/usr/include/trilinos/Teuchos_SerialBandDenseMatrix.hpp is in libtrilinos-teuchos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 | // @HEADER
// ***********************************************************************
//
// Teuchos: Common Tools Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef _TEUCHOS_SERIALBANDDENSEMATRIX_HPP_
#define _TEUCHOS_SERIALBANDDENSEMATRIX_HPP_
/*! \file Teuchos_SerialBandDenseMatrix.hpp
\brief Templated serial dense matrix class
*/
#include "Teuchos_CompObject.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_DataAccess.hpp"
#include "Teuchos_ConfigDefs.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_Assert.hpp"
/*! \class Teuchos::SerialBandDenseMatrix
\brief This class creates and provides basic support for banded dense matrices of templated type.
The Teuchos_SerialBandDenseMatrix class enables the construction and use of banded dense matrices of templated type.
The Teuchos::SerialBandDenseMatrix class is intended to provide full-featured support for solving
linear and eigen system problems for banded matrices. It is written on
top of BLAS and LAPACK and thus has excellent performance and numerical capabilities. Using this
class, one can either perform simple factorizations and solves or apply all the tricks available in
LAPACK to get the best possible solution for very ill-conditioned problems.
<b>Teuchos::SerialBandDenseMatrix vs. Teuchos::LAPACK</b>
The Teuchos::LAPACK class provides access to most of the same functionality as Teuchos::SerialBandDenseMatrix.
The primary difference is that Teuchos::LAPACK is a "thin" layer on top of LAPACK and
Teuchos::SerialBandDenseMatrix attempts to provide easy access to the more sophisticated aspects of
solving dense linear and eigensystems.
<ul>
<li> When you should use Teuchos::LAPACK: If you are simply looking for a convenient wrapper around
the Fortran LAPACK routines and you have a well-conditioned problem, you should probably use Teuchos::LAPACK directly.
<li> When you should use Teuchos::SerialBandDenseMatrix: If you want to (or potentially want to) solve ill-conditioned
problems or want to work with a more object-oriented interface, you should probably use Teuchos::SerialBandDenseMatrix.
</ul>
<b>Constructing Teuchos::SerialBandDenseMatrix Objects</b>
There are three Teuchos::SerialBandDenseMatrix constructors. The first constructs a zero-sized object
which should be made to appropriate length using the Shape() or Reshape() functions and then filled with
the [] or () operators. The second is a constructor that accepts user data as a 2D array, the third is a
copy constructor. The second constructor has two data access modes (specified by the Teuchos::DataAccess argument):
<ol>
<li> Copy mode - Allocates memory and makes a copy of the user-provided data. In this case, the
user data is not needed after construction.
<li> View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the object.
</ol>
\warning View mode is \e extremely dangerous from a data hiding perspective. Therefore, we strongly encourage
users to develop code using Copy mode first and only use the View mode in a secondary optimization phase.
<b>Format of the matrix A</b>
The matrix A is stored as a banded matrix AB according to the LAPACK format. Consider using
the non-member conversion routines generalToBanded and bandedToGeneral if the full Teuchos::SerialDenseMatrix is
already in storage. However, it is more efficient to simply construct the Teuchos::SerialBandDenseMatrix with the desired
parameters and use the provided matrix access operators to assign (legal) entries so that the full
rectangular matrix does not need to be stored. A full description of the LAPACK banded format can be found at
http://www.netlib.org/lapack/lug/node124.html. Briefly, the banded storage format of AB used internally is as follows:
<ul>
<li> The dimension of AB is KL+KU+1 by N, where KL and KU are the lower and upper bandwidths, respectively.
<li> The entries are stored in a compressed format: AB(KU+i-j,j) = A(i,j) for max(0,j-KU)<=i<=min(M-1,j+KL).
</ul>
<b>Extracting Data from Teuchos::SerialBandDenseMatrix Objects</b>
Once a Teuchos::SerialBandDenseMatrix is constructed, it is possible to view the data via access functions.
\warning Use of these access functions cam be \e extremely dangerous from a data hiding perspective.
<b>Vector and Utility Functions</b>
Once a Teuchos::SerialBandDenseMatrix is constructed, several mathematical functions can be applied to
the object. Specifically:
<ul>
<li> Multiplication.
<li> Norms.
</ul>
*/
/** \example DenseMatrix/cxx_main_band.cpp
This is an example of how to use the Teuchos::SerialBandDenseMatrix class.
*/
namespace Teuchos {
template<typename OrdinalType, typename ScalarType>
class SerialBandDenseMatrix : public CompObject, public Object, public BLAS<OrdinalType, ScalarType>
{
public:
//! Typedef for ordinal type
typedef OrdinalType ordinalType;
//! Typedef for scalar type
typedef ScalarType scalarType;
//! @name Constructor/Destructor methods.
//@{
//! Default Constructor
/*! Creates a empty matrix of no dimension. The Shaping methods should be used to size this matrix.
Values of this matrix should be set using the [], (), or = operators.
*/
SerialBandDenseMatrix();
//! Shaped Constructor
/*!
