This file is indexed.

/usr/include/trilinos/Zoltan2_GraphModel.hpp is in libtrilinos-zoltan2-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_GraphModel.hpp
    \brief Defines the GraphModel interface.
*/

#ifndef _ZOLTAN2_GRAPHMODEL_HPP_
#define _ZOLTAN2_GRAPHMODEL_HPP_

#include <Zoltan2_Model.hpp>
#include <Zoltan2_ModelHelpers.hpp>
#include <Zoltan2_InputTraits.hpp>
#include <Zoltan2_MatrixAdapter.hpp>
#include <Zoltan2_GraphAdapter.hpp>
#include <Zoltan2_IdentifierAdapter.hpp>
#include <Zoltan2_VectorAdapter.hpp>
#include <Zoltan2_MeshAdapter.hpp>
#include <Zoltan2_StridedData.hpp>
#include <unordered_map>

namespace Zoltan2 {

//////////////////////////////////////////////////////////////////////////
/*!  \brief GraphModel defines the interface required for graph models.

    The constructor of the GraphModel can be a global call, requiring
    all processes in the application to call it.  The rest of the
    methods should be local methods.

    The template parameter is an InputAdapter, which is an object that
    provides a uniform interface for models to the user's input data.

    GraphModels may represent a local (on-process) graph or 
    a global (all-communicator) graph.
*/
template <typename Adapter>
class GraphModel : public Model<Adapter>
{
public:

#ifndef DOXYGEN_SHOULD_SKIP_THIS
  typedef typename Adapter::scalar_t    scalar_t;
  typedef typename Adapter::gno_t       gno_t;
  typedef typename Adapter::lno_t       lno_t;
  typedef typename Adapter::node_t      node_t;
  typedef typename Adapter::user_t      user_t;
  typedef typename Adapter::userCoord_t userCoord_t;
  typedef StridedData<lno_t, scalar_t>  input_t;
#endif

  //!  Destructor
  ~GraphModel() { }

  /*! \brief Constructor
   *
   *  \param  inputAdapter  a pointer to the user's data
   *  \param  env           object containing the parameters
   *  \param  comm          communicator for the problem
   *  \param  modelFlags    a bit map of Zoltan2::GraphModelFlags
   *
   *  All processes in the communicator must call the constructor.
   *  \todo document the model flags that might be set
   */

  GraphModel(const RCP<const MatrixAdapter<user_t,userCoord_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &modelFlags);

  GraphModel(const RCP<const GraphAdapter<user_t,userCoord_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &modelFlags);

  GraphModel(const RCP<const MeshAdapter<user_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &modelflags);

  GraphModel(const RCP<const VectorAdapter<userCoord_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &flags)
  {
    throw std::runtime_error("cannot build GraphModel from VectorAdapter");
  }

  GraphModel(const RCP<const IdentifierAdapter<user_t> > &ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &flags)
  {
    throw std::runtime_error("cannot build GraphModel from IdentifierAdapter");
  }

  /*! \brief Return the communicator used by the model
   */
  const RCP<const Comm<int> > getComm() { return comm_; }

  /*! \brief Returns the number vertices on this process.
   */
  size_t getLocalNumVertices() const { return nLocalVertices_; }

  /*! \brief Returns the global number vertices.
   */
  size_t getGlobalNumVertices() const { return nGlobalVertices_; }

  /*! \brief Returns the number of edges on this process.
   *  In global or subset graphs, includes off-process edges.
   */
  size_t getLocalNumEdges() const { return nLocalEdges_; }

  /*! \brief Returns the global number edges.
   *  For local graphs, the number of global edges is the number of local edges.
   */
  size_t getGlobalNumEdges() const { return nGlobalEdges_; }

  /*! \brief Returns the number (0 or greater) of weights per vertex
   */
  int getNumWeightsPerVertex() const { return nWeightsPerVertex_; }

  /*! \brief Returns the number (0 or greater) of weights per edge.
   */
  int getNumWeightsPerEdge() const { return nWeightsPerEdge_; }

  /*! \brief Returns the dimension (0 to 3) of vertex coordinates.
   */
  int getCoordinateDim() const { return vCoordDim_; }

  /*! \brief Sets pointers to this process' vertex Ids and their weights.

