/usr/include/trilinos/Zoltan2_GraphModel.hpp is in libtrilinos-zoltan2-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/*! \file Zoltan2_GraphModel.hpp
\brief Defines the GraphModel interface.
*/
#ifndef _ZOLTAN2_GRAPHMODEL_HPP_
#define _ZOLTAN2_GRAPHMODEL_HPP_
#include <Zoltan2_Model.hpp>
#include <Zoltan2_ModelHelpers.hpp>
#include <Zoltan2_InputTraits.hpp>
#include <Zoltan2_MatrixAdapter.hpp>
#include <Zoltan2_GraphAdapter.hpp>
#include <Zoltan2_IdentifierAdapter.hpp>
#include <Zoltan2_VectorAdapter.hpp>
#include <Zoltan2_MeshAdapter.hpp>
#include <Zoltan2_StridedData.hpp>
#include <unordered_map>
namespace Zoltan2 {
//////////////////////////////////////////////////////////////////////////
/*! \brief GraphModel defines the interface required for graph models.
The constructor of the GraphModel can be a global call, requiring
all processes in the application to call it. The rest of the
methods should be local methods.
The template parameter is an InputAdapter, which is an object that
provides a uniform interface for models to the user's input data.
GraphModels may represent a local (on-process) graph or
a global (all-communicator) graph.
*/
template <typename Adapter>
class GraphModel : public Model<Adapter>
{
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
typedef typename Adapter::scalar_t scalar_t;
typedef typename Adapter::gno_t gno_t;
typedef typename Adapter::lno_t lno_t;
typedef typename Adapter::node_t node_t;
typedef typename Adapter::user_t user_t;
typedef typename Adapter::userCoord_t userCoord_t;
typedef StridedData<lno_t, scalar_t> input_t;
#endif
//! Destructor
~GraphModel() { }
/*! \brief Constructor
*
* \param inputAdapter a pointer to the user's data
* \param env object containing the parameters
* \param comm communicator for the problem
* \param modelFlags a bit map of Zoltan2::GraphModelFlags
*
* All processes in the communicator must call the constructor.
* \todo document the model flags that might be set
*/
GraphModel(const RCP<const MatrixAdapter<user_t,userCoord_t> > &ia,
const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
modelFlag_t &modelFlags);
GraphModel(const RCP<const GraphAdapter<user_t,userCoord_t> > &ia,
const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
modelFlag_t &modelFlags);
GraphModel(const RCP<const MeshAdapter<user_t> > &ia,
const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
modelFlag_t &modelflags);
GraphModel(const RCP<const VectorAdapter<userCoord_t> > &ia,
const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
modelFlag_t &flags)
{
throw std::runtime_error("cannot build GraphModel from VectorAdapter");
}
GraphModel(const RCP<const IdentifierAdapter<user_t> > &ia,
const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
modelFlag_t &flags)
{
throw std::runtime_error("cannot build GraphModel from IdentifierAdapter");
}
/*! \brief Return the communicator used by the model
*/
const RCP<const Comm<int> > getComm() { return comm_; }
/*! \brief Returns the number vertices on this process.
*/
size_t getLocalNumVertices() const { return nLocalVertices_; }
/*! \brief Returns the global number vertices.
*/
size_t getGlobalNumVertices() const { return nGlobalVertices_; }
/*! \brief Returns the number of edges on this process.
* In global or subset graphs, includes off-process edges.
*/
size_t getLocalNumEdges() const { return nLocalEdges_; }
/*! \brief Returns the global number edges.
* For local graphs, the number of global edges is the number of local edges.
*/
size_t getGlobalNumEdges() const { return nGlobalEdges_; }
/*! \brief Returns the number (0 or greater) of weights per vertex
*/
int getNumWeightsPerVertex() const { return nWeightsPerVertex_; }
/*! \brief Returns the number (0 or greater) of weights per edge.
*/
int getNumWeightsPerEdge() const { return nWeightsPerEdge_; }
/*! \brief Returns the dimension (0 to 3) of vertex coordinates.
*/
int getCoordinateDim() const { return vCoordDim_; }
/*! \brief Sets pointers to this process' vertex Ids and their weights.
