 3D entity bounded by a combination of 1
// quadrilateral entity and 4 triangle entities
};
/*! \brief MeshAdapter defines the interface for mesh input.
Adapter objects provide access for Zoltan2 to the user's data.
Many built-in adapters are already defined for common data structures,
such as Tpetra and Epetra objects and C-language pointers to arrays.
Data types:
\li \c scalar_t entity and adjacency weights
\li \c lno_t local indices and local counts
\li \c gno_t global indices and global counts
\li \c node_t is a Kokkos CPU node
The Kokkos node type can be safely ignored.
The template parameter \c User is a user-defined data type
which, through a traits mechanism, provides the actual data types
with which the Zoltan2 library will be compiled.
\c User may be the actual class or structure used by application to
represent a vector, or it may be the helper class BasicUserTypes.
See InputTraits for more information.
The \c scalar_t type, representing use data such as matrix values, is
used by Zoltan2 for weights, coordinates, part sizes and
quality metrics.
Some User types (like Tpetra::CrsMatrix) have an inherent scalar type,
and some
(like Tpetra::CrsGraph) do not. For such objects, the scalar type is
set by Zoltan2 to \c float. If you wish to change it to double, set
the second template parameter to \c double.
*/
template <typename User>
class MeshAdapter : public BaseAdapter<User> {
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef typename InputTraits<User>::scalar_t scalar_t;
typedef typename InputTraits<User>::lno_t lno_t;
typedef typename InputTraits<User>::gno_t gno_t;
typedef typename InputTraits<User>::part_t part_t;
typedef typename InputTraits<User>::node_t node_t;
typedef User user_t;
typedef User userCoord_t;
typedef int nonzero_t; // adjacency matrix doesn't need scalar_t
typedef Tpetra::CrsMatrix<nonzero_t,lno_t,gno_t,node_t> sparse_matrix_type;
typedef Tpetra::Map<lno_t, gno_t, node_t> map_type;
#endif
enum BaseAdapterType adapterType() const {return MeshAdapterType;}
/*! \brief Destructor
*/
virtual ~MeshAdapter() {};
// Default MeshEntityType is MESH_REGION with MESH_FACE-based adjacencies and
// second adjacencies and coordinates
MeshAdapter() : primaryEntityType(MESH_REGION),
adjacencyEntityType(MESH_FACE),
secondAdjacencyEntityType(MESH_FACE) {};
////////////////////////////////////////////////////////////////////////////
// Methods to be defined in derived classes.
/*! \brief Provide a pointer to the entity topology types
\param Types will on return point to the list of entity topology types
for this process.
*/
virtual bool areEntityIDsUnique(MeshEntityType etype) const
{
return etype==this->getPrimaryEntityType();
}
/*! \brief Returns the global number of mesh entities of MeshEntityType
*/
//virtual size_t getGlobalNumOf(MeshEntityType etype) const = 0;
/*! \brief Returns the number of mesh entities on this process.
*/
virtual size_t getLocalNumOf(MeshEntityType etype) const = 0;
/*! \brief Provide a pointer to this process' identifiers.
\param Ids will on return point to the list of the global Ids for this
process.
*/
virtual void getIDsViewOf(MeshEntityType etype,
gno_t const *&Ids) const = 0;
/*! \brief Provide a pointer to the entity topology types
\param Types will on return point to the list of entity topology types
for this process.
*/
virtual void getTopologyViewOf(MeshEntityType etype,
enum EntityTopologyType const *&Types) const
{
Types = NULL;
Z2_THROW_NOT_IMPLEMENTED_IN_ADAPTER
}
/*! \brief Return the number of weights per entity.
* \return the count of weights, zero or more per entity.
* If the number of weights is zero, then we assume that the entities
* are equally weighted.
*/
virtual int getNumWeightsPerOf(MeshEntityType etype) const { return 0; }
/*! \brief Provide a pointer to one of the number of this process'
optional entity weights.
\param weights on return will contain a list of the weights for the
number specified.
\param stride on return will indicate the stride of the weights list.
The k'th weight is located at weights[stride*k].
\param idx is a value ranging from zero to one less than
getNumWeightsPerEntityID()
*/
virtual void getWeightsViewOf(MeshEntityType etype,
const scalar_t *&weights, int &stride, int idx = 0) const
{
weights = NULL;
stride = 0;
Z2_THROW_NOT_IMPLEMENTED_IN_ADAPTER
}
/*! \brief Return dimension of the entity coordinates, if any.
*
* Some algorithms can partition mesh entities using geometric coordinate
* information
*
* Some algorithms can use geometric entity coordinate
* information if it is present.