      \param Ids will on return point to the list of the global Ids for
        each vertex on this process.
      \param wgts If vertex weights is available, \c wgts
         will on return point to a StridedData object of weights.
  */

  size_t getVertexList(
    ArrayView<const gno_t> &Ids,
    ArrayView<input_t> &wgts) const
  {
    Ids = vGids_.view(0, nLocalVertices_);
    wgts = vWeights_.view(0, nWeightsPerVertex_);
    return nLocalVertices_;
  }

  /*! \brief Sets pointers to this process' vertex coordinates, if available.
      Order of coordinate info matches that of Ids in getVertexList().

      \param xyz If vertex coordinate data is available, \c xyz
         will on return point to a StridedData object of coordinates.
  */
  size_t getVertexCoords(ArrayView<input_t> &xyz) const
  {
    xyz = vCoords_.view(0, vCoordDim_);
    return nLocalVertices_;
  }

  /*! \brief Sets pointers to this process' edge (neighbor) global Ids,
      including off-process edges.

      \param edgeIds This is the list of global neighbor Ids corresponding
        to the vertices listed in getVertexList.
      \param offsets offsets[i] is the offset into edgeIds to the start
        of neighbors for ith vertex.
      \param wgts If edge weights is available, \c wgts
         will on return point to a StridedData object of weights.
       \return The number of ids in the edgeIds list.
   */
  // Implied Vertex LNOs from getVertexList are used as indices to offsets
  // array.
  // Vertex GNOs are returned as neighbors in edgeIds.

  size_t getEdgeList( ArrayView<const gno_t> &edgeIds,
    ArrayView<const lno_t> &offsets,
    ArrayView<input_t> &wgts) const
  {
    edgeIds = eGids_.view(0, nLocalEdges_);
    offsets = eOffsets_.view(0, nLocalVertices_+1);
    wgts = eWeights_.view(0, nWeightsPerEdge_);
    return nLocalEdges_;
  }

  ////////////////////////////////////////////////////
  // The Model interface.
  ////////////////////////////////////////////////////

  size_t getLocalNumObjects() const { return nLocalVertices_; }

  size_t getGlobalNumObjects() const { return nGlobalVertices_; }

private:

  void shared_constructor(const RCP<const Adapter>&ia, modelFlag_t &modelFlags);

  template <typename AdapterWithCoords>
  void shared_GetVertexCoords(const AdapterWithCoords *ia);

  void print(); // For debugging

  const RCP<const Environment > env_;
  const RCP<const Comm<int> > comm_;

  bool localGraph_;    // Flag indicating whether this graph is 
                       // LOCAL with respect to the process;
                       // if !localGraph_, graph is GLOBAL with respect to
                       // the communicator.
                       

  size_t nLocalVertices_;                // # local vertices in built graph
  size_t nGlobalVertices_;               // # global vertices in built graph
  ArrayRCP<gno_t> vGids_;                  // vertices of graph built in model;
                                           // may be same as adapter's input
                                           // or may be renumbered 0 to (N-1).

  int nWeightsPerVertex_;
  ArrayRCP<input_t> vWeights_;

  int vCoordDim_;
  ArrayRCP<input_t> vCoords_;

  // Note: in some cases, size of these arrays
  // may be larger than nLocalEdges_.  So do not use .size().
  // Use nLocalEdges_, nGlobalEdges_

  size_t nLocalEdges_;                  // # local edges in built graph
  size_t nGlobalEdges_;                 // # global edges in built graph
  ArrayRCP<gno_t> eGids_;                 // edges of graph built in model
  ArrayRCP<lno_t> eOffsets_;              // edge offsets build in model
                                          // May be same as adapter's input 
                                          // or may differ
                                          // due to renumbering, self-edge
                                          // removal, or local graph.

  int nWeightsPerEdge_;
  ArrayRCP<input_t> eWeights_;            // edge weights in built graph
                                          // May be same as adapter's input
                                          // or may differ due to self-edge
                                          // removal, or local graph.