\param Ids will on return point to the list of the global Ids for
each vertex on this process.
\param wgts If vertex weights is available, \c wgts
will on return point to a StridedData object of weights.
*/
size_t getVertexList(
ArrayView<const gno_t> &Ids,
ArrayView<input_t> &wgts) const
{
Ids = vGids_.view(0, nLocalVertices_);
wgts = vWeights_.view(0, nWeightsPerVertex_);
return nLocalVertices_;
}
/*! \brief Sets pointers to this process' vertex coordinates, if available.
Order of coordinate info matches that of Ids in getVertexList().
\param xyz If vertex coordinate data is available, \c xyz
will on return point to a StridedData object of coordinates.
*/
size_t getVertexCoords(ArrayView<input_t> &xyz) const
{
xyz = vCoords_.view(0, vCoordDim_);
return nLocalVertices_;
}
/*! \brief Sets pointers to this process' edge (neighbor) global Ids,
including off-process edges.
\param edgeIds This is the list of global neighbor Ids corresponding
to the vertices listed in getVertexList.
\param offsets offsets[i] is the offset into edgeIds to the start
of neighbors for ith vertex.
\param wgts If edge weights is available, \c wgts
will on return point to a StridedData object of weights.
\return The number of ids in the edgeIds list.
*/
// Implied Vertex LNOs from getVertexList are used as indices to offsets
// array.
// Vertex GNOs are returned as neighbors in edgeIds.
size_t getEdgeList( ArrayView<const gno_t> &edgeIds,
ArrayView<const lno_t> &offsets,
ArrayView<input_t> &wgts) const
{
edgeIds = eGids_.view(0, nLocalEdges_);
offsets = eOffsets_.view(0, nLocalVertices_+1);
wgts = eWeights_.view(0, nWeightsPerEdge_);
return nLocalEdges_;
}
////////////////////////////////////////////////////
// The Model interface.
////////////////////////////////////////////////////
size_t getLocalNumObjects() const { return nLocalVertices_; }
size_t getGlobalNumObjects() const { return nGlobalVertices_; }
private:
void shared_constructor(const RCP<const Adapter>&ia, modelFlag_t &modelFlags);
template <typename AdapterWithCoords>
void shared_GetVertexCoords(const AdapterWithCoords *ia);
void print(); // For debugging
const RCP<const Environment > env_;
const RCP<const Comm<int> > comm_;
bool localGraph_; // Flag indicating whether this graph is
// LOCAL with respect to the process;
// if !localGraph_, graph is GLOBAL with respect to
// the communicator.
size_t nLocalVertices_; // # local vertices in built graph
size_t nGlobalVertices_; // # global vertices in built graph
ArrayRCP<gno_t> vGids_; // vertices of graph built in model;
// may be same as adapter's input
// or may be renumbered 0 to (N-1).
int nWeightsPerVertex_;
ArrayRCP<input_t> vWeights_;
int vCoordDim_;
ArrayRCP<input_t> vCoords_;
// Note: in some cases, size of these arrays
// may be larger than nLocalEdges_. So do not use .size().
// Use nLocalEdges_, nGlobalEdges_
size_t nLocalEdges_; // # local edges in built graph
size_t nGlobalEdges_; // # global edges in built graph
ArrayRCP<gno_t> eGids_; // edges of graph built in model
ArrayRCP<lno_t> eOffsets_; // edge offsets build in model
// May be same as adapter's input
// or may differ
// due to renumbering, self-edge
// removal, or local graph.
int nWeightsPerEdge_;
ArrayRCP<input_t> eWeights_; // edge weights in built graph
// May be same as adapter's input
// or may differ due to self-edge
// removal, or local graph.