\param numRows - Number of rows in matrix.
\param numCols - Number of columns in matrix.
\param kl - Lower bandwidth of matrix.
\param ku - Upper bandwidth of matrix.
\param zeroOut - Initializes values to 0 if true (default)
Creates a shaped matrix with \c numRows rows and \c numCols cols. All values are initialized to 0 when \c zeroOut is true.
Values of this matrix should be set using the [] or the () operators.
*/
SerialBandDenseMatrix(OrdinalType numRows, OrdinalType numCols, OrdinalType kl, OrdinalType ku, bool zeroOut = true);
//! Shaped Constructor with Values
/*!
\param CV - Enumerated type set to Teuchos::Copy or Teuchos::View.
\param values - Pointer to an array of ScalarType. The first column starts at \c values,
the second at \c values+stride, etc.
\param stride - The stride between the columns of the matrix in memory.
\param numRows - Number of rows in matrix.
\param numCols - Number of columns in matrix.
\param kl - Lower bandwidth of matrix.
\param ku - Upper bandwidth of matrix.
*/
SerialBandDenseMatrix(DataAccess CV, ScalarType* values, OrdinalType stride, OrdinalType numRows, OrdinalType numCols, OrdinalType kl, OrdinalType ku);
//! Copy Constructor
/*! \note A deep copy of the \c Source transposed can be obtained if \c trans=Teuchos::TRANS, \c else
a non-transposed copy of \c Source is made. There is no storage of the transpose state of the matrix
within the SerialBandDenseMatrix class, so this information will not propogate to any operation performed
on a matrix that has been copy constructed in transpose.
*/
SerialBandDenseMatrix(const SerialBandDenseMatrix<OrdinalType, ScalarType> &Source, ETransp trans = Teuchos::NO_TRANS);
//! Submatrix Copy Constructor
/*!
\param CV - Enumerated type set to Teuchos::Copy or Teuchos::View.
\param Source - Reference to another dense matrix from which values are to be copied.
\param numRows - The number of rows in this matrix.
\param numCols - The number of columns in this matrix.
\param kl - Lower bandwidth of matrix.
\param ku - Upper bandwidth of matrix.
\param startRow - The row of \c Source from which the submatrix copy should start.
\param startCol - The column of \c Source from which the submatrix copy should start.
Creates a shaped matrix with \c numRows rows and \c numCols columns, which is a submatrix of \c Source.
If \c startRow and \c startCol are not given, then the submatrix is the leading submatrix of \c Source.
Otherwise, the (1,1) entry in the copied matrix is the (\c startRow, \c startCol) entry of \c Source.
*/
SerialBandDenseMatrix(DataAccess CV, const SerialBandDenseMatrix<OrdinalType, ScalarType> &Source, OrdinalType numRows, OrdinalType numCols, OrdinalType startCol=0);
//! Destructor
virtual ~SerialBandDenseMatrix();
//@}
//! @name Shaping methods.
//@{
//! Shape method for changing the size of a SerialBandDenseMatrix, initializing entries to zero.
/*!
\param numRows - The number of rows in this matrix.
\param numCols - The number of columns in this matrix.
\param kl - Lower bandwidth of matrix.
\param ku - Upper bandwidth of matrix.
This method allows the user to define the dimensions of a SerialBandDenseMatrix at any point. This method
can be called at any point after construction. Any values previously in this object will be destroyed
and the resized matrix starts of with all zero values.
\return Integer error code, set to 0 if successful.
*/
int shape(OrdinalType numRows, OrdinalType numCols, OrdinalType kl, OrdinalType ku);
//! Same as <tt>shape()</tt> except leaves uninitialized.
int shapeUninitialized(OrdinalType numRows, OrdinalType numCols, OrdinalType kl, OrdinalType ku);
//! Reshaping method for changing the size of a SerialBandDenseMatrix, keeping the entries.
/*!
\param numRows - The number of rows in this matrix.
\param numCols - The number of columns in this matrix.
\param kl - Lower bandwidth of matrix.
\param ku - Upper bandwidth of matrix.
This method allows the user to redefine the dimensions of a SerialBandDenseMatrix at any point. This method
can be called at any point after construction. Any values previously in this object will be copied into
the reshaped matrix.
\return Integer error code, set 0 if successful.
*/
int reshape(OrdinalType numRows, OrdinalType numCols, OrdinalType kl, OrdinalType ku);
//@}
//! @name Set methods.
//@{
//! Copies values from one matrix to another.
/*!
The operator= copies the values from one existing SerialBandDenseMatrix to another.
If \c Source is a view (i.e. CV = Teuchos::View), then this method will
return a view. Otherwise, it will return a copy of \c Source. \e this object
will be resized if it is not large enough to copy \c Source into.
*/
SerialBandDenseMatrix<OrdinalType, ScalarType>& operator= (const SerialBandDenseMatrix<OrdinalType, ScalarType>& Source);
//! Copies values from one matrix to another.
/*!