};


////////////////////////////////////////////////////////////////
// GraphModel from MatrixAdapter
template <typename Adapter>
GraphModel<Adapter>::GraphModel(
  const RCP<const MatrixAdapter<user_t,userCoord_t> > &ia,
  const RCP<const Environment> &env,
  const RCP<const Comm<int> > &comm,
  modelFlag_t &modelFlags):
        env_(env),
        comm_(comm),
        localGraph_(false),
        nLocalVertices_(0),
        nGlobalVertices_(0),
        vGids_(),
        nWeightsPerVertex_(0),
        vWeights_(),
        vCoordDim_(0),
        vCoords_(),
        nLocalEdges_(0),
        nGlobalEdges_(0),
        eGids_(),
        eOffsets_(),
        nWeightsPerEdge_(0),
        eWeights_()
{
  // Model creation flags
  localGraph_ = modelFlags.test(BUILD_LOCAL_GRAPH);

  bool symTranspose = modelFlags.test(SYMMETRIZE_INPUT_TRANSPOSE);
  bool symBipartite = modelFlags.test(SYMMETRIZE_INPUT_BIPARTITE);
  bool vertexCols = modelFlags.test(VERTICES_ARE_MATRIX_COLUMNS);
  bool vertexNz = modelFlags.test(VERTICES_ARE_MATRIX_NONZEROS);

  if (symTranspose || symBipartite || vertexCols || vertexNz){
    throw std::runtime_error("graph build option not yet implemented");
  }

  // Get the matrix from the input adapter
  gno_t const *vtxIds=NULL, *nborIds=NULL;
  lno_t const *offsets=NULL;
  try{
    nLocalVertices_ = ia->getLocalNumIDs();
    ia->getIDsView(vtxIds);
  }
  Z2_FORWARD_EXCEPTIONS;
  try{
    if (ia->CRSViewAvailable()) {
      ia->getCRSView(offsets, nborIds);
    }
    else {
      // TODO:  Add support for CCS matrix layout
      throw std::runtime_error("Only MatrixAdapter::getCRSView is supported "
                               "in graph model");
    }
  }
  Z2_FORWARD_EXCEPTIONS;

  // Save the pointers from the input adapter
  nLocalEdges_ = offsets[nLocalVertices_];
  vGids_ = arcp_const_cast<gno_t>(
                arcp<const gno_t>(vtxIds, 0, nLocalVertices_, false));
  eGids_ = arcp_const_cast<gno_t>(
                arcp<const gno_t>(nborIds, 0, nLocalEdges_, false));
  eOffsets_ = arcp_const_cast<lno_t>(
                   arcp<const lno_t>(offsets, 0, nLocalVertices_+1, false));

  // Edge weights
  nWeightsPerEdge_ = 0;   // no edge weights from a matrix yet.
                          // TODO:  use matrix values as edge weights

  // Do constructor common to all adapters
  shared_constructor(ia, modelFlags);

  // Get vertex coordinates, if available
  if (ia->coordinatesAvailable()) {
    typedef VectorAdapter<userCoord_t> adapterWithCoords_t;
    shared_GetVertexCoords<adapterWithCoords_t>(ia->getCoordinateInput());
  }
  print();
}


////////////////////////////////////////////////////////////////
// GraphModel from GraphAdapter
template <typename Adapter>
GraphModel<Adapter>::GraphModel(
  const RCP<const GraphAdapter<user_t,userCoord_t> > &ia,
  const RCP<const Environment> &env,
  const RCP<const Comm<int> > &comm,
  modelFlag_t &modelFlags):
        env_(env),
        comm_(comm),
        localGraph_(false),
        nLocalVertices_(0),
        nGlobalVertices_(0),
        vGids_(),
        nWeightsPerVertex_(0),
        vWeights_(),
        vCoordDim_(0),
        vCoords_(),
        nLocalEdges_(0),
        nGlobalEdges_(0),
        eGids_(),
        eOffsets_(),
        nWeightsPerEdge_(0),
        eWeights_()
{
  // Model creation flags
  localGraph_ = modelFlags.test(BUILD_LOCAL_GRAPH);

  // This GraphModel is built with vertices == GRAPH_VERTEX from GraphAdapter.
  // It is not ready to use vertices == GRAPH_EDGE from GraphAdapter.
  env_->localInputAssertion(__FILE__, __LINE__,
    "GraphModel from GraphAdapter is implemented only for "
    "Graph Vertices as primary object, not for Graph Edges",
    ia->getPrimaryEntityType() == Zoltan2::GRAPH_VERTEX, BASIC_ASSERTION);

  // Get the graph from the input adapter

  gno_t const *vtxIds=NULL, *nborIds=NULL;
  lno_t const *offsets=NULL;
  try{
    nLocalVertices_ = ia->getLocalNumVertices();
    ia->getVertexIDsView(vtxIds);
    ia->getEdgesView(offsets, nborIds);
  }
  Z2_FORWARD_EXCEPTIONS;