};
////////////////////////////////////////////////////////////////
// GraphModel from MatrixAdapter
template <typename Adapter>
GraphModel<Adapter>::GraphModel(
const RCP<const MatrixAdapter<user_t,userCoord_t> > &ia,
const RCP<const Environment> &env,
const RCP<const Comm<int> > &comm,
modelFlag_t &modelFlags):
env_(env),
comm_(comm),
localGraph_(false),
nLocalVertices_(0),
nGlobalVertices_(0),
vGids_(),
nWeightsPerVertex_(0),
vWeights_(),
vCoordDim_(0),
vCoords_(),
nLocalEdges_(0),
nGlobalEdges_(0),
eGids_(),
eOffsets_(),
nWeightsPerEdge_(0),
eWeights_()
{
// Model creation flags
localGraph_ = modelFlags.test(BUILD_LOCAL_GRAPH);
bool symTranspose = modelFlags.test(SYMMETRIZE_INPUT_TRANSPOSE);
bool symBipartite = modelFlags.test(SYMMETRIZE_INPUT_BIPARTITE);
bool vertexCols = modelFlags.test(VERTICES_ARE_MATRIX_COLUMNS);
bool vertexNz = modelFlags.test(VERTICES_ARE_MATRIX_NONZEROS);
if (symTranspose || symBipartite || vertexCols || vertexNz){
throw std::runtime_error("graph build option not yet implemented");
}
// Get the matrix from the input adapter
gno_t const *vtxIds=NULL, *nborIds=NULL;
lno_t const *offsets=NULL;
try{
nLocalVertices_ = ia->getLocalNumIDs();
ia->getIDsView(vtxIds);
}
Z2_FORWARD_EXCEPTIONS;
try{
if (ia->CRSViewAvailable()) {
ia->getCRSView(offsets, nborIds);
}
else {
// TODO: Add support for CCS matrix layout
throw std::runtime_error("Only MatrixAdapter::getCRSView is supported "
"in graph model");
}
}
Z2_FORWARD_EXCEPTIONS;
// Save the pointers from the input adapter
nLocalEdges_ = offsets[nLocalVertices_];
vGids_ = arcp_const_cast<gno_t>(
arcp<const gno_t>(vtxIds, 0, nLocalVertices_, false));
eGids_ = arcp_const_cast<gno_t>(
arcp<const gno_t>(nborIds, 0, nLocalEdges_, false));
eOffsets_ = arcp_const_cast<lno_t>(
arcp<const lno_t>(offsets, 0, nLocalVertices_+1, false));
// Edge weights
nWeightsPerEdge_ = 0; // no edge weights from a matrix yet.
// TODO: use matrix values as edge weights
// Do constructor common to all adapters
shared_constructor(ia, modelFlags);
// Get vertex coordinates, if available
if (ia->coordinatesAvailable()) {
typedef VectorAdapter<userCoord_t> adapterWithCoords_t;
shared_GetVertexCoords<adapterWithCoords_t>(ia->getCoordinateInput());
}
print();
}
////////////////////////////////////////////////////////////////
// GraphModel from GraphAdapter
template <typename Adapter>
GraphModel<Adapter>::GraphModel(
const RCP<const GraphAdapter<user_t,userCoord_t> > &ia,
const RCP<const Environment> &env,
const RCP<const Comm<int> > &comm,
modelFlag_t &modelFlags):
env_(env),
comm_(comm),
localGraph_(false),
nLocalVertices_(0),
nGlobalVertices_(0),
vGids_(),
nWeightsPerVertex_(0),
vWeights_(),
vCoordDim_(0),
vCoords_(),
nLocalEdges_(0),
nGlobalEdges_(0),
eGids_(),
eOffsets_(),
nWeightsPerEdge_(0),
eWeights_()
{
// Model creation flags
localGraph_ = modelFlags.test(BUILD_LOCAL_GRAPH);
// This GraphModel is built with vertices == GRAPH_VERTEX from GraphAdapter.
