/usr/include/trilinos/Stokhos_PecosOneDOrthogPolyBasis.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | // $Id$
// $Source$
// @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_PECOS_ONED_ORTHOG_POLY_BASIS_HPP
#define STOKHOS_PECOS_ONED_ORTHOG_POLY_BASIS_HPP
#include "Stokhos_ConfigDefs.h"
#ifdef HAVE_STOKHOS_DAKOTA
#include "Stokhos_OneDOrthogPolyBasis.hpp"
#include "TriKota_ConfigDefs.hpp"
#include "OrthogonalPolynomial.hpp"
namespace Stokhos {
/*!
* \brief Implementation of OneDOrthogPolyBasis via Pecos.
*/
template <typename ordinal_type, typename value_type>
class PecosOneDOrthogPolyBasis :
public OneDOrthogPolyBasis<ordinal_type, value_type> {
public:
//! Constructor
/*!
* \c name is the name for the basis that will be displayed when
* printing the basis and \c p is the order of the basis.
*/
PecosOneDOrthogPolyBasis(
const Teuchos::RCP<Pecos::OrthogonalPolynomial>& pecosPoly,
const std::string& name, ordinal_type p);
//! Destructor
virtual ~PecosOneDOrthogPolyBasis();
//! \name Implementation of Stokhos::OneDOrthogPolyBasis methods
//@{
//! Return order of basis (largest monomial degree \f$P\f$).
virtual ordinal_type order() const;
//! Return total size of basis (given by order() + 1).
virtual ordinal_type size() const;
//! Return array storing norm-squared of each basis polynomial
/*!
* Entry \f$l\f$ of returned array is given by \f$\langle\psi_l^2\rangle\f$
* for \f$l=0,\dots,P\f$ where \f$P\f$ is given by order().
*/
virtual const Teuchos::Array<value_type>& norm_squared() const;
//! Return norm squared of basis polynomial \c i.
virtual const value_type& norm_squared(ordinal_type i) const;
//! Compute triple product tensor
/*!
* The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
* \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
* represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
* \f$P\f$ is size()-1 and \f$k=0,\dots,p\f$ where \f$p\f$
* is the supplied \c order.
*
* This method is implemented by computing \f$C_{ijk}\f$ using Gaussian
* quadrature.
*/
virtual Teuchos::RCP< Stokhos::Dense3Tensor<ordinal_type, value_type> >
computeTripleProductTensor() const;
virtual
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
computeSparseTripleProductTensor(ordinal_type order) const;
//! Compute derivative double product tensor
/*!
* The \f$(i,j)\f$ entry of the tensor \f$B_{ij}\f$ is given by
* \f$B_{ij} = \langle\psi_i'\psi_j\rangle\f$ where \f$\psi_l\f$
* represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
* \f$P\f$ is the order of the basis.
*
* This method is implemented by computing \f$B_{ij}\f$ using Gaussian
* quadrature.
*/
virtual Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type, value_type> > computeDerivDoubleProductTensor() const;
//! Evaluate each basis polynomial at given point \c point
/*!
* Size of returned array is given by size(), and coefficients are
* ordered from order 0 up to order order().
*/
virtual void evaluateBases(const value_type& point,
Teuchos::Array<value_type>& basis_pts) const;
/*!
* \brief Evaluate basis polynomial given by order \c order at given
* point \c point.
*/
virtual value_type evaluate(const value_type& point,
ordinal_type order) const;
//! Print basis to stream \c os
virtual void print(std::ostream& os) const;
//! Return string name of basis
virtual const std::string& getName() const;
/*!
* \brief Compute quadrature points, weights, and values of
* basis polynomials at given set of points \c points.
*/
/*!
* \c quad_order specifies the order to which the quadrature should be
* accurate, not the number of quadrature points. The number of points
* is given by (\c quad_order + 1) / 2. Note however the passed arrays
* do NOT need to be sized correctly on input as they will be resized
* appropriately.
