This file is indexed.

/usr/include/trilinos/Thyra_MultiVectorStdOps_decl.hpp is in libtrilinos-thyra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// @HEADER
// ***********************************************************************
// 
//    Thyra: Interfaces and Support for Abstract Numerical Algorithms
//                 Copyright (2004) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roscoe A. Bartlett (bartlettra@ornl.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef THYRA_MULTI_VECTOR_STD_OPS_DECL_HPP
#define THYRA_MULTI_VECTOR_STD_OPS_DECL_HPP

#include "Thyra_MultiVectorBase.hpp"
#include "RTOpPack_ROpNorm1.hpp"
#include "RTOpPack_ROpNorm2.hpp"
#include "RTOpPack_ROpNormInf.hpp"

namespace Thyra {


/** \brief Column-wise multi-vector natural norm.
 *
 * \param V [in]
 *
 * \param norms [out] Array (size <tt>m = V1->domain()->dim()</tt>) of the
 * natural norms <tt>dot[j] = sqrt(scalarProd(*V.col(j),*V.col(j)))</tt>, for
 * <tt>j=0...m-1</tt>, computed using a single reduction.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void norms( const MultiVectorBase<Scalar>& V,
  const ArrayView<typename ScalarTraits<Scalar>::magnitudeType> &norms );


/** \brief Column-wise multi-vector reductions.
 *
 * \param V [in]
 *
 * \param normOp [in] A reduction operator consistent with the interface to
 * <tt>RTOpPack::ROpScalarReductionBase</tt> that defines the norm operation.
 *
 * \param norms [out] Array (size <tt>m = V1->domain()->dim()</tt>) of
 * one-norms <tt>dot[j] = {some norm}(*V.col(j))</tt>, for <tt>j=0...m-1</tt>,
 * computed using a single reduction.
 *
 * \relates MultiVectorBase
 */
template<class Scalar, class NormOp>
void reductions( const MultiVectorBase<Scalar>& V, const NormOp &op,
  const ArrayView<typename ScalarTraits<Scalar>::magnitudeType> &norms );


/** \brief Column-wise multi-vector one norm.
 *
 * \param V [in]
 *
 * \param norms [out] Array (size <tt>m = V1->domain()->dim()</tt>) of
 * one-norms <tt>dot[j] = norm_1(*V.col(j))</tt>, for <tt>j=0...m-1</tt>,
 * computed using a single reduction.
 *
 * This function simply calls <tt>reductions()</tt> using
 * <tt>RTOpPack::ROpNorm1</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void norms_1( const MultiVectorBase<Scalar>& V,
  const ArrayView<typename ScalarTraits<Scalar>::magnitudeType> &norms );


/** \brief Column-wise multi-vector 2 (Euclidean) norm.
 *
 * \param V [in]
 *
 * \param norms [out] Array (size <tt>m = V1->domain()->dim()</tt>) of
 * one-norms <tt>dot[j] = norm_2(*V.col(j))</tt>, for <tt>j=0...m-1</tt>,
 * computed using a single reduction.
 *
 * This function simply calls <tt>reductions()</tt> using
 * <tt>RTOpPack::ROpNorm2</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void norms_2( const MultiVectorBase<Scalar>& V,
  const ArrayView<typename ScalarTraits<Scalar>::magnitudeType> &norms );


/** \brief Column-wise multi-vector infinity norm.
 *
 * \param V [in]
 *
 * \param norms [out] Array (size <tt>m = V1->domain()->dim()</tt>) of
 * one-norms <tt>dot[j] = norm_inf(*V.col(j))</tt>, for <tt>j=0...m-1</tt>,
 * computed using a single reduction.
 *
 * This function simply calls <tt>reductions()</tt> using
 * <tt>RTOpPack::ROpNormInf</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void norms_inf( const MultiVectorBase<Scalar>& V,
  const ArrayView<typename ScalarTraits<Scalar>::magnitudeType> &norms );


/** \brief Column-wise multi-vector infinity norm.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
Array<typename ScalarTraits<Scalar>::magnitudeType>
norms_inf( const MultiVectorBase<Scalar>& V );


/** \brief Multi-vector dot product.
 *
 * \param V1 [in]
 *
 * \param V2 [in]
 *
 * \param dots [out] Array (size <tt>m = V1->domain()->dim()</tt>) of the dot
 * products <tt>dot[j] = dot(*V1.col(j),*V2.col(j))</tt>, for
 * <tt>j=0...m-1</tt>, computed using a single reduction.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void dots( const MultiVectorBase<Scalar>& V1, const MultiVectorBase<Scalar>& V2,
  const ArrayView<Scalar> &dots );