// It is not ready to use vertices == GRAPH_EDGE from GraphAdapter.
env_->localInputAssertion(__FILE__, __LINE__,
"GraphModel from GraphAdapter is implemented only for "
"Graph Vertices as primary object, not for Graph Edges",
ia->getPrimaryEntityType() == Zoltan2::GRAPH_VERTEX, BASIC_ASSERTION);
// Get the graph from the input adapter
gno_t const *vtxIds=NULL, *nborIds=NULL;
lno_t const *offsets=NULL;
try{
nLocalVertices_ = ia->getLocalNumVertices();
ia->getVertexIDsView(vtxIds);
ia->getEdgesView(offsets, nborIds);
}
Z2_FORWARD_EXCEPTIONS;
// Save the pointers from the input adapter
nLocalEdges_ = offsets[nLocalVertices_];
vGids_ = arcp_const_cast<gno_t>(
arcp<const gno_t>(vtxIds, 0, nLocalVertices_, false));
eGids_ = arcp_const_cast<gno_t>(
arcp<const gno_t>(nborIds, 0, nLocalEdges_, false));
eOffsets_ = arcp_const_cast<lno_t>(
arcp<const lno_t>(offsets, 0, nLocalVertices_+1, false));
// Edge weights
nWeightsPerEdge_ = ia->getNumWeightsPerEdge();
if (nWeightsPerEdge_ > 0){
input_t *wgts = new input_t [nWeightsPerEdge_];
eWeights_ = arcp(wgts, 0, nWeightsPerEdge_, true);
}
for (int w=0; w < nWeightsPerEdge_; w++){
const scalar_t *ewgts=NULL;
int stride=0;
ia->getEdgeWeightsView(ewgts, stride, w);
ArrayRCP<const scalar_t> wgtArray(ewgts, 0, nLocalEdges_, false);
eWeights_[w] = input_t(wgtArray, stride);
}
// Do constructor common to all adapters
shared_constructor(ia, modelFlags);
// Get vertex coordinates, if available
if (ia->coordinatesAvailable()) {
typedef VectorAdapter<userCoord_t> adapterWithCoords_t;
shared_GetVertexCoords<adapterWithCoords_t>(ia->getCoordinateInput());
}
print();
}
////////////////////////////////////////////////////////////////
// GraphModel from MeshAdapter
template <typename Adapter>
GraphModel<Adapter>::GraphModel(
const RCP<const MeshAdapter<user_t> > &ia,
const RCP<const Environment> &env,
const RCP<const Comm<int> > &comm,
modelFlag_t &modelFlags):
env_(env),
comm_(comm),
localGraph_(false),
nLocalVertices_(0),
nGlobalVertices_(0),
vGids_(),
nWeightsPerVertex_(0),
vWeights_(),
vCoordDim_(0),
vCoords_(),
nLocalEdges_(0),
nGlobalEdges_(0),
eGids_(),
eOffsets_(),
nWeightsPerEdge_(0),
eWeights_()
{
env_->timerStart(MACRO_TIMERS, "GraphModel constructed from MeshAdapter");
// Model creation flags
localGraph_ = modelFlags.test(BUILD_LOCAL_GRAPH);
// This GraphModel is built with vertices == ia->getPrimaryEntityType()
// from MeshAdapter.
// Get the graph from the input adapter
Zoltan2::MeshEntityType primaryEType = ia->getPrimaryEntityType();
Zoltan2::MeshEntityType secondAdjEType = ia->getSecondAdjacencyEntityType();
// Get the IDs of the primary entity type; these are graph vertices
gno_t const *vtxIds=NULL;
try {
nLocalVertices_ = ia->getLocalNumOf(primaryEType);
ia->getIDsViewOf(primaryEType, vtxIds);
}
Z2_FORWARD_EXCEPTIONS;
vGids_ = arcp_const_cast<gno_t>(
arcp<const gno_t>(vtxIds, 0, nLocalVertices_, false));
// Get the second adjacencies to construct edges of the dual graph.
gno_t const *nborIds=NULL;
lno_t const *offsets=NULL;
if (!ia->avail2ndAdjs(primaryEType, secondAdjEType)) {
// KDDKDD TODO Want to do this differently for local and global graphs?
// KDDKDD TODO Currently getting global 2nd Adjs and filtering them for
// KDDKDD TODO local graphs. That approach is consistent with other
// KDDKDD TODO adapters, but is more expensive -- why build them just to
// KDDKDD TODO throw them away? Instead, perhaps should build
// KDDKDD TODO only local adjacencies.