The operator= copies the values from one existing SerialBandDenseMatrix to another
if the dimension of both matrices are the same. If not, \e this matrix
will be returned unchanged.
*/
SerialBandDenseMatrix<OrdinalType, ScalarType>& assign (const SerialBandDenseMatrix<OrdinalType, ScalarType>& Source);
//! Set all values in the matrix to a constant value.
/*!
\param value - Value to use;
*/
SerialBandDenseMatrix<OrdinalType, ScalarType>& operator= (const ScalarType value) { putScalar(value); return(*this); }
//! Set all values in the matrix to a constant value.
/*!
\param value - Value to use; zero if none specified.
\return Integer error code, set to 0 if successful.
*/
int putScalar( const ScalarType value = Teuchos::ScalarTraits<ScalarType>::zero() );
//! Set all values in the matrix to be random numbers.
int random();
//@}
//! @name Accessor methods.
//@{
//! Element access method (non-const).
/*! Returns the element in the ith row and jth column if A(i,j) is specified, the
expression A[j][i] will return the same element.
\return Element from the specified \c rowIndex row and \c colIndex column.
\warning The validity of \c rowIndex and \c colIndex will only be checked if Teuchos is
configured with --enable-teuchos-abc.
*/
ScalarType& operator () (OrdinalType rowIndex, OrdinalType colIndex);
//! Element access method (const).
/*! Returns the element in the ith row and jth column if A(i,j) is specified, the expression
A[j][i] will return the same element.
\return Element from the specified \c rowIndex row and \c colIndex column.
\warning The validity of \c rowIndex and \c colIndex will only be checked if Teuchos is
configured with --enable-teuchos-abc.
*/
const ScalarType& operator () (OrdinalType rowIndex, OrdinalType colIndex) const;
//! Column access method (non-const).
/*! Returns the pointer to the ScalarType array at the jth column if A[j] is specified, the expression
A[j][i] will return the same element as A(i,j).
\return Pointer to the ScalarType array at the \c colIndex column ( \c values_+colIndex*stride_ ).
\warning The validity of \c colIndex will only be checked if Teuchos is configured with
--enable-teuchos-abc.
*/
ScalarType* operator [] (OrdinalType colIndex);
//! Column access method (const).
/*! Returns the pointer to the ScalarType array at the jth column if A[j] is specified, the expression
A[j][i] will return the same element as A(i,j).
\return Pointer to the ScalarType array at the \c colIndex column ( \c values_+colIndex*stride_ ).
\warning The validity of \c colIndex will only be checked if Teuchos is configured with
--enable-teuchos-abc.
*/
const ScalarType* operator [] (OrdinalType colIndex) const;
//! Data array access method.
/*! \return Pointer to the ScalarType data array contained in the object. */
ScalarType* values() const { return(values_); }
//@}
//! @name Mathematical methods.
//@{
//! Add another matrix to \e this matrix.
/*! Add \c Source to \e this if the dimension of both matrices are the same. If not, \e this matrix
will be returned unchanged.
*/
SerialBandDenseMatrix<OrdinalType, ScalarType>& operator+= (const SerialBandDenseMatrix<OrdinalType, ScalarType>& Source);
//! Subtract another matrix from \e this matrix.
/*! Subtract \c Source from \e this if the dimension of both matrices are the same. If not, \e this matrix
will be returned unchanged.
*/
SerialBandDenseMatrix<OrdinalType, ScalarType>& operator-= (const SerialBandDenseMatrix<OrdinalType, ScalarType>& Source);
//! Scale \c this matrix by \c alpha; \c *this = \c alpha*\c *this.
/*!
\param alpha Scalar to multiply \e this by.
*/
SerialBandDenseMatrix<OrdinalType, ScalarType>& operator*= (const ScalarType alpha);
//! Scale \c this matrix by \c alpha; \c *this = \c alpha*\c *this.
/*!
\param alpha Scalar to multiply \e this by.
\return Integer error code, set to 0 if successful.
*/
int scale ( const ScalarType alpha );
//! Point-wise scale \c this matrix by \c A; i.e. *this(i,j) *= A(i,j)
/*! The values of \c *this matrix will be point-wise scaled by the values in A.
If A and \c this matrix are not the same dimension \c this will be returned unchanged.
\param B Teuchos::SerialBandDenseMatrix used to perform element-wise scaling of \e this.
\return Integer error code, set to 0 if successful.
*/
int scale ( const SerialBandDenseMatrix<OrdinalType, ScalarType>& A );
//@}
//! @name Comparison methods.
//@{
//! Equality of two matrices.
/*! \return True if \e this matrix and \c Operand are of the same shape (rows and columns) and have
the same entries, else False will be returned.
*/
bool operator== (const SerialBandDenseMatrix<OrdinalType, ScalarType> &Operand) const;
//! Inequality of two matrices.
/*! \return True if \e this matrix and \c Operand of not of the same shape (rows and columns) or don't
have the same entries, else False will be returned.
*/
bool operator!= (const SerialBandDenseMatrix<OrdinalType, ScalarType> &Operand) const;
//@}
//! @name Attribute methods.