  // Save the pointers from the input adapter
  nLocalEdges_ = offsets[nLocalVertices_];
  vGids_ = arcp_const_cast<gno_t>(
                arcp<const gno_t>(vtxIds, 0, nLocalVertices_, false));
  eGids_ = arcp_const_cast<gno_t>(
                arcp<const gno_t>(nborIds, 0, nLocalEdges_, false));
  eOffsets_ = arcp_const_cast<lno_t>(
                   arcp<const lno_t>(offsets, 0, nLocalVertices_+1, false));

  // Edge weights
  nWeightsPerEdge_ = ia->getNumWeightsPerEdge();
  if (nWeightsPerEdge_ > 0){
    input_t *wgts = new input_t [nWeightsPerEdge_];
    eWeights_ = arcp(wgts, 0, nWeightsPerEdge_, true);
  }

  for (int w=0; w < nWeightsPerEdge_; w++){
    const scalar_t *ewgts=NULL;
    int stride=0;

    ia->getEdgeWeightsView(ewgts, stride, w);

    ArrayRCP<const scalar_t> wgtArray(ewgts, 0, nLocalEdges_, false);
    eWeights_[w] = input_t(wgtArray, stride);
  }

  // Do constructor common to all adapters
  shared_constructor(ia, modelFlags);

  // Get vertex coordinates, if available
  if (ia->coordinatesAvailable()) {
    typedef VectorAdapter<userCoord_t> adapterWithCoords_t;
    shared_GetVertexCoords<adapterWithCoords_t>(ia->getCoordinateInput());
  }
  print();
}

////////////////////////////////////////////////////////////////
// GraphModel from MeshAdapter
template <typename Adapter>
GraphModel<Adapter>::GraphModel(
  const RCP<const MeshAdapter<user_t> > &ia,
  const RCP<const Environment> &env,
  const RCP<const Comm<int> > &comm,
  modelFlag_t &modelFlags):
        env_(env),
        comm_(comm),
        localGraph_(false),
        nLocalVertices_(0),
        nGlobalVertices_(0),
        vGids_(),
        nWeightsPerVertex_(0),
        vWeights_(),
        vCoordDim_(0),
        vCoords_(),
        nLocalEdges_(0),
        nGlobalEdges_(0),
        eGids_(),
        eOffsets_(),
        nWeightsPerEdge_(0),
        eWeights_()
{
  env_->timerStart(MACRO_TIMERS, "GraphModel constructed from MeshAdapter");

  // Model creation flags
  localGraph_ = modelFlags.test(BUILD_LOCAL_GRAPH);

  // This GraphModel is built with vertices == ia->getPrimaryEntityType()
  // from MeshAdapter.

  // Get the graph from the input adapter

  Zoltan2::MeshEntityType primaryEType = ia->getPrimaryEntityType();
  Zoltan2::MeshEntityType secondAdjEType = ia->getSecondAdjacencyEntityType();

  // Get the IDs of the primary entity type; these are graph vertices

  gno_t const *vtxIds=NULL;
  try {
    nLocalVertices_ = ia->getLocalNumOf(primaryEType);
    ia->getIDsViewOf(primaryEType, vtxIds);
  }
  Z2_FORWARD_EXCEPTIONS;

  vGids_ = arcp_const_cast<gno_t>(
                arcp<const gno_t>(vtxIds, 0, nLocalVertices_, false));

  // Get the second adjacencies to construct edges of the dual graph.
  gno_t const *nborIds=NULL;
  lno_t const *offsets=NULL;

  if (!ia->avail2ndAdjs(primaryEType, secondAdjEType)) {
    // KDDKDD TODO Want to do this differently for local and global graphs?
    // KDDKDD TODO Currently getting global 2nd Adjs and filtering them for
    // KDDKDD TODO local graphs.  That approach is consistent with other
    // KDDKDD TODO adapters, but is more expensive -- why build them just to
    // KDDKDD TODO throw them away?  Instead, perhaps should build 
    // KDDKDD TODO only local adjacencies.
    // KDDKDD TODO Does it suffice to pass a serial comm for local graph?
    try {
      get2ndAdjsViewFromAdjs(ia, comm_, primaryEType, secondAdjEType, offsets,
                             nborIds);
    }
    Z2_FORWARD_EXCEPTIONS;
  }
  else {  // avail2ndAdjs
    // Get the edges
    try {
      ia->get2ndAdjsView(primaryEType, secondAdjEType, offsets, nborIds);
    }
    Z2_FORWARD_EXCEPTIONS;
  }