// KDDKDD TODO Does it suffice to pass a serial comm for local graph?
try {
get2ndAdjsViewFromAdjs(ia, comm_, primaryEType, secondAdjEType, offsets,
nborIds);
}
Z2_FORWARD_EXCEPTIONS;
}
else { // avail2ndAdjs
// Get the edges
try {
ia->get2ndAdjsView(primaryEType, secondAdjEType, offsets, nborIds);
}
Z2_FORWARD_EXCEPTIONS;
}
// Save the pointers from the input adapter
nLocalEdges_ = offsets[nLocalVertices_];
eGids_ = arcp_const_cast<gno_t>(
arcp<const gno_t>(nborIds, 0, nLocalEdges_, false));
eOffsets_ = arcp_const_cast<lno_t>(
arcp<const lno_t>(offsets, 0, nLocalVertices_+1, false));
// Edge weights
// Cannot specify edge weights if Zoltan2 computes the second adjacencies;
// there's no way to know the correct order for the adjacencies and weights.
// InputAdapter must provide 2nd adjs in order for edge weights to be used.
if (ia->avail2ndAdjs(primaryEType, secondAdjEType)) {
nWeightsPerEdge_ = ia->getNumWeightsPer2ndAdj(primaryEType, secondAdjEType);
if (nWeightsPerEdge_ > 0){
input_t *wgts = new input_t [nWeightsPerEdge_];
eWeights_ = arcp(wgts, 0, nWeightsPerEdge_, true);
}
for (int w=0; w < nWeightsPerEdge_; w++){
const scalar_t *ewgts=NULL;
int stride=0;
ia->get2ndAdjWeightsView(primaryEType, secondAdjEType,
ewgts, stride, w);
ArrayRCP<const scalar_t> wgtArray(ewgts, 0,
nLocalEdges_*stride, false);
eWeights_[w] = input_t(wgtArray, stride);
}
}
// Do constructor common to all adapters
shared_constructor(ia, modelFlags);
// Get vertex coordinates
typedef MeshAdapter<user_t> adapterWithCoords_t;
shared_GetVertexCoords<adapterWithCoords_t>(&(*ia));
env_->timerStop(MACRO_TIMERS, "GraphModel constructed from MeshAdapter");
print();
}
//////////////////////////////////////////////////////////////////////////
template <typename Adapter>
void GraphModel<Adapter>::shared_constructor(
const RCP<const Adapter> &ia,
modelFlag_t &modelFlags)
{
// Model creation flags
bool consecutiveIdsRequired = modelFlags.test(GENERATE_CONSECUTIVE_IDS);
bool removeSelfEdges = modelFlags.test(REMOVE_SELF_EDGES);
bool subsetGraph = modelFlags.test(BUILD_SUBSET_GRAPH);
// May modify the graph provided from input adapter; save pointers to
// the input adapter's data.
size_t adapterNLocalEdges = nLocalEdges_;
ArrayRCP<gno_t> adapterVGids = vGids_; // vertices of graph from adapter
ArrayRCP<gno_t> adapterEGids = eGids_; // edges of graph from adapter
ArrayRCP<lno_t> adapterEOffsets = eOffsets_; // edge offsets from adapter
ArrayRCP<input_t> adapterEWeights = eWeights_; // edge weights from adapter
if (localGraph_) {
// Local graph is requested.
// Renumber vertices 0 to nLocalVertices_-1
// Filter out off-process edges
// Renumber edge neighbors to be in range [0,nLocalVertices_-1]
// Allocate new space for local graph info
// Note that eGids_ and eWeights_[w] may be larger than needed;
// we would have to pre-count the number of local edges to avoid overalloc
vGids_ = arcp(new gno_t[nLocalVertices_],
0, nLocalVertices_, true);
eGids_ = arcp(new gno_t[adapterNLocalEdges],
0, adapterNLocalEdges, true);
eOffsets_ = arcp(new lno_t[nLocalVertices_+1],
0, nLocalVertices_+1, true);
scalar_t **tmpEWeights = NULL;
if (nWeightsPerEdge_ > 0){
eWeights_ = arcp(new input_t[nWeightsPerEdge_], 0,
nWeightsPerEdge_, true);
// Need to use temporary array because StridedData has const data
// so we can't write to it.