//@{
//! Returns the row dimension of this matrix.
OrdinalType numRows() const { return(numRows_); }
//! Returns the column dimension of this matrix.
OrdinalType numCols() const { return(numCols_); }
//! Returns the lower bandwidth of this matrix.
OrdinalType lowerBandwidth() const { return(kl_); }
//! Returns the upper bandwidth of this matrix.
OrdinalType upperBandwidth() const { return(ku_); }
//! Returns the stride between the columns of this matrix in memory.
OrdinalType stride() const { return(stride_); }
//! Returns whether this matrix is empty.
bool empty() const { return(numRows_ == 0 || numCols_ == 0); }
//@}
//! @name Norm methods.
//@{
//! Returns the 1-norm of the matrix.
typename ScalarTraits<ScalarType>::magnitudeType normOne() const;
//! Returns the Infinity-norm of the matrix.
typename ScalarTraits<ScalarType>::magnitudeType normInf() const;
//! Returns the Frobenius-norm of the matrix.
typename ScalarTraits<ScalarType>::magnitudeType normFrobenius() const;
//@}
//! @name I/O methods.
//@{
//! Print method. Defines the behavior of the std::ostream << operator inherited from the Object class.
virtual void print(std::ostream& os) const;
//@}
protected:
void copyMat(ScalarType* inputMatrix, OrdinalType strideInput,
OrdinalType numRows, OrdinalType numCols, ScalarType* outputMatrix,
OrdinalType strideOutput, OrdinalType startCol, ScalarType alpha = ScalarTraits<ScalarType>::zero() );
void deleteArrays();
void checkIndex( OrdinalType rowIndex, OrdinalType colIndex = 0 ) const;
OrdinalType numRows_;
OrdinalType numCols_;
OrdinalType stride_;
OrdinalType kl_;
OrdinalType ku_;
bool valuesCopied_;
ScalarType* values_;
}; // class Teuchos_SerialBandDenseMatrix
//----------------------------------------------------------------------------------------------------
// Constructors and Destructor
//----------------------------------------------------------------------------------------------------
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType, ScalarType>::SerialBandDenseMatrix ()
: CompObject (),
numRows_ (0),
numCols_ (0),
stride_ (0),
kl_ (0),
ku_ (0),
valuesCopied_ (false),
values_ (0)
{}
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType, ScalarType>::
SerialBandDenseMatrix (OrdinalType numRows_in,
OrdinalType numCols_in,
OrdinalType kl_in,
OrdinalType ku_in,
bool zeroOut)
: CompObject (),
numRows_ (numRows_in),
numCols_ (numCols_in),
stride_ (kl_in+ku_in+1),
kl_ (kl_in),
ku_ (ku_in),
valuesCopied_ (true),
values_ (NULL) // for safety, in case allocation fails below
{
values_ = new ScalarType[stride_ * numCols_];
if (zeroOut) {
putScalar ();
}
}
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType, ScalarType>::
SerialBandDenseMatrix (DataAccess CV,
ScalarType* values_in,
OrdinalType stride_in,
OrdinalType numRows_in,
OrdinalType numCols_in,
OrdinalType kl_in,
OrdinalType ku_in)
: CompObject (),
numRows_ (numRows_in),
numCols_ (numCols_in),
stride_ (stride_in),
kl_ (kl_in),
ku_ (ku_in),
valuesCopied_ (false),
values_ (values_in)
{
if (CV == Copy) {
stride_ = kl_+ku_+1;
values_ = new ScalarType[stride_*numCols_];
copyMat (values_in, stride_in, numRows_, numCols_, values_, stride_, 0);
valuesCopied_ = true;
}
}
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType, ScalarType>::
SerialBandDenseMatrix (const SerialBandDenseMatrix<OrdinalType, ScalarType> &Source, ETransp trans)
: CompObject (),
numRows_ (0),
numCols_ (0),
stride_ (0),
kl_ (0),
ku_ (0),
valuesCopied_ (true),
values_ (NULL)
{
if (trans == NO_TRANS) {
numRows_ = Source.numRows_;
numCols_ = Source.numCols_;
kl_ = Source.kl_;
ku_ = Source.ku_;
stride_ = kl_+ku_+1;
values_ = new ScalarType[stride_*numCols_];
copyMat (Source.values_, Source.stride_, numRows_, numCols_,
values_, stride_, 0);
}
else if (trans == CONJ_TRANS && ScalarTraits<ScalarType>::isComplex) {
numRows_ = Source.numCols_;
numCols_ = Source.numRows_;
kl_ = Source.ku_;
ku_ = Source.kl_;
stride_ = kl_+ku_+1;
values_ = new ScalarType[stride_*numCols_];
for (OrdinalType j = 0; j < numCols_; ++j) {
for (OrdinalType i = TEUCHOS_MAX(0,j-ku_);
i <= TEUCHOS_MIN(numRows_-1,j+kl_); ++i) {
values_[j*stride_ + (ku_+i-j)] =
ScalarTraits<ScalarType>::conjugate (Source.values_[i*Source.stride_ + (Source.ku_+j-i)]);
}
}
}
else {
numRows_ = Source.numCols_;
numCols_ = Source.numRows_;
kl_ = Source.ku_;
ku_ = Source.kl_;
stride_ = kl_+ku_+1;
values_ = new ScalarType[stride_*numCols_];
for (OrdinalType j=0; j<numCols_; j++) {