  // Save the pointers from the input adapter
  nLocalEdges_ = offsets[nLocalVertices_];
  eGids_ = arcp_const_cast<gno_t>(
                arcp<const gno_t>(nborIds, 0, nLocalEdges_, false));
  eOffsets_ = arcp_const_cast<lno_t>(
                   arcp<const lno_t>(offsets, 0, nLocalVertices_+1, false));

  // Edge weights
  // Cannot specify edge weights if Zoltan2 computes the second adjacencies;
  // there's no way to know the correct order for the adjacencies and weights.
  // InputAdapter must provide 2nd adjs in order for edge weights to be used.
  if (ia->avail2ndAdjs(primaryEType, secondAdjEType)) {
    nWeightsPerEdge_ = ia->getNumWeightsPer2ndAdj(primaryEType, secondAdjEType);
    if (nWeightsPerEdge_ > 0){
      input_t *wgts = new input_t [nWeightsPerEdge_];
      eWeights_ = arcp(wgts, 0, nWeightsPerEdge_, true);
    }

    for (int w=0; w < nWeightsPerEdge_; w++){
      const scalar_t *ewgts=NULL;
      int stride=0;

      ia->get2ndAdjWeightsView(primaryEType, secondAdjEType,
                               ewgts, stride, w);

      ArrayRCP<const scalar_t> wgtArray(ewgts, 0, 
                                        nLocalEdges_*stride, false);
      eWeights_[w] = input_t(wgtArray, stride);
    }
  }

  // Do constructor common to all adapters
  shared_constructor(ia, modelFlags);

  // Get vertex coordinates
  typedef MeshAdapter<user_t> adapterWithCoords_t;
  shared_GetVertexCoords<adapterWithCoords_t>(&(*ia));

  env_->timerStop(MACRO_TIMERS, "GraphModel constructed from MeshAdapter");
  print();
}


//////////////////////////////////////////////////////////////////////////
template <typename Adapter>
void GraphModel<Adapter>::shared_constructor(
  const RCP<const Adapter> &ia,
  modelFlag_t &modelFlags)
{
  // Model creation flags
  bool consecutiveIdsRequired = modelFlags.test(GENERATE_CONSECUTIVE_IDS);
  bool removeSelfEdges = modelFlags.test(REMOVE_SELF_EDGES);
  bool subsetGraph = modelFlags.test(BUILD_SUBSET_GRAPH);

  // May modify the graph provided from input adapter; save pointers to 
  // the input adapter's data.
  size_t adapterNLocalEdges = nLocalEdges_;
  ArrayRCP<gno_t> adapterVGids = vGids_;     // vertices of graph from adapter
  ArrayRCP<gno_t> adapterEGids = eGids_;     // edges of graph from adapter
  ArrayRCP<lno_t> adapterEOffsets = eOffsets_;    // edge offsets from adapter
  ArrayRCP<input_t> adapterEWeights = eWeights_;  // edge weights from adapter

  if (localGraph_) {
    // Local graph is requested.
    // Renumber vertices 0 to nLocalVertices_-1
    // Filter out off-process edges
    // Renumber edge neighbors to be in range [0,nLocalVertices_-1]

    // Allocate new space for local graph info
    // Note that eGids_ and eWeights_[w] may be larger than needed; 
    // we would have to pre-count the number of local edges to avoid overalloc
    vGids_ = arcp(new gno_t[nLocalVertices_],
                  0, nLocalVertices_, true);
    eGids_ = arcp(new gno_t[adapterNLocalEdges],
                  0, adapterNLocalEdges, true);  
    eOffsets_ = arcp(new lno_t[nLocalVertices_+1],
                     0, nLocalVertices_+1, true);

    scalar_t **tmpEWeights = NULL;
    if (nWeightsPerEdge_ > 0){
      eWeights_ = arcp(new input_t[nWeightsPerEdge_], 0,
                       nWeightsPerEdge_, true);
      // Need to use temporary array because StridedData has const data
      // so we can't write to it.
      tmpEWeights = new scalar_t*[nWeightsPerEdge_];
      for (int w = 0; w < nWeightsPerEdge_; w++)
        tmpEWeights[w] = new scalar_t[adapterNLocalEdges];
    }

