/usr/include/trilinos/Thyra_TsqrAdaptor.hpp is in libtrilinos-stratimikos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | // @HEADER
// ***********************************************************************
//
// Stratimikos: Thyra-based strategies for linear solvers
// Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef __Thyra_TsqrAdaptor_hpp
#define __Thyra_TsqrAdaptor_hpp
#include <BelosConfigDefs.hpp>
// BelosThyraAdapter.hpp only includes this file if HAVE_BELOS_TSQR is
// defined. Thus, it's OK to include TSQR header files here.
#include <Tsqr_NodeTsqrFactory.hpp> // create intranode TSQR object
#include <Tsqr.hpp> // full (internode + intranode) TSQR
#include <Tsqr_DistTsqr.hpp> // internode TSQR
// Subclass of TSQR::MessengerBase, implemented using Teuchos
// communicator template helper functions
#include <Tsqr_TeuchosMessenger.hpp>
#include <Kokkos_DefaultNode.hpp>
//#include <Thyra_DetachedMultiVectorView.hpp>
#include <Thyra_MultiVectorBase.hpp>
//#include <Thyra_MultiVectorStdOps.hpp>
#include <Thyra_SpmdVectorSpaceBase.hpp>
#ifdef HAVE_MPI
# include <Teuchos_DefaultMpiComm.hpp>
#endif // HAVE_MPI
#include <Teuchos_DefaultSerialComm.hpp>
#include <Teuchos_ParameterListAcceptorDefaultBase.hpp>
#include <stdexcept>
namespace Thyra {
/// \class TsqrAdaptor
/// \brief Stub adaptor from Thyra::MultiVectorBase to TSQR
///
/// TSQR (Tall Skinny QR factorization) is an orthogonalization
/// kernel that is as accurate as Householder QR, yet requires only
/// \f$2 \log P\f$ messages between $P$ MPI processes, independently
/// of the number of columns in the multivector.
///
/// TSQR works independently of the particular multivector
/// implementation, and interfaces to the latter via an adaptor
/// class. This class is the adaptor class for \c MultiVectorBase.
/// It templates on the MultiVector (MV) type so that it can pick up
/// that class' typedefs. In particular, TSQR chooses its intranode
/// implementation based on the Kokkos Node type of the multivector.
///
/// \warning This is a stub adaptor that just placates the compiler
/// and does nothing. It's not hard to implement a Thyra adaptor,
/// but in order for the adaptor to be efficient, it requires
/// special cases for extracting the actual multivector
/// implementation (e.g., Epetra_MultiVector or
/// Tpetra::MultiVector) out of the Thyra wrapper.
template<class Scalar>
class TsqrAdaptor : public Teuchos::ParameterListAcceptorDefaultBase {
public:
typedef Thyra::MultiVectorBase<Scalar> MV;
typedef Scalar scalar_type;
typedef int ordinal_type; // MultiVectorBase really does use int for this
typedef KokkosClassic::DefaultNode::DefaultNodeType node_type; // FIXME (mfh 18 Jun 2013) Would be better to defer to the MV subclass
typedef Teuchos::SerialDenseMatrix<ordinal_type, scalar_type> dense_matrix_type;
typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;
private:
typedef TSQR::NodeTsqrFactory<node_type, scalar_type, ordinal_type> node_tsqr_factory_type;
typedef typename node_tsqr_factory_type::node_tsqr_type node_tsqr_type;
typedef TSQR::DistTsqr<ordinal_type, scalar_type> dist_tsqr_type;
typedef TSQR::Tsqr<ordinal_type, scalar_type, node_tsqr_type> tsqr_type;
public:
/// \brief Constructor (that accepts a parameter list).
///
/// \param plist [in] List of parameters for configuring TSQR.
/// The specific parameter keys that are read depend on the TSQR
/// implementation. For details, call \c getValidParameters()
/// and examine the documentation embedded therein.
TsqrAdaptor (const Teuchos::RCP<Teuchos::ParameterList>& plist) :
nodeTsqr_ (new node_tsqr_type),
distTsqr_ (new dist_tsqr_type),
tsqr_ (new tsqr_type (nodeTsqr_, distTsqr_)),
ready_ (false)
{
throw std::logic_error ("Thyra adaptor for TSQR not implemented");
}
//! Constructor (that uses default parameters).