for (OrdinalType i = TEUCHOS_MAX(0,j-ku_);
i <= TEUCHOS_MIN(numRows_-1,j+kl_); ++i) {
values_[j*stride_ + (ku_+i-j)] = Source.values_[i*Source.stride_ + (Source.ku_+j-i)];
}
}
}
}
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType, ScalarType>::
SerialBandDenseMatrix (DataAccess CV,
const SerialBandDenseMatrix<OrdinalType, ScalarType> &Source,
OrdinalType numRows_in,
OrdinalType numCols_in,
OrdinalType startCol)
: CompObject (),
numRows_ (numRows_in),
numCols_ (numCols_in),
stride_ (Source.stride_),
kl_ (Source.kl_),
ku_ (Source.ku_),
valuesCopied_ (false),
values_ (Source.values_)
{
if (CV == Copy) {
values_ = new ScalarType[stride_ * numCols_in];
copyMat (Source.values_, Source.stride_, numRows_in, numCols_in,
values_, stride_, startCol);
valuesCopied_ = true;
} else { // CV = View
values_ = values_ + (stride_ * startCol);
}
}
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType, ScalarType>::~SerialBandDenseMatrix()
{
deleteArrays();
}
//----------------------------------------------------------------------------------------------------
// Shape methods
//----------------------------------------------------------------------------------------------------
template<typename OrdinalType, typename ScalarType>
int SerialBandDenseMatrix<OrdinalType, ScalarType>::shape(
OrdinalType numRows_in, OrdinalType numCols_in, OrdinalType kl_in, OrdinalType ku_in
)
{
deleteArrays(); // Get rid of anything that might be already allocated
numRows_ = numRows_in;
numCols_ = numCols_in;
kl_ = kl_in;
ku_ = ku_in;
stride_ = kl_+ku_+1;
values_ = new ScalarType[stride_*numCols_];
putScalar();
valuesCopied_ = true;
return(0);
}
template<typename OrdinalType, typename ScalarType>
int SerialBandDenseMatrix<OrdinalType, ScalarType>::shapeUninitialized(
OrdinalType numRows_in, OrdinalType numCols_in, OrdinalType kl_in, OrdinalType ku_in
)
{
deleteArrays(); // Get rid of anything that might be already allocated
numRows_ = numRows_in;
numCols_ = numCols_in;
kl_ = kl_in;
ku_ = ku_in;
stride_ = kl_+ku_+1;
values_ = new ScalarType[stride_*numCols_];
valuesCopied_ = true;
return(0);
}
template<typename OrdinalType, typename ScalarType>
int SerialBandDenseMatrix<OrdinalType, ScalarType>::reshape(
OrdinalType numRows_in, OrdinalType numCols_in, OrdinalType kl_in, OrdinalType ku_in
)
{
// Allocate space for new matrix
ScalarType* values_tmp = new ScalarType[(kl_in+ku_in+1) * numCols_in];
ScalarType zero = ScalarTraits<ScalarType>::zero();
for(OrdinalType k = 0; k < (kl_in+ku_in+1) * numCols_in; k++) {
values_tmp[k] = zero;
}
OrdinalType numRows_tmp = TEUCHOS_MIN(numRows_, numRows_in);
OrdinalType numCols_tmp = TEUCHOS_MIN(numCols_, numCols_in);
if(values_ != 0) {
copyMat(values_, stride_, numRows_tmp, numCols_tmp, values_tmp,
kl_in+ku_in+1, 0); // Copy principal submatrix of A to new A
}
deleteArrays(); // Get rid of anything that might be already allocated
numRows_ = numRows_in;
numCols_ = numCols_in;
kl_ = kl_in;
ku_ = ku_in;
stride_ = kl_+ku_+1;
values_ = values_tmp; // Set pointer to new A
valuesCopied_ = true;
return(0);
}
//----------------------------------------------------------------------------------------------------
// Set methods
//----------------------------------------------------------------------------------------------------
template<typename OrdinalType, typename ScalarType>
int SerialBandDenseMatrix<OrdinalType, ScalarType>::putScalar( const ScalarType value_in )
{
// Set each value of the dense matrix to "value".
for(OrdinalType j = 0; j < numCols_; j++) {
for (OrdinalType i=TEUCHOS_MAX(0,j-ku_); i<=TEUCHOS_MIN(numRows_-1,j+kl_); i++) {
values_[(ku_+i-j) + j*stride_] = value_in;
}
}
return 0;
}
template<typename OrdinalType, typename ScalarType>
int SerialBandDenseMatrix<OrdinalType, ScalarType>::random()
{
// Set each value of the dense matrix to a random value.
for(OrdinalType j = 0; j < numCols_; j++) {
for (OrdinalType i=TEUCHOS_MAX(0,j-ku_); i<=TEUCHOS_MIN(numRows_-1,j+kl_); i++) {
values_[(ku_+i-j) + j*stride_] = ScalarTraits<ScalarType>::random();
}
}
return 0;
}
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType,ScalarType>&
SerialBandDenseMatrix<OrdinalType, ScalarType>::operator=(
const SerialBandDenseMatrix<OrdinalType,ScalarType>& Source
)
{
if(this == &Source)
return(*this); // Special case of source same as target
if((!valuesCopied_) && (!Source.valuesCopied_) && (values_ == Source.values_))
return(*this); // Special case of both are views to same data.
