This file is indexed.

/usr/include/trilinos/Zoltan2_HyperGraphModel.hpp is in libtrilinos-zoltan2-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_HyperGraphModel.hpp
    \brief Defines the HyperGraphModel interface.
*/

#ifndef _ZOLTAN2_HYPERGRAPHMODEL_HPP_
#define _ZOLTAN2_HYPERGRAPHMODEL_HPP_

#include <Zoltan2_Model.hpp>
#include <Zoltan2_ModelHelpers.hpp>
#include <Zoltan2_InputTraits.hpp>
#include <Zoltan2_MatrixAdapter.hpp>
#include <Zoltan2_GraphAdapter.hpp>
#include <Zoltan2_IdentifierAdapter.hpp>
#include <Zoltan2_VectorAdapter.hpp>
#include <Zoltan2_StridedData.hpp>
#include <Zoltan2_MeshAdapter.hpp>

#include <vector>
#include <unordered_map>
#include <queue>
#include <Teuchos_Hashtable.hpp>

namespace Zoltan2 {

  /*! \brief Enumerate the views for the pins:
   *    HYPEREDGE_CENTRIC: pins are the global ids of the vertices as seen by the hyperedges
   *    VERTEX_CENTRIC: pins are the global ids of the hyperedges as seen by the vertices
   */
enum CentricView {
  HYPEREDGE_CENTRIC,
  VERTEX_CENTRIC
};

//////////////////////////////////////////////////////////////////////////
/*!  \brief HyperGraphModel defines the interface required for hyper graph models.

    The constructor of the HyperGraphModel can be a global call, requiring
    all processes in the application to call it.  The rest of the
    methods should be local methods.

    The template parameter is an InputAdapter, which is an object that
    provides a uniform interface for models to the user's input data.
*/
template <typename Adapter>
class HyperGraphModel : public Model<Adapter>
{
public:

#ifndef DOXYGEN_SHOULD_SKIP_THIS
  typedef typename Adapter::scalar_t    scalar_t;
  typedef typename Adapter::gno_t       gno_t;
  typedef typename Adapter::lno_t       lno_t;
  typedef typename Adapter::node_t      node_t;
  typedef typename Adapter::user_t      user_t;
  typedef typename Adapter::userCoord_t userCoord_t;
  typedef Tpetra::Map<lno_t, gno_t>     map_t;
  typedef StridedData<lno_t, scalar_t>  input_t;
#endif

  //!  Destructor
  ~HyperGraphModel() { }

  /*! \brief Constructor
   *
   *  \param  inputAdapter  a pointer to the user's data
   *  \param  env           object containing the parameters
   *  \param  comm          communicator for the problem
   *  \param  modelFlags    a bit map of Zoltan2::GraphModelFlags
   *
   *  All processes in the communicator must call the constructor.
   *  \todo document the model flags that might be set
   */
  
  HyperGraphModel(const RCP<const MatrixAdapter<user_t,userCoord_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &modelFlags, CentricView view)
  {
    throw std::runtime_error("Building HyperGraphModel from MatrixAdapter not implemented yet");
  }

  HyperGraphModel(const RCP<const GraphAdapter<user_t,userCoord_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &modelFlags, CentricView view)
  {
    throw std::runtime_error("Building HyperGraphModel from GraphAdapter not implemented yet");
  }
  
  HyperGraphModel(const RCP<const MeshAdapter<user_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
                  modelFlag_t &modelflags, CentricView view);
  
  HyperGraphModel(const RCP<const VectorAdapter<userCoord_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &flags, CentricView view)
  {
    throw std::runtime_error("cannot build HyperGraphModel from VectorAdapter");
  }

  HyperGraphModel(const RCP<const IdentifierAdapter<user_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &flags, CentricView view)
  {
    throw std::runtime_error("cannot build HyperGraphModel from IdentifierAdapter");
  }
  

  /*! \brief Returns the centric view of the hypergraph
   */
  CentricView getCentricView() const {return view_;}