TsqrAdaptor () :
nodeTsqr_ (new node_tsqr_type),
distTsqr_ (new dist_tsqr_type),
tsqr_ (new tsqr_type (nodeTsqr_, distTsqr_)),
ready_ (false)
{
throw std::logic_error ("Thyra adaptor for TSQR not implemented");
}
Teuchos::RCP<const Teuchos::ParameterList>
getValidParameters () const
{
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::ParameterList;
using Teuchos::parameterList;
if (defaultParams_.is_null()) {
RCP<ParameterList> params = parameterList ("TSQR implementation");
params->set ("NodeTsqr", *(nodeTsqr_->getValidParameters ()));
params->set ("DistTsqr", *(distTsqr_->getValidParameters ()));
defaultParams_ = params;
}
return defaultParams_;
}
void
setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& plist)
{
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::RCP;
using Teuchos::sublist;
RCP<ParameterList> params = plist.is_null() ?
parameterList (*getValidParameters ()) : plist;
nodeTsqr_->setParameterList (sublist (params, "NodeTsqr"));
distTsqr_->setParameterList (sublist (params, "DistTsqr"));
this->setMyParamList (params);
}
/// \brief Compute QR factorization [Q,R] = qr(A,0).
///
/// \param A [in/out] On input: the multivector to factor.
/// Overwritten with garbage on output.
///
/// \param Q [out] On output: the (explicitly stored) Q factor in
/// the QR factorization of the (input) multivector A.
///
/// \param R [out] On output: the R factor in the QR factorization
/// of the (input) multivector A.
///
/// \param forceNonnegativeDiagonal [in] If true, then (if
/// necessary) do extra work (modifying both the Q and R
/// factors) in order to force the R factor to have a
/// nonnegative diagonal.
///
/// \warning Currently, this method only works if A and Q have the
/// same communicator and row distribution ("map," in Petra
/// terms) as those of the multivector given to this TsqrAdaptor
/// instance's constructor. Otherwise, the result of this
/// method is undefined.
void
factorExplicit (MV& A,
MV& Q,
dense_matrix_type& R,
const bool forceNonnegativeDiagonal=false)
{
typedef KokkosClassic::MultiVector<scalar_type, node_type> KMV;
prepareTsqr (Q); // Finish initializing TSQR.
KMV A_view = getNonConstView (A);
KMV Q_view = getNonConstView (Q);
tsqr_->factorExplicit (A_view, Q_view, R, false,
forceNonnegativeDiagonal);
}
/// \brief Rank-revealing decomposition
///
/// Using the R factor and explicit Q factor from
/// factorExplicit(), compute the singular value decomposition
/// (SVD) of R (\f$R = U \Sigma V^*\f$). If R is full rank (with
/// respect to the given relative tolerance tol), don't change Q
/// or R. Otherwise, compute \f$Q := Q \cdot U\f$ and \f$R :=
/// \Sigma V^*\f$ in place (the latter may be no longer upper
/// triangular).
///
/// \param Q [in/out] On input: explicit Q factor computed by
/// factorExplicit(). (Must be an orthogonal resp. unitary
/// matrix.) On output: If R is of full numerical rank with
/// respect to the tolerance tol, Q is unmodified. Otherwise, Q
/// is updated so that the first rank columns of Q are a basis
/// for the column space of A (the original matrix whose QR
/// factorization was computed by factorExplicit()). The
/// remaining columns of Q are a basis for the null space of A.
///
/// \param R [in/out] On input: ncols by ncols upper triangular
/// matrix with leading dimension ldr >= ncols. On output: if
/// input is full rank, R is unchanged on output. Otherwise, if
/// \f$R = U \Sigma V^*\f$ is the SVD of R, on output R is
/// overwritten with $\Sigma \cdot V^*$. This is also an ncols by
/// ncols matrix, but may not necessarily be upper triangular.
///
/// \param tol [in] Relative tolerance for computing the numerical
/// rank of the matrix R.
///
/// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq ncols\f$.
int
revealRank (MV& Q,
dense_matrix_type& R,
const magnitude_type& tol)
{
typedef KokkosClassic::MultiVector<scalar_type, node_type> KMV;
prepareTsqr (Q); // Finish initializing TSQR.
// FIXME (mfh 18 Oct 2010) Check Teuchos::Comm<int> object in Q
// to make sure it is the same communicator as the one we are
// using in our dist_tsqr_type implementation.
KMV Q_view = getNonConstView (Q);
return tsqr_->revealRank (Q_view, R, tol, false);
}
private:
//! Kokkos Node instance.