/** \brief Multi-vector column sum
 *
 * \param V [in]
 *
 * \param sums [outt] Array (size <tt>m = V->domain()->dim()</tt>) of the sums
 * products <tt>sum[j] = sum(*V.col(j))</tt>, for <tt>j=0...m-1</tt>, computed
 * using a single reduction.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void sums( const MultiVectorBase<Scalar>& V, const ArrayView<Scalar> &sums );


/** \brief Take the induced matrix one norm of a multi-vector.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
typename ScalarTraits<Scalar>::magnitudeType
norm_1( const MultiVectorBase<Scalar>& V );


/** \brief V = alpha*V.
 *
 * Note, if alpha==0.0 then V=0.0 is performed, and if alpha==1.0 then nothing
 * is done.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void scale( Scalar alpha, const Ptr<MultiVectorBase<Scalar> > &V );


/** \brief A*U + V -> V (where A is a diagonal matrix with diagonal a).
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void scaleUpdate( const VectorBase<Scalar>& a, const MultiVectorBase<Scalar>& U,
  const Ptr<MultiVectorBase<Scalar> > &V );

/** \brief V = alpha.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void assign( const Ptr<MultiVectorBase<Scalar> > &V, Scalar alpha );

/** \brief V = U.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void assign( const Ptr<MultiVectorBase<Scalar> > &V,
  const MultiVectorBase<Scalar>& U );


/** \brief alpha*U + V -> V.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void update( Scalar alpha, const MultiVectorBase<Scalar>& U,
  const Ptr<MultiVectorBase<Scalar> > &V );


/** \brief alpha[j]*beta*U(j) + V(j) - > V(j), for j = 0 ,,,
 *
 * \relates MultiVectorBase
 * U.domain()->dim()-1.
 */
template<class Scalar>
void update(
  const ArrayView<const Scalar> &alpha,
  Scalar beta,
  const MultiVectorBase<Scalar>& U,
  const Ptr<MultiVectorBase<Scalar> > &V
  );


/** \brief U(j) + alpha[j]*beta*V(j) - > V(j), for j = 0 ,,,
 * U.domain()->dim()-1.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void update(
  const MultiVectorBase<Scalar>& U,
  const ArrayView<const Scalar> &alpha,
  Scalar beta,
  const Ptr<MultiVectorBase<Scalar> > &V
  );


/** \brief <tt>Y.col(j)(i) = beta*Y.col(j)(i) + sum( alpha[k]*X[k].col(j)(i),
 * k=0...m-1 )</tt>, for <tt>i = 0...Y->range()->dim()-1</tt>, <tt>j =
 * 0...Y->domain()->dim()-1</tt>.
 *
 * \param alpha [in] Array (length <tt>m</tt>) of input scalars.
 *
 * \param X [in] Array (length <tt>m</tt>) of input multi-vectors.
 *
 * \param beta [in] Scalar multiplier for Y
 *
 * \param Y [in/out] Target multi-vector that is the result of the linear
 * combination.
 *
 * This function implements a general linear combination:
 \verbatim
 Y.col(j)(i) = beta*Y.col(j)(i) + alpha[0]*X[0].col(j)(i) + alpha[1]*X[1].col(j)(i) + ... + alpha[m-1]*X[m-1].col(j)(i)

    for:
        i = 0...y->space()->dim()-1
        j = 0...y->domain()->dim()-1

 \endverbatim
 * and does so on a single call to <tt>MultiVectorBase::applyOp()</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void linear_combination(
  const ArrayView<const Scalar> &alpha,
  const ArrayView<const Ptr<const MultiVectorBase<Scalar> > > &X,
  const Scalar &beta,
  const Ptr<MultiVectorBase<Scalar> > &Y
  );


/** \brief Generate a random multi-vector with elements uniformly distributed
 * elements.
 * 
 * The elements <tt>get_ele(*V->col(j))</tt> are randomly generated between
 * <tt>[l,u]</tt>.
 *
 * The seed is set using <tt>seed_randomize()</tt>
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void randomize( Scalar l, Scalar u, const Ptr<MultiVectorBase<Scalar> > &V );


/** \brief <tt>Z(i,j) *= alpha, i = 0...Z->range()->dim()-1, j =
 * 0...Z->domain()->dim()-1</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void Vt_S( const Ptr<MultiVectorBase<Scalar> > &Z, const Scalar& alpha );