  /*! \brief Returns true if the vertices are unique false otherwise
   */
  bool areVertexIDsUnique() const {return unique;}
  
  /*! \brief Returns the number vertices on this process.
   */
  size_t getLocalNumVertices() const { return numLocalVertices_; }

  /*! \brief Returns the number vertices on this process that are owned.
   */
  size_t getLocalNumOwnedVertices() const { return numOwnedVertices_; }

  /*! \brief Returns the global number vertices.
   */
  size_t getGlobalNumVertices() const { return numGlobalVertices_; }

  /*! \brief Returns the number of hyper edges on this process.
   *  These are all hyper edges that have an adjacency to at 
   *  least one on process vertex.
   */
  size_t getLocalNumHyperEdges() const { return numLocalEdges_; }

  /*! \brief Returns the global number hyper edges.
   */
  size_t getGlobalNumHyperEdges() const { return numGlobalEdges_; }

  /*! \brief Returns the local number of pins
   */
  size_t getLocalNumPins() const {return numLocalPins_; }

  /*! \brief Returns the number (0 or greater) of weights per vertex
   */
  int getNumWeightsPerVertex() const { return numWeightsPerVertex_; }

  /*! \brief Returns the number (0 or greater) of weights per edge.
   */
  int getNumWeightsPerHyperEdge() const { return nWeightsPerEdge_; }

  /*! \brief Returns the number (0 or greater) of weights per pins.
   */
  int getNumWeightesPerPin() const {return nWeightsPerPin_;}

  /*! \brief Returns the dimension (0 to 3) of vertex coordinates.
   */
  int getCoordinateDim() const { return vCoordDim_; }

  /*! \brief Sets pointers to this process' vertex Ids and their weights.

      \param Ids will on return point to the list of the global Ids for
        each vertex on this process.
      \param wgts If vertex weights is available, \c wgts
         will on return point to a StridedData object of weights.
   */
  size_t getVertexList(
    ArrayView<const gno_t> &Ids,
    ArrayView<input_t> &wgts) const
  {
    size_t nv = gids_.size();
    Ids = gids_(0, nv);
    wgts = vWeights_.view(0, numWeightsPerVertex_);
    return nv;
  }

  /*! \brief Sets pointers to this process' vertex coordinates, if available

      \param xyz If vertex coordinate data is available, \c xyz
         will on return point to a StridedData object of coordinates.
   */
  size_t getVertexCoords(ArrayView<input_t> &xyz) const
  {
    size_t nv = gids_.size();
    xyz = vCoords_.view(0, vCoordDim_);
    return nv;
  }

  /*! \brief Sets pointer to the ownership of this processes vertices.

      \param isOwner will on return point to the list of ownership for
        each vertex on this process, true if this process owns the vertex
        false otherwise.
   */
  size_t getOwnedList(ArrayView<bool> &isOwner) const
  {
    size_t nv = isOwner_.size();
    isOwner = isOwner_(0, nv);
    return nv;
  }

  /*! \brief Sets pointers to the vertex map with copies and the vertex map without copies
   *         Note: the pointers will not exist if the hypergraph has unique vertices
   *               check the areVertexIDsUnique() function before calling this function
   *
   *  \param copiesMap on return points to the map of vertices with copies
   *  \param onetooneMap on return points to the map of vertices without copies
   */
  void getVertexMaps(Teuchos::RCP<const map_t>& copiesMap, Teuchos::RCP<const map_t>& onetooneMap) const {
    copiesMap = mapWithCopies;
    onetooneMap = oneToOneMap;
  }

  /*! \brief Sets pointers to this process' hyperedge Ids and their weights.