    // Build map between global and local vertex numbers
    std::unordered_map<gno_t, lno_t> globalToLocal(nLocalVertices_);
    for (size_t i = 0; i < nLocalVertices_; i++)
      globalToLocal[adapterVGids[i]] = i;

    // Loop over edges; keep only those that are local (i.e., on-rank)
    eOffsets_[0] = 0;
    lno_t ecnt = 0;
    for (size_t i = 0; i < nLocalVertices_; i++) {
      vGids_[i] = gno_t(i);
      for (lno_t j = adapterEOffsets[i]; j < adapterEOffsets[i+1]; j++) {

        if (removeSelfEdges && (adapterEGids[j] == adapterVGids[i]))
          continue;  // Skipping self edge

        // Determine whether neighbor vertex is local
        typename std::unordered_map<gno_t, lno_t>::iterator localidx;
        if ((localidx = globalToLocal.find(adapterEGids[j])) != 
                        globalToLocal.end()) {
          // neighbor vertex is local
          // Keep the edge and its weights
          eGids_[ecnt] = localidx->second;
          for (int w = 0; w < nWeightsPerEdge_; w++)
            tmpEWeights[w][ecnt] = adapterEWeights[w][j];

          ecnt++;
        }  
      }
      eOffsets_[i+1] = ecnt;
    }
    nLocalEdges_ = eOffsets_[nLocalVertices_];
    if (nWeightsPerEdge_) {
      for (int w = 0; w < nWeightsPerEdge_; w++) {
        ArrayRCP<const scalar_t> wgtArray(tmpEWeights[w],
                                          0, adapterNLocalEdges, true);
        eWeights_[w] = input_t(wgtArray, 0);
      }
      delete [] tmpEWeights;
    }
  }  // localGraph_

  else  if (consecutiveIdsRequired || removeSelfEdges || subsetGraph) {
    // Build a Global graph
    // If we are here, we expect SOMETHING in the graph to change from input:
    // removing self edges, or converting to consecutive IDs, or subsetting
    // the graph.


    // Determine vertex GIDs for the global GraphModel
    Teuchos::ArrayRCP<size_t> vtxDist; // TODO keep vtxDist & add to interface?
    if (consecutiveIdsRequired) {
      // Allocate new memory for vertices for consecutiveIds
      vGids_ = arcp(new gno_t[nLocalVertices_], 0, nLocalVertices_, true);

      // Build vtxDist array with starting vGid on each rank
      int np = comm_->getSize();
      vtxDist = arcp(new size_t[np+1], 0, np+1, true);
      vtxDist[0] = 0;
      Teuchos::gatherAll(*comm_, 1, &nLocalVertices_, np, &vtxDist[1]);
      for (int i = 0; i < np; i++)
        vtxDist[i+1] += vtxDist[i];
    }

    // Allocate new memory for edges and offsets, as needed
    // Note that eGids_ may or may not be larger than needed; 
    // would have to pre-count number of edges kept otherwise
    eGids_ = arcp(new gno_t[adapterNLocalEdges],
                  0, adapterNLocalEdges, true);

    scalar_t **tmpEWeights = NULL;
    if (subsetGraph || removeSelfEdges) {
      // May change number of edges and, thus, the offsets 
      eOffsets_ = arcp(new lno_t[nLocalVertices_+1],
                       0, nLocalVertices_+1, true);
      eOffsets_[0] = 0;

      // Need to copy weights if remove edges
      if (nWeightsPerEdge_ > 0){
        eWeights_ = arcp(new input_t[nWeightsPerEdge_], 0,
                         nWeightsPerEdge_, true);
        // Need to use temporary array because StridedData has const data
        // so we can't write to it.
        tmpEWeights = new scalar_t*[nWeightsPerEdge_];
        for (int w = 0; w < nWeightsPerEdge_; w++)
          tmpEWeights[w] = new scalar_t[adapterNLocalEdges];
      }
    }

    // If needed, determine the owning ranks and its local index off-proc
    Teuchos::ArrayRCP<int> edgeRemoteRanks;
    Teuchos::ArrayRCP<lno_t> edgeRemoteLids;
    std::unordered_map<gno_t, size_t> edgeRemoteUniqueMap;

    if (subsetGraph || consecutiveIdsRequired) {
      gno_t dummy = Teuchos::OrdinalTraits<gno_t>::invalid();
      Tpetra::Map<lno_t,gno_t> vtxMap(dummy, adapterVGids(), 0, comm_);