/** \brief <tt>Z(i,j) += alpha, i = 0...Z->range()->dim()-1, j =
 * 0...Z->domain()->dim()-1</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void Vp_S( const Ptr<MultiVectorBase<Scalar> > &Z, const Scalar& alpha );


/** \brief <tt>Z(i,j) += X(i,j), i = 0...Z->range()->dim()-1, j =
 * 0...Z->domain()->dim()-1</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void Vp_V( const Ptr<MultiVectorBase<Scalar> > &Z,
  const MultiVectorBase<Scalar>& X );


/** \brief <tt>Z(i,j) = X(i,j) + Y(i,j), i = 0...Z->range()->dim()-1, j =
 * 0...Z->domain()->dim()-1</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void V_VpV( const Ptr<MultiVectorBase<Scalar> > &Z,
  const MultiVectorBase<Scalar>& X, const MultiVectorBase<Scalar>& Y );


/** \brief <tt>Z(i,j) = X(i,j) - Y(i,j), i = 0...Z->range()->dim()-1, j =
 * 0...Z->domain()->dim()-1</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void V_VmV( const Ptr<MultiVectorBase<Scalar> > &Z,
  const MultiVectorBase<Scalar>& X, const MultiVectorBase<Scalar>& Y );


/** \brief <tt>Z(i,j) = alpha*X(i,j) + Y(i), i = 0...z->space()->dim()-1</tt>,
 * , j = 0...Z->domain()->dim()-1</tt>.
 *
 * \relates MultiVectorBase
 */
template<class Scalar>
void V_StVpV( const Ptr<MultiVectorBase<Scalar> > &Z, const Scalar &alpha,
  const MultiVectorBase<Scalar>& X, const MultiVectorBase<Scalar>& Y );


} // end namespace Thyra


// /////////////////////////////////////
// Inline functions


template<class Scalar>
inline
void Thyra::norms_1( const MultiVectorBase<Scalar>& V,
  const ArrayView<typename ScalarTraits<Scalar>::magnitudeType> &norms )
{
  reductions<Scalar>(V, RTOpPack::ROpNorm1<Scalar>(), norms);
}


template<class Scalar>
inline
void Thyra::norms_2( const MultiVectorBase<Scalar>& V,
  const ArrayView<typename ScalarTraits<Scalar>::magnitudeType> &norms )
{
  reductions<Scalar>(V, RTOpPack::ROpNorm2<Scalar>(), norms);
}


template<class Scalar>
inline
void Thyra::norms_inf( const MultiVectorBase<Scalar>& V,
  const ArrayView<typename ScalarTraits<Scalar>::magnitudeType> &norms )
{
  reductions<Scalar>(V, RTOpPack::ROpNormInf<Scalar>(), norms);
}


template<class Scalar>
Teuchos::Array<typename Teuchos::ScalarTraits<Scalar>::magnitudeType>
Thyra::norms_inf( const MultiVectorBase<Scalar>& V )
{
  typedef typename ScalarTraits<Scalar>::magnitudeType ScalarMag;
  Array<ScalarMag> norms(V.domain()->dim());
  Thyra::norms_inf<Scalar>(V, norms());
  return norms;
}


// /////////////////////////////////////////////
// Other implementations


template<class Scalar, class NormOp>
void Thyra::reductions( const MultiVectorBase<Scalar>& V, const NormOp &op,
  const ArrayView<typename ScalarTraits<Scalar>::magnitudeType> &norms )
{
  using Teuchos::tuple; using Teuchos::ptrInArg; using Teuchos::null;
  const int m = V.domain()->dim();
  Array<RCP<RTOpPack::ReductTarget> > rcp_op_targs(m);
  Array<Ptr<RTOpPack::ReductTarget> > op_targs(m);
  for( int kc = 0; kc < m; ++kc ) {
    rcp_op_targs[kc] = op.reduct_obj_create();
    op_targs[kc] = rcp_op_targs[kc].ptr();
  }
  applyOp<Scalar>(op, tuple(ptrInArg(V)),
    ArrayView<Ptr<MultiVectorBase<Scalar> > >(null),
    op_targs );
  for( int kc = 0; kc < m; ++kc ) {
    norms[kc] = op(*op_targs[kc]);
  }
}


#endif // THYRA_MULTI_VECTOR_STD_OPS_DECL_HPP