      \param Ids will on return point to the list of the global Ids for
        each hyperedge on this process.
      \param wgts If hyperedge weights is available, \c wgts
         will on return point to a StridedData object of weights.
   */
  size_t getEdgeList(
    ArrayView<const gno_t> &Ids,
    ArrayView<input_t> &wgts) const
  {
    size_t nv = edgeGids_.size();
    Ids = edgeGids_(0, nv);
    wgts = eWeights_.view(0, nWeightsPerEdge_);
    return nv;
  }

  /*! \brief Sets pointers to this process' pins global Ids based on 
    the centric view given by getCentricView()

      \param pinIds This is the list of global neighbor Ids corresponding
        to the vertices or hyperedges listed in getVertexList/getEdgeList.
      \param offsets offsets[i] is the offset into pinIds to the start
        of neighbors for ith neighbor.
      \param wgts If pin weights is available, \c wgts
         will on return point to a StridedData object of weights.

      \return The number of ids in the pinIds list.
   */
  size_t getPinList( ArrayView<const gno_t> &pinIds,
    ArrayView<const lno_t> &offsets,
    ArrayView<input_t> &wgts) const
  {
    pinIds = pinGids_(0, numLocalPins_);
    offsets = offsets_.view(0, offsets_.size());
    wgts = pWeights_.view(0, nWeightsPerPin_);
    return pinGids_.size();
  }


  ////////////////////////////////////////////////////
  // The Model interface.
  ////////////////////////////////////////////////////

  size_t getLocalNumObjects() const { return numLocalVertices_; }

  size_t getGlobalNumObjects() const { return numGlobalVertices_; }

private:

  struct GhostCell {
    lno_t lid; //Assumes lno_t is signed (-1 corresponds to not on this process)
    gno_t gid;
    unsigned int dist;
    GhostCell(lno_t l,gno_t g, unsigned int d) {lid=l;gid=g;dist=d;}
    bool operator<(const struct GhostCell& other) const {return dist>other.dist;}
  };
  template <typename AdapterWithCoords>
  void shared_GetVertexCoords(const AdapterWithCoords *ia);
  

  const RCP<const Environment > env_;
  const RCP<const Comm<int> > comm_;

  CentricView view_;
  bool unique;
  ArrayRCP<const gno_t> gids_;        // vertices of input graph
  
  ArrayRCP<bool> isOwner_;

  int numWeightsPerVertex_;
  ArrayRCP<input_t> vWeights_;

  int vCoordDim_;
  ArrayRCP<input_t> vCoords_;

  ArrayRCP<const gno_t> edgeGids_;
 
  int nWeightsPerEdge_;
  ArrayRCP<input_t> eWeights_;

  ArrayRCP<const gno_t> pinGids_;
  ArrayRCP<const lno_t> offsets_;

  int nWeightsPerPin_;
  ArrayRCP<input_t> pWeights_;

  // For convenience

  size_t numLocalVertices_;
  size_t numOwnedVertices_;
  size_t numGlobalVertices_;
  size_t numLocalEdges_;
  size_t numGlobalEdges_;
  size_t numLocalPins_;
  
  // For unique mapping
  Teuchos::RCP<const map_t> mapWithCopies;
  Teuchos::RCP<const map_t> oneToOneMap;

  // For debugging
  void print();

};


////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////
//TODO get the weights hyperedges
//GFD Do we need weights for pins too?
template <typename Adapter>
HyperGraphModel<Adapter>::HyperGraphModel(
  const RCP<const MeshAdapter<user_t> > &ia,
  const RCP<const Environment> &env,
  const RCP<const Comm<int> > &comm,
  modelFlag_t &modelFlags,
  CentricView view):
       env_(env),
       comm_(comm),
       view_(view),
       gids_(),
       isOwner_(),
       numWeightsPerVertex_(0),
       vWeights_(),
       vCoordDim_(0),
       vCoords_(),
       edgeGids_(),
       nWeightsPerEdge_(0),
       eWeights_(),
       pinGids_(),
       offsets_(),
       nWeightsPerPin_(0),
       pWeights_(),
       numLocalVertices_(0),
       numGlobalVertices_(0),
       numLocalEdges_(0),
       numGlobalEdges_(0),
       numLocalPins_(0)
{
  env_->timerStart(MACRO_TIMERS, "HyperGraphModel constructed from MeshAdapter");
  //Model Type is either traditional or ghosting
  //  Traditional:
  //    vertices == ia->getPrimaryEntityType()
  //    hyperedges == ia->getAdjacencyEntityType()
  //    pins == first adjacency between primary and adjacency types
  //  Ghosting:
  //    vertices == ia->getPrimaryEntityType()
  //    hyperedges == ia->getPrimaryEntityType()
  //    pins == k layers of second adjacency from primary through second adjacency types
  std::string model_type("traditional");
  const Teuchos::ParameterList &pl = env->getParameters();
  const Teuchos::ParameterEntry *pe2 = pl.getEntryPtr("hypergraph_model_type");
  if (pe2){
    model_type = pe2->getValue<std::string>(&model_type);
  }