*/
virtual int getDimension() const { return 0; }
/*! \brief Provide a pointer to one dimension of entity coordinates.
\param coords points to a list of coordinate values for the dimension.
\param stride describes the layout of the coordinate values in
the coords list. If stride is one, then the ith coordinate
value is coords[i], but if stride is two, then the
ith coordinate value is coords[2*i].
\param coordDim is a value from 0 to one less than
getEntityCoordinateDimension() specifying which dimension is
being provided in the coords list.
*/
virtual void getCoordinatesViewOf(MeshEntityType etype,
const scalar_t *&coords, int &stride, int coordDim) const
{
coords = NULL;
stride = 0;
Z2_THROW_NOT_IMPLEMENTED_IN_ADAPTER
}
/*! \brief Returns whether a first adjacency combination is available.
*/
virtual bool availAdjs(MeshEntityType source, MeshEntityType target) const {
return false;
}
/*! \brief Returns the number of first adjacencies on this process.
*/
virtual size_t getLocalNumAdjs(MeshEntityType source,
MeshEntityType target) const { return 0;}
/*! \brief Sets pointers to this process' mesh first adjacencies.
\param source
\param offsets is an array of size getLocalNumOf() + 1.
The first adjacency Ids for Ids[i] (returned in
getIDsViewOf()) begin at adjacencyIds[offsets[i]].
The last element of offsets
is the size of the adjacencyIds array.
\param adjacencyIds on return will point to the global first adjacency
Ids for each entity.
*/
virtual void getAdjsView(MeshEntityType source, MeshEntityType target,
const lno_t *&offsets, const gno_t *& adjacencyIds) const
{
offsets = NULL;
adjacencyIds = NULL;
Z2_THROW_NOT_IMPLEMENTED_IN_ADAPTER
}
/*! \brief Returns whether a second adjacency combination is available.
* If combination is not available in the MeshAdapter, Zoltan2 will
* compute them, using A^T A, where A is matrix of first adjacencies.
*/
virtual bool avail2ndAdjs(MeshEntityType sourcetarget,
MeshEntityType through) const
{
return false;
}
/*! \brief if avail2ndAdjs(), returns the number of second adjacencies
* on this process.
*/
virtual size_t getLocalNum2ndAdjs(MeshEntityType sourcetarget,
MeshEntityType through) const
{
return 0;
}
/*! \brief if avail2ndAdjs(), set pointers to this process' second adjacencies
\param sourcetarget
\param offsets is an array of size getLocalNumOf() + 1.
The second adjacency Ids for Ids[i] (returned in
getIDsViewOf()) begin at adjacencyIds[offsets[i]].
The last element of offsets
is the size of the adjacencyIds array.
\param adjacencyIds on return will point to the global second adjacency
Ids for each entity.
*/
virtual void get2ndAdjsView(MeshEntityType sourcetarget,
MeshEntityType through,
const lno_t *&offsets,
const gno_t *&adjacencyIds) const
{
offsets = NULL;
adjacencyIds = NULL;
Z2_THROW_NOT_IMPLEMENTED_IN_ADAPTER
}
/*! \brief Returns the number (0 or greater) of weights per second adjacency.
* Note: second-adjacency weights may be used only if avail2ndAdjs().
*/
virtual int getNumWeightsPer2ndAdj(MeshEntityType sourcetarget,
MeshEntityType through) const { return 0;}
/*! \brief Provide a pointer to the second adjacency weights, if any.
* Note: second-adjacency weights may be used only if avail2ndAdjs().
\param weights is the list of weights of the given number for
the second adjacencies returned in get2ndAdjsView().
\param stride The k'th weight is located at weights[stride*k]
\param idx ranges from zero to one less than
getNumWeightsPer2ndAdj().
*/
virtual void get2ndAdjWeightsView(MeshEntityType sourcetarget,
MeshEntityType through,
const scalar_t *&weights,
int &stride,
int idx) const
{
weights = NULL;
stride = 0;
Z2_THROW_NOT_IMPLEMENTED_IN_ADAPTER
}
////////////////////////////////////////////////////////////////////////////
// Implementations of base-class methods
/*! \brief Returns the entity to be partitioned, ordered, colored, etc.
*/
inline enum MeshEntityType getPrimaryEntityType() const {
return this->primaryEntityType;
}
/*! \brief Returns the entity that describes adjacencies between the
* entities to be partitioned, ordered, colored, etc.
* That is, a primaryEntityType that contains an adjacencyEntityType are
* adjacent.
*/
inline enum MeshEntityType getAdjacencyEntityType() const {
return this->adjacencyEntityType;
}
/*! \brief Returns the entity that describes second adjacencies between the
* entities to be partitioned, ordered, colored, etc.