Teuchos::RCP<node_type> node_;
//! The intranode TSQR implementation instance.
Teuchos::RCP<node_tsqr_type> nodeTsqr_;
//! The internode TSQR implementation instance.
Teuchos::RCP<dist_tsqr_type> distTsqr_;
//! The (full) TSQR implementation instance.
Teuchos::RCP<tsqr_type> tsqr_;
//! Default parameter list. Initialized by \c getValidParameters().
mutable Teuchos::RCP<const Teuchos::ParameterList> defaultParams_;
//! Whether TSQR has been fully initialized.
bool ready_;
/// \brief Attempt to get a communicator out of the given multivector.
///
/// This only works if the multivector's range (VectorSpaceBase)
/// is actually an SpmdVectorSpaceBase object, and if that
/// object's Comm is either an MpiComm (in an MPI build) or a
/// SerialComm (in either an MPI build or a no-MPI build).
///
/// If the attempt does <i>not</i> succeed, this method throws
/// std::runtime_error. If it <i>does</i> succeed, it returns the
/// (suitably wrapped) communicator.
static Teuchos::RCP<const Teuchos::Comm<int> >
getComm (const MV& X)
{
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcp_dynamic_cast;
using Teuchos::rcp_implicit_cast;
typedef Thyra::VectorSpaceBase<Scalar> space_base_type;
typedef Thyra::SpmdVectorSpaceBase<Scalar> space_type;
// Thyra stores the communicator in the "vector space," but only
// if that vector space is an SpmdVectorSpaceBase.
RCP<const space_base_type> rangeBase = X.range ();
TEUCHOS_TEST_FOR_EXCEPTION(rangeBase.is_null (), std::runtime_error, "X.range() is null.");
RCP<const space_type> range = rcp_dynamic_cast<const space_type> (rangeBase);
TEUCHOS_TEST_FOR_EXCEPTION(range.is_null (), std::runtime_error, "X.range() is not an SpmdVectorSpaceBase.");
// Thyra annoyingly uses a (possibly) different template
// parameter for its Teuchos::Comm than everybody else. The
// least hackish way to work around this is to convert the Comm
// to one of two subclasses (MpiComm or SerialComm). If it's an
// MpiComm, we can extract the RCP<const OpaqueWrapper<MPI_Comm>
// > and make a new MpiComm<int> from it. If it's a SerialComm,
// just create a new SerialComm<int>. If it's neither of those,
// then I have no idea what to do. Note that MpiComm is only
// defined if HAVE_MPI is defined.
RCP<const Teuchos::Comm<Thyra::Ordinal> > thyraComm = range->getComm ();
#ifdef HAVE_MPI
RCP<const Teuchos::MpiComm<Thyra::Ordinal> > thyraMpiComm =
rcp_dynamic_cast<const Teuchos::MpiComm<Thyra::Ordinal> > (thyraComm);
if (thyraMpiComm.is_null ()) {
RCP<const Teuchos::SerialComm<Thyra::Ordinal> > thyraSerialComm =
rcp_dynamic_cast<const Teuchos::SerialComm<Thyra::Ordinal> > (thyraComm);
TEUCHOS_TEST_FOR_EXCEPTION(
thyraSerialComm.is_null (), std::runtime_error,
"Thyra's communicator is neither an MpiComm nor a SerialComm. "
"Sorry, I have no idea what to do with it in that case.");
// It's a SerialComm. Make a SerialComm of our own.
// SerialComm instances are all the same, so there's no need
// to keep the original one.
return rcp_implicit_cast<const Teuchos::Comm<int> > (rcp (new Teuchos::SerialComm<int>));
}
else { // Yippie, we have an MpiComm.
RCP<const Teuchos::OpaqueWrapper<MPI_Comm> > rawMpiComm = thyraMpiComm->getRawMpiComm ();
// NOTE (mfh 18 Jun 2013) Since the error handler is attached
// to the MPI_Comm, not to the Teuchos widget, we don't have
// to set the error handler again on the new MpiComm object.
return rcp_implicit_cast<const Teuchos::Comm<int> > (rcp (new Teuchos::MpiComm<int> (rawMpiComm)));
}
#else // NOT HAVE_MPI
// Either it's a SerialComm or I don't know what to do with it.