  // Get the hypergraph types from adapter
  Zoltan2::MeshEntityType primaryEType = ia->getPrimaryEntityType();
  Zoltan2::MeshEntityType adjacencyEType = ia->getAdjacencyEntityType();

  // Get the IDs of the primary entity type; these are hypergraph vertices
  gno_t const *vtxIds=NULL;
  try {
    numLocalVertices_ = ia->getLocalNumOf(primaryEType);
    ia->getIDsViewOf(primaryEType, vtxIds);
    size_t maxId = *(std::max_element(vtxIds,vtxIds+numLocalVertices_));
    reduceAll(*comm_,Teuchos::REDUCE_MAX,1,&maxId,&numGlobalVertices_);
  }
  Z2_FORWARD_EXCEPTIONS;

  gids_ = arcp<const gno_t>(vtxIds, 0, numLocalVertices_, false);

  //A mapping from gids to lids for efficiency
  std::unordered_map<gno_t,lno_t> lid_mapping;
  for (size_t i=0;i<numLocalVertices_;i++)
    lid_mapping[gids_[i]]=i;

  // Define owners for each hypergraph vertex using Tpetra 
  // one to one map. This defines each hypergraph vertex to
  // one process in the case that the adapter has copied 
  // primary entity types
  //If the mesh adapter knows the entities are unique we can optimize out the ownership
  unique = ia->areEntityIDsUnique(ia->getPrimaryEntityType());
  numOwnedVertices_=numLocalVertices_;
  isOwner_ = ArrayRCP<bool>(numLocalVertices_,true);
  if (!unique) {
    
    Tpetra::global_size_t numGlobalCoords = 
      Teuchos::OrdinalTraits<Tpetra::global_size_t>::invalid();
    mapWithCopies = rcp(new map_t(numGlobalCoords, gids_(), 0, comm));
    oneToOneMap = Tpetra::createOneToOne<lno_t, gno_t>(mapWithCopies);

    numOwnedVertices_=oneToOneMap->getNodeNumElements();
    for (size_t i=0;i<numLocalVertices_;i++) {
      isOwner_[i] = oneToOneMap->isNodeGlobalElement(gids_[i]);
    }
  }


  if (model_type=="traditional") {
    // Traditional: Get the IDs of the adjacency entity type; 
    //              these are hypergraph hyperedges
  
    gno_t const *edgeIds=NULL;
    try {
      numLocalEdges_ = ia->getLocalNumOf(adjacencyEType);
      ia->getIDsViewOf(adjacencyEType, edgeIds);
      size_t maxId = *(std::max_element(edgeIds,edgeIds+numLocalEdges_));
      reduceAll(*comm_,Teuchos::REDUCE_MAX,1,&maxId,&numGlobalEdges_);
    }
    Z2_FORWARD_EXCEPTIONS;
    
    edgeGids_ = arcp<const gno_t>(edgeIds, 0, numLocalEdges_, false);
  }
  else if (model_type=="ghosting") {
    // Ghosting: Use the vertices as the hyperedges as well
    numLocalEdges_ = numLocalVertices_;
    edgeGids_ = arcp<const gno_t>(vtxIds, 0, numLocalVertices_, false);
    numGlobalEdges_ = numGlobalVertices_;
  }
 
