This file is indexed.

/usr/include/trilinos/Teko_LSCStrategy.hpp is in libtrilinos-teko-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
// @HEADER
// 
// ***********************************************************************
// 
//      Teko: A package for block and physics based preconditioning
//                  Copyright 2010 Sandia Corporation 
//  
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//  
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//  
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//  
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//  
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission. 
//  
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//  
// Questions? Contact Eric C. Cyr (eccyr@sandia.gov)
// 
// ***********************************************************************
// 
// @HEADER

*/

#ifndef __Teko_LSCStrategy_hpp__
#define __Teko_LSCStrategy_hpp__

#include "Teuchos_RCP.hpp"

#include "Thyra_LinearOpBase.hpp"

#include "Teko_Utilities.hpp"
#include "Teko_InverseFactory.hpp"
#include "Teko_BlockPreconditionerFactory.hpp"

namespace Teko {
namespace NS {

class LSCPrecondState; // forward declaration

/** \brief Strategy for driving LSCPreconditionerFactory.
  *
  * Strategy for driving the LSCPreconditionerFactory. This
  * class provides all the pieces required by the LSC preconditioner.
  * The intent is that the user can overide them and build
  * there own implementation. Though a fairly substantial implementation
  * is provided in <code>InvLSCStrategy</code>.
  *
  * The basics of this method can be found in
  * 
  * [1] Elman, Howle, Shadid, Silvester, and Tuminaro, "Least Squares Preconditioners
  *     for Stabilized Discretizations of the Navier-Stokes Euqations," SISC-2007.
  *
  * [2] Elman, and Tuminaro, "Boundary Conditions in Approximate Commutator
  *     Preconditioners for the Navier-Stokes Equations," In press (8/2009)?
  *
  * The Least Squares Commuator preconditioner provides a (nearly) Algebraic approximation
  * of the Schur complement of the (Navier-)Stokes system
  *
  * \f$ A = \left[\begin{array}{cc} 
  *        F & B^T \\
  *        B & C
  *     \end{array}\right] \f$
  *
  * The approximation to the Schur complement is
  *
  * \f$ C - B F^{-1} B^T \approx (B \hat{Q}_u^{-1} B^T - \gamma C)^{-1}
  *       (B \hat{Q}_u^{-1} F H B^T+C_I) (B H B^T - \gamma C)^{-1}
  *     + C_O \f$.
  *
  * Where \f$\hat{Q}_u\f$ is typically a diagonal approximation of the mass matrix, 
  * and \f$H\f$ is an appropriate diagonal scaling matrix (see [2] for details). 
  * The scalars \f$\alpha\f$ and \f$\gamma\f$ are chosen to stabilize an unstable 
  * discretization (for the case of \f$C\neq 0\f$). If the system is stable then
  * they can be set to \f$0\f$ (see [1] for more details).
  *
  * In order to approximate \f$A\f$ two decompositions can be chosen, a full LU
  * decomposition and a purely upper triangular version. A full LU decomposition
  * requires that the velocity convection-diffusion operator (\f$F\f$) is inverted
  * twice, while an upper triangular approximation requires only a single inverse.
  *
  * The methods of this strategy provide the different pieces. For instance
  * <code>getInvF</code> provides \f$F^{-1}\f$. Similarly there are calls to get
  * the inverses of \f$B \hat{Q}_u^{-1} B^T - \gamma C\f$,
  * \f$B \hat{Q}_u^{-1} B^T - \gamma C\f$, and \f$\hat{Q}_u^{-1}\f$ as well as
  * the \f$H\f$ operator. All these methods are required by the
  * <code>LSCPreconditionerFactory</code>. Additionally there is a
  * <code>buildState</code> method that is called everytime a preconditiner is
  * (re)constructed. This is to allow for any preprocessing neccessary to be
  * handled.
  *
  * The final set of methods help construct a LSCStrategy object, they are
  * primarily used by the parameter list construction inteface. They are 
  * more advanced and can be ignored by initial implementations of this
  * class.
  */
class LSCStrategy {
public:
   virtual ~LSCStrategy() {}

   /** This informs the strategy object to build the state associated
     * with this operator.
     *
     * \param[in] A The linear operator to be preconditioned by LSC.
     * \param[in] state State object for storying reusable information about
     *                  the operator A.
     */
   virtual void buildState(BlockedLinearOp & A,BlockPreconditionerState & state) const = 0;

   /** Get the inverse of \f$B Q_u^{-1} B^T - \gamma C\f$. 
     *
     * \param[in] A The linear operator to be preconditioned by LSC.
     * \param[in] state State object for storying reusable information about
     *                  the operator A.
     *
     * \returns An (approximate) inverse of \f$B Q_u^{-1} B^T - \gamma C\f$.
     */
   virtual LinearOp getInvBQBt(const BlockedLinearOp & A,BlockPreconditionerState & state) const = 0;