// If the source is a view then we will return a view, else we will return a copy.
if (!Source.valuesCopied_) {
if(valuesCopied_) {
// Clean up stored data if this was previously a copy.
deleteArrays();
}
numRows_ = Source.numRows_;
numCols_ = Source.numCols_;
kl_ = Source.kl_;
ku_ = Source.ku_;
stride_ = Source.stride_;
values_ = Source.values_;
} else {
// If we were a view, we will now be a copy.
if(!valuesCopied_) {
numRows_ = Source.numRows_;
numCols_ = Source.numCols_;
kl_ = Source.kl_;
ku_ = Source.ku_;
stride_ = kl_+ku_+1;
const OrdinalType newsize = stride_ * numCols_;
if(newsize > 0) {
values_ = new ScalarType[newsize];
valuesCopied_ = true;
} else {
values_ = 0;
}
} else {
// If we were a copy, we will stay a copy.
if((Source.numRows_ <= stride_) && (Source.numCols_ == numCols_)) { // we don't need to reallocate
numRows_ = Source.numRows_;
numCols_ = Source.numCols_;
kl_ = Source.kl_;
ku_ = Source.ku_;
} else {
// we need to allocate more space (or less space)
deleteArrays();
numRows_ = Source.numRows_;
numCols_ = Source.numCols_;
kl_ = Source.kl_;
ku_ = Source.ku_;
stride_ = kl_+ku_+1;
const OrdinalType newsize = stride_ * numCols_;
if(newsize > 0) {
values_ = new ScalarType[newsize];
valuesCopied_ = true;
}
}
}
copyMat(Source.values_, Source.stride_, numRows_, numCols_, values_, stride_, 0);
}
return(*this);
}
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType, ScalarType>& SerialBandDenseMatrix<OrdinalType, ScalarType>::operator+= (const SerialBandDenseMatrix<OrdinalType,ScalarType>& Source )
{
// Check for compatible dimensions
if ((numRows_ != Source.numRows_) || (numCols_ != Source.numCols_) || (kl_ != Source.kl_) || (ku_ != Source.ku_)) {
TEUCHOS_CHK_REF(*this); // Return *this without altering it.
}
copyMat(Source.values_, Source.stride_, numRows_, numCols_, values_, stride_, 0, ScalarTraits<ScalarType>::one());
return(*this);
}
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType, ScalarType>& SerialBandDenseMatrix<OrdinalType, ScalarType>::operator-= (const SerialBandDenseMatrix<OrdinalType,ScalarType>& Source )
{
// Check for compatible dimensions
if ((numRows_ != Source.numRows_) || (numCols_ != Source.numCols_) || (kl_ != Source.kl_) || (ku_ != Source.ku_)) {
TEUCHOS_CHK_REF(*this); // Return *this without altering it.
}
copyMat(Source.values_, Source.stride_, numRows_, numCols_, values_, stride_, 0, -ScalarTraits<ScalarType>::one());
return(*this);
}
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType,ScalarType>& SerialBandDenseMatrix<OrdinalType, ScalarType>::assign (const SerialBandDenseMatrix<OrdinalType,ScalarType>& Source) {
if(this == &Source)
return(*this); // Special case of source same as target
if((!valuesCopied_) && (!Source.valuesCopied_) && (values_ == Source.values_))
return(*this); // Special case of both are views to same data.
// Check for compatible dimensions
if ((numRows_ != Source.numRows_) || (numCols_ != Source.numCols_) || (kl_ != Source.kl_) || (ku_ != Source.ku_)) {
TEUCHOS_CHK_REF(*this); // Return *this without altering it.