      // Need to filter requested edges to make a unique list,
      // as Tpetra::Map does not return correct info for duplicated entries
      // (See bug 6412)  
      // The local filter may be more efficient anyway -- fewer communicated
      // values in the Tpetra directory
      Teuchos::ArrayRCP<gno_t> edgeRemoteUniqueGids = 
               arcp(new gno_t[adapterNLocalEdges], 0, adapterNLocalEdges, true);

      size_t nEdgeUnique = 0;
      for (size_t i = 0; i < adapterNLocalEdges; i++) {
        if (edgeRemoteUniqueMap.find(adapterEGids[i]) == 
            edgeRemoteUniqueMap.end()) {
          edgeRemoteUniqueGids[nEdgeUnique] = adapterEGids[i];
          edgeRemoteUniqueMap[adapterEGids[i]] = nEdgeUnique;
          nEdgeUnique++;
        }
      }

      edgeRemoteRanks = arcp(new int[nEdgeUnique], 0, nEdgeUnique, true);
      edgeRemoteLids = arcp(new lno_t[nEdgeUnique], 0, nEdgeUnique, true);
      vtxMap.getRemoteIndexList(edgeRemoteUniqueGids(0, nEdgeUnique),
                                edgeRemoteRanks(), edgeRemoteLids());
    }

    // Renumber and/or filter the edges and vertices
    lno_t ecnt = 0;
    int me = comm_->getRank();
    for (size_t i = 0; i < nLocalVertices_; i++) {

      if (consecutiveIdsRequired)
        vGids_[i] = vtxDist[me] + i;

      for (lno_t j = adapterEOffsets[i]; j < adapterEOffsets[i+1]; j++) {

        if (removeSelfEdges && (adapterVGids[i] == adapterEGids[j]))
          continue;  // Skipping self edge

        size_t remoteIdx = edgeRemoteUniqueMap[adapterEGids[j]];

        if (subsetGraph && (edgeRemoteRanks[remoteIdx] == -1)) 
          continue;  // Skipping edge with neighbor vertex that was not found 
                     // in communicator

        if (consecutiveIdsRequired)
          // Renumber edge using local number on remote rank plus first 
          // vtx number for remote rank
          eGids_[ecnt] = edgeRemoteLids[remoteIdx]
                       + vtxDist[edgeRemoteRanks[remoteIdx]];  
        else
          eGids_[ecnt] = adapterEGids[j];

        if (subsetGraph || removeSelfEdges) {
          // Need to copy weights only if number of edges might change
          for (int w = 0; w < nWeightsPerEdge_; w++)
            tmpEWeights[w][ecnt] = adapterEWeights[w][j];
        }

        ecnt++;
      }
      if (subsetGraph || removeSelfEdges)
        eOffsets_[i+1] = ecnt;
    }
    nLocalEdges_ = ecnt;
    if (nWeightsPerEdge_ && (subsetGraph || removeSelfEdges)) {
      for (int w = 0; w < nWeightsPerEdge_; w++) {
        ArrayRCP<const scalar_t> wgtArray(tmpEWeights[w],
                                          0, nLocalEdges_, true);
        eWeights_[w] = input_t(wgtArray, 1);
      }
      delete [] tmpEWeights;
    }
  }

  // Vertex weights
  nWeightsPerVertex_ = ia->getNumWeightsPerID();

  if (nWeightsPerVertex_ > 0){
    input_t *weightInfo = new input_t [nWeightsPerVertex_];
    env_->localMemoryAssertion(__FILE__, __LINE__, nWeightsPerVertex_,
                               weightInfo);

    for (int idx=0; idx < nWeightsPerVertex_; idx++){
      bool useNumNZ = ia->useDegreeAsWeight(idx);
      if (useNumNZ){
        scalar_t *wgts = new scalar_t [nLocalVertices_];
        env_->localMemoryAssertion(__FILE__, __LINE__, nLocalVertices_, wgts);
        ArrayRCP<const scalar_t> wgtArray = arcp(wgts,
                                                 0, nLocalVertices_, true);
        for (size_t i=0; i < nLocalVertices_; i++)
          wgts[i] = eOffsets_[i+1] - eOffsets_[i];
        weightInfo[idx] = input_t(wgtArray, 1);
      }
      else{
        const scalar_t *weights=NULL;
        int stride=0;
        ia->getWeightsView(weights, stride, idx);
        ArrayRCP<const scalar_t> wgtArray = arcp(weights, 0,
                                                 stride*nLocalVertices_,
                                                 false);
        weightInfo[idx] = input_t(wgtArray, stride);
      }
    }