  //Define the entity types to use for the pins based on the centric view
  Zoltan2::MeshEntityType primaryPinType = primaryEType;
  Zoltan2::MeshEntityType adjacencyPinType = adjacencyEType;
  size_t numPrimaryPins = numLocalVertices_;
  if (view_==HYPEREDGE_CENTRIC) {
    primaryPinType = adjacencyEType;
    adjacencyPinType = primaryEType;
    numPrimaryPins = numLocalEdges_;
  }
  if (model_type=="traditional") {
    //Get the pins from using the traditional method of first adjacency
    gno_t const *nborIds=NULL;
    lno_t const *offsets=NULL;
    
    try {
      ia->getAdjsView(primaryPinType,adjacencyPinType,offsets,nborIds);
    }
    Z2_FORWARD_EXCEPTIONS;
    
    numLocalPins_ = offsets[numPrimaryPins];

    pinGids_ = arcp<const gno_t>(nborIds, 0, numLocalPins_, false);
    offsets_ = arcp<const lno_t>(offsets, 0, numPrimaryPins + 1, false);
  }
  else if (model_type=="ghosting") { 
    // set the view to either since it doesn't matter 
    // vertices==hyperedges
    view_ = VERTEX_CENTRIC;
    // unique set of global ids for the ghosts
    typedef std::set<gno_t> ghost_t;

    // mapping from global id to the set of ghosts 
    typedef std::unordered_map<gno_t,ghost_t> ghost_map_t;
    
    primaryPinType=primaryEType;
    adjacencyPinType =ia->getSecondAdjacencyEntityType();

    // number of layers of ghosting to do
    unsigned int layers=2;
    const Teuchos::ParameterEntry *pe3 = pl.getEntryPtr("ghost_layers");
    if (pe3){
      int l;
      l = pe3->getValue<int>(&l);
      layers = static_cast<unsigned int>(l);
    }
 
    typedef int nonzero_t;  // adjacency matrix doesn't need scalar_t
    typedef Tpetra::CrsMatrix<nonzero_t,lno_t,gno_t,node_t>   sparse_matrix_type;
    
    // Get an adjacency matrix representing the graph on the mesh 
    // using second adjacencies. If second adjacencies are not 
    // provided build the matrix from first adjacencies.
    RCP<sparse_matrix_type> secondAdj;
    if (!ia->avail2ndAdjs(primaryPinType,adjacencyPinType)) {
      secondAdj=Zoltan2::get2ndAdjsMatFromAdjs<user_t>(ia,comm_,primaryPinType, adjacencyPinType);
    }
    else {
      const lno_t* offsets;
      const gno_t* adjacencyIds;
      ia->get2ndAdjsView(primaryPinType,adjacencyPinType,offsets,adjacencyIds);
      if (unique) {
        Tpetra::global_size_t numGlobalCoords = 
          Teuchos::OrdinalTraits<Tpetra::global_size_t>::invalid();
        oneToOneMap = rcp(new map_t(numGlobalCoords, gids_(), 0, comm));
      }
      secondAdj = rcp(new sparse_matrix_type(oneToOneMap,0));
      for (size_t i=0; i<numLocalVertices_;i++) {
        if (!isOwner_[i])
          continue;
        gno_t row = gids_[i];
        lno_t num_adjs = offsets[i+1]-offsets[i];
        ArrayRCP<nonzero_t> ones(num_adjs,1);
        ArrayRCP<const gno_t> cols(adjacencyIds,offsets[i],num_adjs,false);
        secondAdj->insertGlobalValues(row,cols(),ones());
      }
      secondAdj->fillComplete();
    }

    //The mapping of the ghosts per hypergraph vertex
    ghost_map_t ghosts; 