tmpEWeights = new scalar_t*[nWeightsPerEdge_];
for (int w = 0; w < nWeightsPerEdge_; w++)
tmpEWeights[w] = new scalar_t[adapterNLocalEdges];
}
// Build map between global and local vertex numbers
std::unordered_map<gno_t, lno_t> globalToLocal(nLocalVertices_);
for (size_t i = 0; i < nLocalVertices_; i++)
globalToLocal[adapterVGids[i]] = i;
// Loop over edges; keep only those that are local (i.e., on-rank)
eOffsets_[0] = 0;
lno_t ecnt = 0;
for (size_t i = 0; i < nLocalVertices_; i++) {
vGids_[i] = gno_t(i);
for (lno_t j = adapterEOffsets[i]; j < adapterEOffsets[i+1]; j++) {
if (removeSelfEdges && (adapterEGids[j] == adapterVGids[i]))
continue; // Skipping self edge
// Determine whether neighbor vertex is local
typename std::unordered_map<gno_t, lno_t>::iterator localidx;
if ((localidx = globalToLocal.find(adapterEGids[j])) !=
globalToLocal.end()) {
// neighbor vertex is local
// Keep the edge and its weights
eGids_[ecnt] = localidx->second;
for (int w = 0; w < nWeightsPerEdge_; w++)
tmpEWeights[w][ecnt] = adapterEWeights[w][j];
ecnt++;
}
}
eOffsets_[i+1] = ecnt;
}
nLocalEdges_ = eOffsets_[nLocalVertices_];
if (nWeightsPerEdge_) {
for (int w = 0; w < nWeightsPerEdge_; w++) {
ArrayRCP<const scalar_t> wgtArray(tmpEWeights[w],
0, adapterNLocalEdges, true);
eWeights_[w] = input_t(wgtArray, 0);
}
delete [] tmpEWeights;
}
} // localGraph_
else if (consecutiveIdsRequired || removeSelfEdges || subsetGraph) {
// Build a Global graph
// If we are here, we expect SOMETHING in the graph to change from input:
// removing self edges, or converting to consecutive IDs, or subsetting
// the graph.
// Determine vertex GIDs for the global GraphModel
Teuchos::ArrayRCP<size_t> vtxDist; // TODO keep vtxDist & add to interface?
if (consecutiveIdsRequired) {
// Allocate new memory for vertices for consecutiveIds
vGids_ = arcp(new gno_t[nLocalVertices_], 0, nLocalVertices_, true);
// Build vtxDist array with starting vGid on each rank
int np = comm_->getSize();
vtxDist = arcp(new size_t[np+1], 0, np+1, true);
vtxDist[0] = 0;
Teuchos::gatherAll(*comm_, 1, &nLocalVertices_, np, &vtxDist[1]);
for (int i = 0; i < np; i++)
vtxDist[i+1] += vtxDist[i];
}
// Allocate new memory for edges and offsets, as needed
// Note that eGids_ may or may not be larger than needed;
// would have to pre-count number of edges kept otherwise
eGids_ = arcp(new gno_t[adapterNLocalEdges],
0, adapterNLocalEdges, true);
scalar_t **tmpEWeights = NULL;
if (subsetGraph || removeSelfEdges) {
// May change number of edges and, thus, the offsets
eOffsets_ = arcp(new lno_t[nLocalVertices_+1],
0, nLocalVertices_+1, true);
eOffsets_[0] = 0;
// Need to copy weights if remove edges
if (nWeightsPerEdge_ > 0){
eWeights_ = arcp(new input_t[nWeightsPerEdge_], 0,
nWeightsPerEdge_, true);
// Need to use temporary array because StridedData has const data
// so we can't write to it.