}
copyMat(Source.values_, Source.stride_, numRows_, numCols_, values_, stride_, 0);
return(*this);
}
//----------------------------------------------------------------------------------------------------
// Accessor methods
//----------------------------------------------------------------------------------------------------
template<typename OrdinalType, typename ScalarType>
inline ScalarType& SerialBandDenseMatrix<OrdinalType, ScalarType>::operator () (OrdinalType rowIndex, OrdinalType colIndex)
{
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
checkIndex( rowIndex, colIndex );
#endif
return(values_[colIndex * stride_ + ku_+rowIndex-colIndex]);
}
template<typename OrdinalType, typename ScalarType>
inline const ScalarType& SerialBandDenseMatrix<OrdinalType, ScalarType>::operator () (OrdinalType rowIndex, OrdinalType colIndex) const
{
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
checkIndex( rowIndex, colIndex );
#endif
return(values_[colIndex * stride_ + ku_+rowIndex-colIndex]);
}
template<typename OrdinalType, typename ScalarType>
inline const ScalarType* SerialBandDenseMatrix<OrdinalType, ScalarType>::operator [] (OrdinalType colIndex) const
{
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
checkIndex( 0, colIndex );
#endif
return(values_ + colIndex * stride_);
}
template<typename OrdinalType, typename ScalarType>
inline ScalarType* SerialBandDenseMatrix<OrdinalType, ScalarType>::operator [] (OrdinalType colIndex)
{
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
checkIndex( 0, colIndex );
#endif
return(values_ + colIndex * stride_);
}
//----------------------------------------------------------------------------------------------------
// Norm methods
//----------------------------------------------------------------------------------------------------
template<typename OrdinalType, typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType SerialBandDenseMatrix<OrdinalType, ScalarType>::normOne() const
{
OrdinalType i, j;
typename ScalarTraits<ScalarType>::magnitudeType anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
typename ScalarTraits<ScalarType>::magnitudeType absSum = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
ScalarType* ptr;
for(j = 0; j < numCols_; j++) {
ScalarType sum = 0;
ptr = values_ + j * stride_ + TEUCHOS_MAX(0, ku_-j);
for (i=TEUCHOS_MAX(0,j-ku_); i<=TEUCHOS_MIN(numRows_-1,j+kl_); i++) {
sum += ScalarTraits<ScalarType>::magnitude(*ptr++);
}
absSum = ScalarTraits<ScalarType>::magnitude(sum);
if(absSum > anorm) {
anorm = absSum;
}
}
updateFlops((kl_+ku_+1) * numCols_);
return(anorm);
}
template<typename OrdinalType, typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType SerialBandDenseMatrix<OrdinalType, ScalarType>::normInf() const
{
OrdinalType i, j;
typename ScalarTraits<ScalarType>::magnitudeType sum, anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
for (i = 0; i < numRows_; i++) {
sum = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
for (j=TEUCHOS_MAX(0,i-kl_); j<=TEUCHOS_MIN(numCols_-1,i+ku_); j++) {
sum += ScalarTraits<ScalarType>::magnitude(*(values_+(ku_+i-j)+j*stride_));
}
anorm = TEUCHOS_MAX( anorm, sum );
}
updateFlops((kl_+ku_+1) * numCols_);
return(anorm);
}
template<typename OrdinalType, typename ScalarType>
typename ScalarTraits<ScalarType>::magnitudeType SerialBandDenseMatrix<OrdinalType, ScalarType>::normFrobenius() const
{
OrdinalType i, j;
typename ScalarTraits<ScalarType>::magnitudeType anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
for (j = 0; j < numCols_; j++) {
for (i=TEUCHOS_MAX(0,j-ku_); i<=TEUCHOS_MIN(numRows_-1,j+kl_); i++) {
anorm += ScalarTraits<ScalarType>::magnitude(values_[(ku_+i-j)+j*stride_]*values_[(ku_+i-j)+j*stride_]);
}
}
anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::squareroot(anorm));
updateFlops((kl_+ku_+1) * numCols_);
return(anorm);
}
//----------------------------------------------------------------------------------------------------
// Comparison methods
//----------------------------------------------------------------------------------------------------
template<typename OrdinalType, typename ScalarType>
bool SerialBandDenseMatrix<OrdinalType, ScalarType>::operator== (const SerialBandDenseMatrix<OrdinalType, ScalarType> &Operand) const
{
bool result = 1;
if((numRows_ != Operand.numRows_) || (numCols_ != Operand.numCols_) || (kl_ != Operand.kl_) || (ku_ != Operand.ku_)) {
result = 0;
} else {
OrdinalType i, j;
for(j = 0; j < numCols_; j++) {
for (i=TEUCHOS_MAX(0,j-ku_); i<=TEUCHOS_MIN(numRows_-1,j+kl_); i++) {