    //Read the 1 layer ghosts from the second adjacency matrix
    Array<gno_t> Indices;
    Array<nonzero_t> Values;
    for (unsigned int i=0;i<numLocalEdges_;i++) {
      if (!isOwner_[i])
        continue;
      gno_t gid = edgeGids_[i];
      size_t NumEntries = secondAdj->getNumEntriesInGlobalRow (gid);
      Indices.resize (NumEntries);
      Values.resize (NumEntries);
      secondAdj->getGlobalRowCopy(gid,Indices(),Values(),NumEntries);
      for (size_t j = 0; j < NumEntries; ++j) {
	if(gid != Indices[j]) {
          ghosts[gid].insert(Indices[j]);
	}
      }
    }
    
    // The ith power of the second adjacency matrix is the ith layer of ghosts.
    // Here we compute the ith power of the matrix and add the ith layer ghosts
    // from the new matrix.
    RCP<sparse_matrix_type> mat_old = secondAdj;
    for (unsigned int i=1;i<layers;i++) {
      RCP<sparse_matrix_type> mat_new = 
        rcp (new sparse_matrix_type(secondAdj->getRowMap(),0));
      Tpetra::MatrixMatrix::Multiply(*mat_old,false,*secondAdj,false,*mat_new);
      for (unsigned int j=0;j<numLocalEdges_;j++) {
        if (!isOwner_[j])
          continue;
        gno_t gid = edgeGids_[j];
        size_t NumEntries = mat_new->getNumEntriesInGlobalRow (gid);
        Indices.resize(NumEntries);
        Values.resize(NumEntries);
        mat_new->getGlobalRowCopy(gid,Indices(),Values(),NumEntries);
        for (size_t k = 0; k < NumEntries; ++k) 
          if(gid != Indices[k]) 
            ghosts[gid].insert(Indices[k]);
        
      }
      mat_old = mat_new;
    }

    //Make the pins from the ghosts
    for (size_t i=0;i<numLocalVertices_;i++) {//for each local entity
      numLocalPins_+=ghosts[gids_[i]].size();
    }
    gno_t* temp_pins = new gno_t[numLocalPins_];
    lno_t* temp_offsets = new lno_t[numLocalVertices_+1];
    gno_t j=0;
    for (size_t i=0;i<numLocalVertices_;i++) {//for each local entity
      temp_offsets[i]=j;
      if (!isOwner_[i])
        continue;
      typename ghost_t::iterator itr;
      for (itr=ghosts[gids_[i]].begin();itr!=ghosts[gids_[i]].end();itr++) { //for each ghost of this entity
        temp_pins[j]=*itr;
        j++;
        
      }
    }
    temp_offsets[numLocalVertices_]=numLocalPins_;
    pinGids_ = arcp<const gno_t>(temp_pins,0,numLocalPins_,true);
    offsets_ = arcp<const lno_t>(temp_offsets,0,numLocalVertices_+1,true);
    
    //==============================Ghosting complete=================================
  }


  //Get the vertex weights
  numWeightsPerVertex_ = ia->getNumWeightsPerID();

  if (numWeightsPerVertex_ > 0){
    input_t *weightInfo = new input_t [numWeightsPerVertex_];
    env_->localMemoryAssertion(__FILE__, __LINE__, numWeightsPerVertex_,
                               weightInfo);

    for (int idx=0; idx < numWeightsPerVertex_; idx++){
      bool useNumNZ = ia->useDegreeAsWeight(idx);
      if (useNumNZ){
        scalar_t *wgts = new scalar_t [numLocalVertices_];
        env_->localMemoryAssertion(__FILE__, __LINE__, numLocalVertices_, wgts);
        ArrayRCP<const scalar_t> wgtArray =
          arcp(wgts, 0, numLocalVertices_, true);
        for (size_t i=0; i < numLocalVertices_; i++){
          wgts[i] = offsets_[i+1] - offsets_[i];
        }
        weightInfo[idx] = input_t(wgtArray, 1);
      }
      else{
        const scalar_t *weights=NULL;
        int stride=0;
        ia->getWeightsView(weights, stride, idx);
        ArrayRCP<const scalar_t> wgtArray = arcp(weights, 0,
                                                 stride*numLocalVertices_,
                                                 false);
        weightInfo[idx] = input_t(wgtArray, stride);
      }
    }

    vWeights_ = arcp<input_t>(weightInfo, 0, numWeightsPerVertex_, true);
  }

  //TODO get the weights for edges, and pins(?)