tmpEWeights = new scalar_t*[nWeightsPerEdge_];
for (int w = 0; w < nWeightsPerEdge_; w++)
tmpEWeights[w] = new scalar_t[adapterNLocalEdges];
}
}
// If needed, determine the owning ranks and its local index off-proc
Teuchos::ArrayRCP<int> edgeRemoteRanks;
Teuchos::ArrayRCP<lno_t> edgeRemoteLids;
std::unordered_map<gno_t, size_t> edgeRemoteUniqueMap;
if (subsetGraph || consecutiveIdsRequired) {
gno_t dummy = Teuchos::OrdinalTraits<gno_t>::invalid();
Tpetra::Map<lno_t,gno_t> vtxMap(dummy, adapterVGids(), 0, comm_);
// Need to filter requested edges to make a unique list,
// as Tpetra::Map does not return correct info for duplicated entries
// (See bug 6412)
// The local filter may be more efficient anyway -- fewer communicated
// values in the Tpetra directory
Teuchos::ArrayRCP<gno_t> edgeRemoteUniqueGids =
arcp(new gno_t[adapterNLocalEdges], 0, adapterNLocalEdges, true);
size_t nEdgeUnique = 0;
for (size_t i = 0; i < adapterNLocalEdges; i++) {
if (edgeRemoteUniqueMap.find(adapterEGids[i]) ==
edgeRemoteUniqueMap.end()) {
edgeRemoteUniqueGids[nEdgeUnique] = adapterEGids[i];
edgeRemoteUniqueMap[adapterEGids[i]] = nEdgeUnique;
nEdgeUnique++;
}
}
edgeRemoteRanks = arcp(new int[nEdgeUnique], 0, nEdgeUnique, true);
edgeRemoteLids = arcp(new lno_t[nEdgeUnique], 0, nEdgeUnique, true);
vtxMap.getRemoteIndexList(edgeRemoteUniqueGids(0, nEdgeUnique),
edgeRemoteRanks(), edgeRemoteLids());
}
// Renumber and/or filter the edges and vertices
lno_t ecnt = 0;
int me = comm_->getRank();
for (size_t i = 0; i < nLocalVertices_; i++) {
if (consecutiveIdsRequired)
vGids_[i] = vtxDist[me] + i;
for (lno_t j = adapterEOffsets[i]; j < adapterEOffsets[i+1]; j++) {
if (removeSelfEdges && (adapterVGids[i] == adapterEGids[j]))
continue; // Skipping self edge
size_t remoteIdx = edgeRemoteUniqueMap[adapterEGids[j]];
if (subsetGraph && (edgeRemoteRanks[remoteIdx] == -1))
continue; // Skipping edge with neighbor vertex that was not found
// in communicator
if (consecutiveIdsRequired)
// Renumber edge using local number on remote rank plus first
// vtx number for remote rank
eGids_[ecnt] = edgeRemoteLids[remoteIdx]
+ vtxDist[edgeRemoteRanks[remoteIdx]];
else
eGids_[ecnt] = adapterEGids[j];
if (subsetGraph || removeSelfEdges) {
// Need to copy weights only if number of edges might change
for (int w = 0; w < nWeightsPerEdge_; w++)
tmpEWeights[w][ecnt] = adapterEWeights[w][j];
}
ecnt++;
}
if (subsetGraph || removeSelfEdges)
eOffsets_[i+1] = ecnt;
}
nLocalEdges_ = ecnt;
if (nWeightsPerEdge_ && (subsetGraph || removeSelfEdges)) {
for (int w = 0; w < nWeightsPerEdge_; w++) {
ArrayRCP<const scalar_t> wgtArray(tmpEWeights[w],
0, nLocalEdges_, true);
eWeights_[w] = input_t(wgtArray, 1);
}
delete [] tmpEWeights;
}
}
// Vertex weights
nWeightsPerVertex_ = ia->getNumWeightsPerID();
if (nWeightsPerVertex_ > 0){
input_t *weightInfo = new input_t [nWeightsPerVertex_];
env_->localMemoryAssertion(__FILE__, __LINE__, nWeightsPerVertex_,
weightInfo);
for (int idx=0; idx < nWeightsPerVertex_; idx++){
bool useNumNZ = ia->useDegreeAsWeight(idx);
if (useNumNZ){
scalar_t *wgts = new scalar_t [nLocalVertices_];
env_->localMemoryAssertion(__FILE__, __LINE__, nLocalVertices_, wgts);