* That is, two primaryEntityType that share a secondAdjacencyEntityType
* are adjacent.
*/
inline enum MeshEntityType getSecondAdjacencyEntityType() const {
return this->secondAdjacencyEntityType;
}
/*! \brief Sets the primary, adjacency, and second adjacency entity types.
* Called by algorithm based on parameter values in parameter list from
* application. Also sets primaryEntityType, adjacencyEntityType, and
* secondAdjacencyEntityType to something reasonable: primaryEntityType not
* adjacencyEntityType or secondAdjacencyEntityType.
*/
void setEntityTypes(std::string ptypestr, std::string atypestr,
std::string satypestr) {
if (ptypestr != atypestr && ptypestr != satypestr) {
if (ptypestr == "region")
this->primaryEntityType = MESH_REGION;
else if (ptypestr == "face")
this->primaryEntityType = MESH_FACE;
else if (ptypestr == "edge")
this->primaryEntityType = MESH_EDGE;
else if (ptypestr == "vertex")
this->primaryEntityType = MESH_VERTEX;
else {
std::ostringstream emsg;
emsg << __FILE__ << "," << __LINE__
<< " error: Invalid MeshEntityType " << ptypestr << std::endl;
emsg << "Valid values: region face edge vertex" << std::endl;
throw std::runtime_error(emsg.str());
}
if (atypestr == "region")
this->adjacencyEntityType = MESH_REGION;
else if (atypestr == "face")
this->adjacencyEntityType = MESH_FACE;
else if (atypestr == "edge")
this->adjacencyEntityType = MESH_EDGE;
else if (atypestr == "vertex")
this->adjacencyEntityType = MESH_VERTEX;
else {
std::ostringstream emsg;
emsg << __FILE__ << "," << __LINE__
<< " error: Invalid MeshEntityType " << atypestr << std::endl;
emsg << "Valid values: region face edge vertex" << std::endl;
throw std::runtime_error(emsg.str());
}
if (satypestr == "region")
this->secondAdjacencyEntityType = MESH_REGION;
else if (satypestr == "face")
this->secondAdjacencyEntityType = MESH_FACE;
else if (satypestr == "edge")
this->secondAdjacencyEntityType = MESH_EDGE;
else if (satypestr == "vertex")
this->secondAdjacencyEntityType = MESH_VERTEX;
else {
std::ostringstream emsg;
emsg << __FILE__ << "," << __LINE__
<< " error: Invalid MeshEntityType " << satypestr << std::endl;
emsg << "Valid values: region face edge vertex" << std::endl;
throw std::runtime_error(emsg.str());
}
}
else {
std::ostringstream emsg;
emsg << __FILE__ << "," << __LINE__
<< " error: PrimaryEntityType " << ptypestr
<< " matches AdjacencyEntityType " << atypestr
<< " or SecondAdjacencyEntityType " << satypestr << std::endl;
throw std::runtime_error(emsg.str());
}
}
/*! \brief Optional method allowing the idx-th weight of entity type etype
* to be set as the number of neighbors (the degree) of the entity
* Default is false; user can change in his MeshAdapter implementation.
*/
virtual bool useDegreeAsWeightOf(MeshEntityType etype, int idx) const
{
return false;
}
///////////////////////////////////////////
// Functions from the BaseAdapter interface
size_t getLocalNumIDs() const {
return getLocalNumOf(getPrimaryEntityType());
}
void getIDsView(const gno_t *&Ids) const {
getIDsViewOf(getPrimaryEntityType(), Ids);
}
int getNumWeightsPerID() const {
return getNumWeightsPerOf(getPrimaryEntityType());
}
void getWeightsView(const scalar_t *&wgt, int &stride, int idx = 0) const {
getWeightsViewOf(getPrimaryEntityType(), wgt, stride, idx);
}
void getCoordinatesView(const scalar_t *&coords, int &stride,
int coordDim) const
{
getCoordinatesViewOf(getPrimaryEntityType(), coords, stride, coordDim);
}
bool useDegreeAsWeight(int idx) const
{
return useDegreeAsWeightOf(getPrimaryEntityType(), idx);
}
private:
enum MeshEntityType primaryEntityType; // Entity type
// to be partitioned, ordered,
// colored, matched, etc.
enum MeshEntityType adjacencyEntityType; // Entity type defining first-order
// adjacencies; adjacencies are of
// this type.
enum MeshEntityType secondAdjacencyEntityType; // Bridge entity type
// defining second-order
// adjacencies.
};
} //namespace Zoltan2
#endif
|