  //Get the vertex coordinates from the primary types
  typedef MeshAdapter<user_t> adapterWithCoords_t;
  shared_GetVertexCoords<adapterWithCoords_t>(&(*ia));

  env_->timerStop(MACRO_TIMERS, "HyperGraphModel constructed from MeshAdapter");
  print();
}

//////////////////////////////////////////////////////////////////////////

template <typename Adapter>
template <typename AdapterWithCoords>
void HyperGraphModel<Adapter>::shared_GetVertexCoords(const AdapterWithCoords *ia)
{
  // get Vertex coordinates from input adapter

  vCoordDim_ = ia->getDimension();

  if (vCoordDim_ > 0){
    input_t *coordInfo = new input_t [vCoordDim_];
    env_->localMemoryAssertion(__FILE__, __LINE__, vCoordDim_, coordInfo);

    for (int dim=0; dim < vCoordDim_; dim++){
      const scalar_t *coords=NULL;
      int stride=0;
      ia->getCoordinatesView(coords, stride, dim);
      ArrayRCP<const scalar_t> coordArray = arcp(coords, 0,
                                                 stride*numLocalVertices_,
                                                 false);
      coordInfo[dim] = input_t(coordArray, stride);
    }

    vCoords_ = arcp<input_t>(coordInfo, 0, vCoordDim_, true);
  }
}

//////////////////////////////////////////////////////////////////////////
template <typename Adapter>
void HyperGraphModel<Adapter>::print()
{
  //only prints the model if debug status is verbose
  if (env_->getDebugLevel() < VERBOSE_DETAILED_STATUS)
    return;

  std::ostream *os = env_->getDebugOStream();
  
  int me = comm_->getRank();
  std::string fn(" ");

  *os << me << fn
      << " Nvtx  " << gids_.size()
      << " Nedge " << edgeGids_.size()
      << " NPins " << numLocalPins_
      << " NVWgt " << numWeightsPerVertex_
      << " NEWgt " << nWeightsPerEdge_
      << " NPWgt " << nWeightsPerPin_
      << " CDim  " << vCoordDim_
      << std::endl;

  for (lno_t i = 0; i < gids_.size(); i++) {
    *os << me << fn << i << " VTXGID " << gids_[i]<<" isOwner: "<<isOwner_[i];
    if (numWeightsPerVertex_==1)
      *os << " weight: " << vWeights_[0][i]; 
    if (view_==VERTEX_CENTRIC) {
      *os <<" pins:";
      for (lno_t j = offsets_[i]; j< offsets_[i+1];j++)
        *os <<" "<<pinGids_[j];
    }
    *os << std::endl;
  }
  for (lno_t i = 0; i<edgeGids_.size();i++) {
    *os << me << fn << i << " EDGEGID " << edgeGids_[i];
    if (view_==HYPEREDGE_CENTRIC) {
      *os <<":";
      for (lno_t j = offsets_[i]; j< offsets_[i+1];j++)
        *os <<" "<<pinGids_[j];
    }
    *os << std::endl;
  }
  if (vCoordDim_) {
    for (lno_t i = 0; i < gids_.size(); i++) {
      *os << me << fn << i << " COORDS " << gids_[i] << ": ";
      for (int j = 0; j < vCoordDim_; j++)
         *os << vCoords_[j][i] << " ";
      *os << std::endl;
    }
  }
  else
    *os << me << fn << "NO COORDINATES AVAIL " << std::endl;
}

}   // namespace Zoltan2


#endif