ArrayRCP<const scalar_t> wgtArray = arcp(wgts,
0, nLocalVertices_, true);
for (size_t i=0; i < nLocalVertices_; i++)
wgts[i] = eOffsets_[i+1] - eOffsets_[i];
weightInfo[idx] = input_t(wgtArray, 1);
}
else{
const scalar_t *weights=NULL;
int stride=0;
ia->getWeightsView(weights, stride, idx);
ArrayRCP<const scalar_t> wgtArray = arcp(weights, 0,
stride*nLocalVertices_,
false);
weightInfo[idx] = input_t(wgtArray, stride);
}
}
vWeights_ = arcp<input_t>(weightInfo, 0, nWeightsPerVertex_, true);
}
// Compute global values
if (localGraph_) {
nGlobalVertices_ = nLocalVertices_;
nGlobalEdges_ = nLocalEdges_;
}
else {
reduceAll<int, size_t>(*comm_, Teuchos::REDUCE_SUM, 1,
&nLocalVertices_, &nGlobalVertices_);
reduceAll<int, size_t>(*comm_, Teuchos::REDUCE_SUM, 1,
&nLocalEdges_, &nGlobalEdges_);
}
env_->memory("After construction of graph model");
}
//////////////////////////////////////////////////////////////////////////
template <typename Adapter>
template <typename AdapterWithCoords>
void GraphModel<Adapter>::shared_GetVertexCoords(const AdapterWithCoords *ia)
{
// get pointers to vertex coordinates from input adapter
vCoordDim_ = ia->getDimension();
if (vCoordDim_ > 0){
input_t *coordInfo = new input_t [vCoordDim_];
env_->localMemoryAssertion(__FILE__, __LINE__, vCoordDim_, coordInfo);
for (int dim=0; dim < vCoordDim_; dim++){
const scalar_t *coords=NULL;
int stride=0;
ia->getCoordinatesView(coords, stride, dim);
ArrayRCP<const scalar_t> coordArray = arcp(coords, 0,
stride*nLocalVertices_,
false);
coordInfo[dim] = input_t(coordArray, stride);
}
vCoords_ = arcp<input_t>(coordInfo, 0, vCoordDim_, true);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename Adapter>
void GraphModel<Adapter>::print()
{
// if (env_->getDebugLevel() < VERBOSE_DETAILED_STATUS)
// return;
std::ostream *os = env_->getDebugOStream();
int me = comm_->getRank();
*os << me
<< " " << (localGraph_ ? "LOCAL GRAPH " : "GLOBAL GRAPH ")
<< " Nvtx " << nLocalVertices_
<< " Nedge " << nLocalEdges_
<< " NVWgt " << nWeightsPerVertex_
<< " NEWgt " << nWeightsPerEdge_
<< " CDim " << vCoordDim_
<< std::endl;
for (size_t i = 0; i < nLocalVertices_; i++) {
*os << me << " " << i << " GID " << vGids_[i] << ": ";
for (lno_t j = eOffsets_[i]; j < eOffsets_[i+1]; j++)
*os << eGids_[j] << " " ;
*os << std::endl;
}
if (nWeightsPerVertex_) {
for (size_t i = 0; i < nLocalVertices_; i++) {
*os << me << " " << i << " VWGTS " << vGids_[i] << ": ";
for (int j = 0; j < nWeightsPerVertex_; j++)
*os << vWeights_[j][i] << " ";
*os << std::endl;
}
}
if (nWeightsPerEdge_) {
for (size_t i = 0; i < nLocalVertices_; i++) {
*os << me << " " << i << " EWGTS " << vGids_[i] << ": ";
for (lno_t j = eOffsets_[i]; j < eOffsets_[i+1]; j++) {
*os << eGids_[j] << " (";
for (int w = 0; w < nWeightsPerEdge_; w++)
*os << eWeights_[w][j] << " ";
*os << ") ";
}
*os << std::endl;
}
}
if (vCoordDim_) {
for (size_t i = 0; i < nLocalVertices_; i++) {
*os << me << " " << i << " COORDS " << vGids_[i] << ": ";
for (int j = 0; j < vCoordDim_; j++)
*os << vCoords_[j][i] << " ";
*os << std::endl;
}
}
else
*os << me << " NO COORDINATES AVAIL " << std::endl;
}
} // namespace Zoltan2
#endif
|