*
* The quadrature points and weights are computed from the three-term
* recurrence by solving a tri-diagional symmetric eigenvalue problem
* (see Gene H. Golub and John H. Welsch, "Calculation of Gauss Quadrature
* Rules", Mathematics of Computation, Vol. 23, No. 106 (Apr., 1969),
* pp. 221-230).
*/
virtual void
getQuadPoints(ordinal_type quad_order,
Teuchos::Array<value_type>& points,
Teuchos::Array<value_type>& weights,
Teuchos::Array< Teuchos::Array<value_type> >& values) const;
/*!
* Return polynomial degree of exactness for a given number of quadrature
* points.
*/
virtual ordinal_type quadDegreeOfExactness(ordinal_type n) const;
//! Evaluate coefficient growth rule for Smolyak-type bases
virtual ordinal_type coefficientGrowth(ordinal_type n) const;
//! Evaluate point growth rule for Smolyak-type bases
virtual ordinal_type pointGrowth(ordinal_type n) const;
//! Function pointer needed for level_to_order mappings
typedef typename OneDOrthogPolyBasis<ordinal_type,value_type>::LevelToOrderFnPtr LevelToOrderFnPtr;
//! Get sparse grid level_to_order mapping function
/*!
* Predefined functions are:
* webbur::level_to_order_linear_wn Symmetric Gaussian linear growth
* webbur::level_to_order_linear_nn Asymmetric Gaussian linear growth
* webbur::level_to_order_exp_cc Clenshaw-Curtis exponential growth
* webbur::level_to_order_exp_gp Gauss-Patterson exponential growth
* webbur::level_to_order_exp_hgk Genz-Keister exponential growth
* webbur::level_to_order_exp_f2 Fejer-2 exponential growth
*/
virtual LevelToOrderFnPtr getSparseGridGrowthRule() const {
return sparse_grid_growth_rule; }
//! Set sparse grid rule
virtual void setSparseGridGrowthRule(LevelToOrderFnPtr ptr) {
sparse_grid_growth_rule = ptr; }
/*!
* \brief Clone this object with the option of building a higher order
* basis.
*/
/*!
* This method is following the Prototype pattern (see Design Pattern's textbook).
* The slight variation is that it allows the order of the polynomial to be modified,
* otherwise an exact copy is formed. The use case for this is creating basis functions
* for column indices in a spatially varying adaptive refinement context.
*/
virtual Teuchos::RCP<OneDOrthogPolyBasis<ordinal_type,value_type> > cloneWithOrder(ordinal_type p) const;
//@}
//! Evaluate basis polynomials and their derivatives at given point \c point
virtual void evaluateBasesAndDerivatives(const value_type& point,
Teuchos::Array<value_type>& vals,
Teuchos::Array<value_type>& derivs) const;
protected:
//! Copy constructor with specified order
PecosOneDOrthogPolyBasis(ordinal_type p,
const PecosOneDOrthogPolyBasis& basis);
private:
// Prohibit copying
PecosOneDOrthogPolyBasis(const PecosOneDOrthogPolyBasis&);
// Prohibit Assignment
PecosOneDOrthogPolyBasis& operator=(const PecosOneDOrthogPolyBasis& b);
protected:
//! Pointer to Pecos orthgonal polynomial object
Teuchos::RCP<Pecos::OrthogonalPolynomial> pecosPoly;
//! Name of basis
std::string name;
//! Order of basis
ordinal_type p;
//! Sparse grid growth rule (as determined by Pecos)
LevelToOrderFnPtr sparse_grid_growth_rule;
//! Norms
Teuchos::Array<value_type> norms;
}; // class PecosOneDOrthogPolyBasis
} // Namespace Stokhos
// Include template definitions
#include "Stokhos_PecosOneDOrthogPolyBasisImp.hpp"
#endif // HAVE_STOKHOS_DAKOTA
#endif // STOKHOS_PECOS_ONED_ORTHOG_POLY_BASIS_HPP
|