if((*this)(i, j) != Operand(i, j)) {
return 0;
}
}
}
}
return result;
}
template<typename OrdinalType, typename ScalarType>
bool SerialBandDenseMatrix<OrdinalType, ScalarType>::operator!= (const SerialBandDenseMatrix<OrdinalType, ScalarType> &Operand) const
{
return !((*this) == Operand);
}
//----------------------------------------------------------------------------------------------------
// Multiplication method
//----------------------------------------------------------------------------------------------------
template<typename OrdinalType, typename ScalarType>
SerialBandDenseMatrix<OrdinalType, ScalarType>& SerialBandDenseMatrix<OrdinalType, ScalarType>::operator*= (const ScalarType alpha )
{
this->scale( alpha );
return(*this);
}
template<typename OrdinalType, typename ScalarType>
int SerialBandDenseMatrix<OrdinalType, ScalarType>::scale( const ScalarType alpha )
{
OrdinalType i, j;
ScalarType* ptr;
for (j=0; j<numCols_; j++) {
ptr = values_ + j*stride_ + TEUCHOS_MAX(0, ku_-j);
for (i=TEUCHOS_MAX(0,j-ku_); i<=TEUCHOS_MIN(numRows_-1,j+kl_); i++) {
*ptr = alpha * (*ptr); ptr++;
}
}
updateFlops( (kl_+ku_+1)*numCols_ );
return(0);
}
template<typename OrdinalType, typename ScalarType>
int SerialBandDenseMatrix<OrdinalType, ScalarType>::scale( const SerialBandDenseMatrix<OrdinalType,ScalarType>& A )
{
OrdinalType i, j;
ScalarType* ptr;
// Check for compatible dimensions
if ((numRows_ != A.numRows_) || (numCols_ != A.numCols_) || (kl_ != A.kl_) || (ku_ != A.ku_)) {
TEUCHOS_CHK_ERR(-1); // Return error
}
for (j=0; j<numCols_; j++) {
ptr = values_ + j*stride_ + TEUCHOS_MAX(0, ku_-j);
for (i=TEUCHOS_MAX(0,j-ku_); i<=TEUCHOS_MIN(numRows_-1,j+kl_); i++) {
*ptr = A(i,j) * (*ptr); ptr++;
}
}
updateFlops( (kl_+ku_+1)*numCols_ );
return(0);
}
template<typename OrdinalType, typename ScalarType>
void SerialBandDenseMatrix<OrdinalType, ScalarType>::print(std::ostream& os) const
{
os << std::endl;
if(valuesCopied_)
os << "Values_copied : yes" << std::endl;
else
os << "Values_copied : no" << std::endl;
os << "Rows : " << numRows_ << std::endl;
os << "Columns : " << numCols_ << std::endl;
os << "Lower Bandwidth : " << kl_ << std::endl;
os << "Upper Bandwidth : " << ku_ << std::endl;
os << "LDA : " << stride_ << std::endl;
if(numRows_ == 0 || numCols_ == 0) {
os << "(matrix is empty, no values to display)" << std::endl;
} else {
for(OrdinalType i = 0; i < numRows_; i++) {
for (OrdinalType j=TEUCHOS_MAX(0,i-kl_); j<=TEUCHOS_MIN(numCols_-1,i+ku_); j++) {
os << (*this)(i,j) << " ";
}
os << std::endl;
}
}
}
//----------------------------------------------------------------------------------------------------
// Protected methods
//----------------------------------------------------------------------------------------------------
template<typename OrdinalType, typename ScalarType>
inline void SerialBandDenseMatrix<OrdinalType, ScalarType>::checkIndex( OrdinalType rowIndex, OrdinalType colIndex ) const {
TEUCHOS_TEST_FOR_EXCEPTION(rowIndex < 0 || rowIndex >= numRows_ ||
rowIndex < TEUCHOS_MAX(0,colIndex-ku_) || rowIndex > TEUCHOS_MIN(numRows_-1,colIndex+kl_),
std::out_of_range,
"SerialBandDenseMatrix<T>::checkIndex: "
"Row index " << rowIndex << " out of range [0, "<< numRows_ << ")");
TEUCHOS_TEST_FOR_EXCEPTION(colIndex < 0 || colIndex >= numCols_, std::out_of_range,
"SerialBandDenseMatrix<T>::checkIndex: "
"Col index " << colIndex << " out of range [0, "<< numCols_ << ")");
}
template<typename OrdinalType, typename ScalarType>
void SerialBandDenseMatrix<OrdinalType, ScalarType>::deleteArrays(void)
{
if (valuesCopied_) {
delete [] values_;
values_ = 0;
valuesCopied_ = false;
}
}
template<typename OrdinalType, typename ScalarType>
void SerialBandDenseMatrix<OrdinalType, ScalarType>::copyMat(
ScalarType* inputMatrix, OrdinalType strideInput, OrdinalType numRows_in,
OrdinalType numCols_in, ScalarType* outputMatrix, OrdinalType strideOutput, OrdinalType startCol, ScalarType alpha
)
{
OrdinalType i, j;
ScalarType* ptr1 = 0;
ScalarType* ptr2 = 0;
for(j = 0; j < numCols_in; j++) {
ptr1 = outputMatrix + (j * strideOutput) + TEUCHOS_MAX(0, ku_-j);
ptr2 = inputMatrix + (j + startCol) * strideInput + TEUCHOS_MAX(0, ku_-j);
if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
for (i=TEUCHOS_MAX(0,j-ku_); i<=TEUCHOS_MIN(numRows_in-1,j+kl_); i++) {
*ptr1++ += alpha*(*ptr2++);
}
} else {
for (i=TEUCHOS_MAX(0,j-ku_); i<=TEUCHOS_MIN(numRows_in-1,j+kl_); i++) {
*ptr1++ = *ptr2++;
}
}
}
}
} // namespace Teuchos
#endif /* _TEUCHOS_SERIALBANDDENSEMATRIX_HPP_ */
|