   /** Get the inverse of \f$B H B^T - \gamma C\f$. 
     *
     * \param[in] A The linear operator to be preconditioned by LSC.
     * \param[in] state State object for storying reusable information about
     *                  the operator A.
     *
     * \returns An (approximate) inverse of \f$B H B^T - \gamma C\f$.
     */
   virtual LinearOp getInvBHBt(const BlockedLinearOp & A,BlockPreconditionerState & state) const = 0;

   /** Get the inverse of the \f$F\f$ block.
     *
     * \param[in] A The linear operator to be preconditioned by LSC.
     * \param[in] state State object for storying reusable information about
     *                  the operator A.
     *
     * \returns An (approximate) inverse of \f$F\f$.
     */
   virtual LinearOp getInvF(const BlockedLinearOp & A,BlockPreconditionerState & state) const = 0;

   #if 0
   /** Get the inverse for stabilizing the whole Schur complement approximation.
     *
     * \param[in] A The linear operator to be preconditioned by LSC.
     * \param[in] state State object for storying reusable information about
     *                  the operator A.
     *
     * \returns The operator to stabilize the whole Schur complement (\f$\alpha D^{-1} \f$).
     */
   virtual LinearOp getInvAlphaD(const BlockedLinearOp & A,BlockPreconditionerState & state) const = 0;
   #endif

   /** Get the inverse to stablized stabilizing the Schur complement approximation using
     * a placement on the ``outside''.  That is what is the value for \f$C_O\f$. This quantity
     * may be null.
     *
     * \param[in] A The linear operator to be preconditioned by LSC.
     * \param[in] state State object for storying reusable information about
     *                  the operator A.
     *
     * \returns The operator to stabilize the whole Schur complement (originally \f$\alpha D^{-1} \f$).
     */
   virtual LinearOp getOuterStabilization(const BlockedLinearOp & A,BlockPreconditionerState & state) const = 0;

   /** Get the inverse to stablized stabilizing the Schur complement approximation using
     * a placement on the ``inside''.  That is what is the value for \f$C_I\f$. This quantity
     * may be null.
     *
     * \param[in] A The linear operator to be preconditioned by LSC.
     * \param[in] state State object for storying reusable information about
     *                  the operator A.
     *
     * \returns The operator to stabilize the whole Schur complement.
     */
   virtual LinearOp getInnerStabilization(const BlockedLinearOp & A,BlockPreconditionerState & state) const = 0;

   /** Get the inverse mass matrix.
     *
     * \param[in] A The linear operator to be preconditioned by LSC.
     * \param[in] state State object for storying reusable information about
     *                  the operator A.
     *
     * \returns The inverse of the mass matrix \f$Q_u\f$.
     */
   virtual LinearOp getInvMass(const BlockedLinearOp & A,BlockPreconditionerState & state) const = 0;

   /** Get the \f$H\f$ scaling matrix.
     *
     * \param[in] A The linear operator to be preconditioned by LSC.
     * \param[in] state State object for storying reusable information about
     *                  the operator A.
     *
     * \returns The \f$H\f$ scaling matrix.
     */
   virtual LinearOp getHScaling(const BlockedLinearOp & A,BlockPreconditionerState & state) const = 0;

   /** Should the approximation of the inverse use a full LDU decomposition, or
     * is a upper triangular approximation sufficient.
     *
     * \returns True if the full LDU decomposition should be used, otherwise
     *          only an upper triangular version is used.
     */
   virtual bool useFullLDU() const = 0;

   /** Tell strategy that this operator is supposed to be symmetric.
     * Behavior of LSC is slightly different for non-symmetric case.
     *
     * \param[in] isSymmetric Is this operator symmetric?
     */
   virtual void setSymmetric(bool isSymmetric) = 0;

   //! Initialize from a parameter list
   virtual void initializeFromParameterList(const Teuchos::ParameterList & pl,const InverseLibrary & invLib) {}

   //! For assiting in construction of the preconditioner
   virtual Teuchos::RCP<Teuchos::ParameterList> getRequestedParameters() const { return Teuchos::null;}

   //! For assiting in construction of the preconditioner
   virtual bool updateRequestedParameters(const Teuchos::ParameterList & pl) { return true; }

   //! This method sets the request handler for this object
   void setRequestHandler(const Teuchos::RCP<RequestHandler> & rh)
   { requestHandler_ = rh; }

   //! This method gets the request handler uses by this object
   Teuchos::RCP<RequestHandler> getRequestHandler() const
   { return requestHandler_; }

private:
   Teuchos::RCP<RequestHandler> requestHandler_;

};

} // end namespace NS
} // end namespace Teko

#endif