    vWeights_ = arcp<input_t>(weightInfo, 0, nWeightsPerVertex_, true);
  }

  // Compute global values
  if (localGraph_) {
    nGlobalVertices_ = nLocalVertices_;
    nGlobalEdges_ = nLocalEdges_;
  }
  else {
    reduceAll<int, size_t>(*comm_, Teuchos::REDUCE_SUM, 1,
                           &nLocalVertices_, &nGlobalVertices_);
    reduceAll<int, size_t>(*comm_, Teuchos::REDUCE_SUM, 1,
                           &nLocalEdges_, &nGlobalEdges_);
  }

  env_->memory("After construction of graph model");
}

//////////////////////////////////////////////////////////////////////////

template <typename Adapter>
template <typename AdapterWithCoords>
void GraphModel<Adapter>::shared_GetVertexCoords(const AdapterWithCoords *ia)
{
  // get pointers to vertex coordinates from input adapter

  vCoordDim_ = ia->getDimension();

  if (vCoordDim_ > 0){
    input_t *coordInfo = new input_t [vCoordDim_];
    env_->localMemoryAssertion(__FILE__, __LINE__, vCoordDim_, coordInfo);

    for (int dim=0; dim < vCoordDim_; dim++){
      const scalar_t *coords=NULL;
      int stride=0;
      ia->getCoordinatesView(coords, stride, dim);
      ArrayRCP<const scalar_t> coordArray = arcp(coords, 0,
                                                 stride*nLocalVertices_,
                                                 false);
      coordInfo[dim] = input_t(coordArray, stride);
    }

    vCoords_ = arcp<input_t>(coordInfo, 0, vCoordDim_, true);
  }
}

//////////////////////////////////////////////////////////////////////////
  template <typename Adapter>
void GraphModel<Adapter>::print()
{
//  if (env_->getDebugLevel() < VERBOSE_DETAILED_STATUS)
//    return;

  std::ostream *os = env_->getDebugOStream();
  
  int me = comm_->getRank();

  *os << me
      << " " << (localGraph_ ? "LOCAL GRAPH  " : "GLOBAL GRAPH  ")
      << " Nvtx  " << nLocalVertices_
      << " Nedge " << nLocalEdges_
      << " NVWgt " << nWeightsPerVertex_
      << " NEWgt " << nWeightsPerEdge_
      << " CDim  " << vCoordDim_
      << std::endl;

  for (size_t i = 0; i < nLocalVertices_; i++) {
    *os << me << " " << i << " GID " << vGids_[i] << ": ";
    for (lno_t j = eOffsets_[i]; j < eOffsets_[i+1]; j++)
      *os << eGids_[j] << " " ;
    *os << std::endl;
  }

  if (nWeightsPerVertex_) {
    for (size_t i = 0; i < nLocalVertices_; i++) {
      *os << me << " " << i << " VWGTS " << vGids_[i] << ": ";
      for (int j = 0; j < nWeightsPerVertex_; j++)
        *os << vWeights_[j][i] << " ";
      *os << std::endl;
    }
  }

  if (nWeightsPerEdge_) {
    for (size_t i = 0; i < nLocalVertices_; i++) {
      *os << me << " " << i << " EWGTS " << vGids_[i] << ": ";
      for (lno_t j = eOffsets_[i]; j < eOffsets_[i+1]; j++) {
        *os << eGids_[j] << " (";
        for (int w = 0; w < nWeightsPerEdge_; w++)
          *os << eWeights_[w][j] << " ";
        *os << ") ";
      }
      *os << std::endl;
    }
  }

  if (vCoordDim_) {
    for (size_t i = 0; i < nLocalVertices_; i++) {
      *os << me << " " << i << " COORDS " << vGids_[i] << ": ";
      for (int j = 0; j < vCoordDim_; j++)
         *os << vCoords_[j][i] << " ";
      *os << std::endl;
    }
  }
  else
    *os << me << " NO COORDINATES AVAIL " << std::endl;
}

}   // namespace Zoltan2


#endif