RCP<const Teuchos::SerialComm<Thyra::Ordinal> > thyraSerialComm =
rcp_dynamic_cast<const Teuchos::SerialComm<Thyra::Ordinal> > (thyraComm);
TEUCHOS_TEST_FOR_EXCEPTION(
thyraSerialComm.is_null (), std::runtime_error,
"Thyra's communicator is not a SerialComm, and MPI is not enabled, so "
"it can't be an MpiComm either. That means it must be some other "
"subclass of Comm, about which I don't know. "
"Sorry, I have no idea what to do with it in that case.");
// It's a SerialComm. Make a SerialComm of our own.
// SerialComm instances are all the same, so there's no need
// to keep the original one.
return rcp_implicit_cast<const Teuchos::Comm<int> > (rcp (new Teuchos::SerialComm<int>));
#endif // HAVE_MPI
}
/// \brief Finish intranode TSQR initialization.
///
/// \note It's OK to call this method more than once; it is idempotent.
void
prepareNodeTsqr (const MV& X)
{
(void) X; // silence compiler warning about unused argument
if (node_.is_null ()) { // Create Kokkos Node instance on demand
node_ = Teuchos::rcp (new node_type);
}
node_tsqr_factory_type::prepareNodeTsqr (nodeTsqr_, node_);
}
/// \brief Finish internode TSQR initialization.
///
/// \param X [in] A valid Thyra::MultiVectorBase instance whose
/// communicator wrapper we will use to prepare TSQR.
///
/// \note It's OK to call this method more than once; it is idempotent.
///
/// This method may fail if MV is not the right kind of
/// multivector, that is, if it does not have a communicator or if
/// we don't know how to extract a communicator from it. If it
/// fails in this way, it will throw std::runtime_error.
void
prepareDistTsqr (const MV& X)
{
using Teuchos::RCP;
using Teuchos::rcp_implicit_cast;
typedef TSQR::TeuchosMessenger<scalar_type> mess_type;
typedef TSQR::MessengerBase<scalar_type> base_mess_type;
RCP<const Teuchos::Comm<int> > comm = getComm (X);
RCP<mess_type> mess (new mess_type (comm));
RCP<base_mess_type> messBase = rcp_implicit_cast<base_mess_type> (mess);
distTsqr_->init (messBase);
}
/// \brief Finish TSQR initialization.
///
/// The intranode and internode TSQR implementations both have a
/// two-stage initialization procedure: first, setting parameters
/// (which may happen at construction), and second, getting
/// information they need from the multivector input in order to
/// finish initialization. For intranode TSQR, this may include
/// the Kokkos Node instance; for internode TSQR, this includes
/// the communicator. The second stage of initialization happens
/// in this class' computational routines; all of those routines
/// accept one or more multivector inputs, which this method can
/// use for finishing initialization. Thus, users of this class
/// never need to see the two-stage initialization.
///
/// \param X [in] Multivector object, used only to access the
/// underlying communicator object (in this case, the
/// Teuchos::Comm<int>) and (possibly) the Kokkos Node instance.
/// All multivector objects used with this adapter must have the
/// same communicator and Kokkos Node instance (if applicable).
void
prepareTsqr (const MV& X)
{
if (! ready_) {
prepareDistTsqr (X);
prepareNodeTsqr (X);
ready_ = true;
}
}
/// \brief Extract a nonconstant view of X's data.
///
/// TSQR represents the local (to each MPI process) part of a
/// multivector as a KokkosClassic::MultiVector (KMV), which gives a
/// nonconstant view of the original multivector's data. This
/// class method tells TSQR how to get the KMV from the input
/// multivector. The KMV is not a persistent view of the data;
/// its scope is contained within the scope of the multivector.
///
/// \warning TSQR does not currently support multivectors with
/// nonconstant stride. If A has nonconstant stride, this
/// method will throw an exception.
KokkosClassic::MultiVector<scalar_type, node_type>
getNonConstView (MV& X)
{
// TODO (mfh 18 Jun 2013) Check whether X is constant stride.
// TODO (mfh 18 Jun 2013) Extract a view of X's data.
return KokkosClassic::MultiVector<scalar_type, node_type> (node_);
// TODO (mfh 18 Jun 2013) Here is the start of code to extract a
// nonconstant view of X's data.
// KokkosClassic::MultiVector<scalar_type, node_type> kmv (node);
// const size_t numRows = ???;
// const size_t numCols = ???;
// const size_t stride = ???;
// kmv.initializeValues (numRows, numCols, values, stride);
// return kmv;
}
};
} // namespace Tpetra
#endif // __Thyra_TsqrAdaptor_hpp
|