/usr/include/trilinos/Stokhos_OneDOrthogPolyBasis.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_ONEDORTHOGPOLYBASIS_HPP
#define STOKHOS_ONEDORTHOGPOLYBASIS_HPP
#include <ostream>
#include <string>
#include "Stokhos_Dense3Tensor.hpp"
#include "Stokhos_Sparse3Tensor.hpp"
#include "Teuchos_Array.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Stokhos_ConfigDefs.h"
#ifdef HAVE_STOKHOS_DAKOTA
#include "sandia_rules.hpp"
#endif
//! Top-level namespace for Stokhos classes and functions.
namespace Stokhos {
//! Abstract base class for 1-D orthogonal polynomials.
/*!
* This class provides an abstract interface for univariate orthogonal
* polynomials. Orthogonality is defined by the inner product
* \f[
* (f,g) = \langle fg \rangle =
* \int_{-\infty}^{\infty} f(x)g(x) \rho(x) dx
* \f]
* where \f$\rho\f$ is the density function of the measure associated with
* the orthogonal polynomials.
* See Stokhos::RecurrenceBasis for a general implementation
* of this interface based on the three-term recurrence satisfied by
* these polynomials. Multivariate polynomials can be formed from
* a collection of univariate polynomials through tensor products (see
* Stokhos::CompletePolynomialBasis).
*
* Like most classes in Stokhos, the class is templated on the ordinal
* and value types. Typically \c ordinal_type = \c int and \c value_type
* = \c double.
*/
template <typename ordinal_type, typename value_type>
class OneDOrthogPolyBasis {
public:
//! Default constructor
OneDOrthogPolyBasis() {};
//! Destructor
virtual ~OneDOrthogPolyBasis() {};
//! Return order of basis (largest monomial degree \f$P\f$).
virtual ordinal_type order() const = 0;
//! Return total size of basis (given by order() + 1).
virtual ordinal_type size() const = 0;
//! Return array storing norm-squared of each basis polynomial
/*!
* Entry \f$l\f$ of returned array is given by \f$\langle\psi_l^2\rangle\f$
* for \f$l=0,\dots,P\f$ where \f$P\f$ is given by order().
*/
virtual const Teuchos::Array<value_type>& norm_squared() const = 0;
//! Return norm squared of basis polynomial \c i.
virtual const value_type& norm_squared(ordinal_type i) const = 0;
//! Compute triple product tensor
/*!
* The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
* \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
* represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
* \f$P\f$ is size()-1 and \f$k=0,\dots,p\f$ where \f$p\f$
* is the supplied \c order.
*/
virtual
Teuchos::RCP< Stokhos::Dense3Tensor<ordinal_type, value_type> >
computeTripleProductTensor() const = 0;
//! Compute triple product tensor
/*!
* The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
* \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
* represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
* \f$P\f$ is size()-1 and \f$k=0,\dots,p\f$ where \f$p\f$
* is the supplied \c order.
*/
virtual
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
computeSparseTripleProductTensor(ordinal_type order) const = 0;
//! Compute derivative double product tensor
/*!
* The \f$(i,j)\f$ entry of the tensor \f$B_{ij}\f$ is given by
* \f$B_{ij} = \langle\psi_i'\psi_j\rangle\f$ where \f$\psi_l\f$
* represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
* \f$P\f$ is the order of the basis.
*/
virtual
Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type, value_type> >
computeDerivDoubleProductTensor() const = 0;
//! Evaluate each basis polynomial at given point \c point
/*!
* Size of returned array is given by size(), and coefficients are
* ordered from order 0 up to order order().
*/
virtual void evaluateBases(const value_type& point,
Teuchos::Array<value_type>& basis_pts) const = 0;
/*!
* \brief Evaluate basis polynomial given by order \c order at given
* point \c point.
*/
virtual value_type evaluate(const value_type& point,
ordinal_type order) const = 0;
//! Print basis to stream \c os
virtual void print(std::ostream& os) const {};
//! Return string name of basis
virtual const std::string& getName() const = 0;
/*!
* \brief Compute quadrature points, weights, and values of
* basis polynomials at given set of points \c points.
*/
/*!
* \c quad_order specifies the order to which the quadrature should be
* accurate, not the number of quadrature points. The number of points
* is given by (\c quad_order + 1) / 2. Note however the passed arrays
* do NOT need to be sized correctly on input as they will be resized
* appropriately.
*/
virtual void
getQuadPoints(ordinal_type quad_order,
Teuchos::Array<value_type>& points,
Teuchos::Array<value_type>& weights,
Teuchos::Array< Teuchos::Array<value_type> >& values) const = 0;
/*!
* Return polynomial degree of exactness for a given number of quadrature
* points.
*/
virtual ordinal_type quadDegreeOfExactness(ordinal_type n) const = 0;
/*!
* \brief Clone this object with the option of building a higher order
* basis.
*/
/*!
* This method is following the Prototype pattern (see Design Pattern's textbook).
* The slight variation is that it allows the order of the polynomial to be modified,
* otherwise an exact copy is formed. The use case for this is creating basis functions
* for column indices in a spatially varying adaptive refinement context.
*/
virtual Teuchos::RCP<OneDOrthogPolyBasis<ordinal_type,value_type> > cloneWithOrder(ordinal_type p) const = 0;
//! Evaluate coefficient growth rule for Smolyak-type bases
virtual ordinal_type coefficientGrowth(ordinal_type n) const = 0;
//! Evaluate point growth rule for Smolyak-type bases
virtual ordinal_type pointGrowth(ordinal_type n) const = 0;
//! Function pointer needed for level_to_order mappings
typedef int ( *LevelToOrderFnPtr ) ( int level, int growth );
//! Get sparse grid level_to_order mapping function
/*!
* Predefined functions are:
* webbur::level_to_order_linear_wn Symmetric Gaussian linear growth
* webbur::level_to_order_linear_nn Asymmetric Gaussian linear growth
* webbur::level_to_order_exp_cc Clenshaw-Curtis exponential growth
* webbur::level_to_order_exp_gp Gauss-Patterson exponential growth
* webbur::level_to_order_exp_hgk Genz-Keister exponential growth
* webbur::level_to_order_exp_f2 Fejer-2 exponential growth
*/
virtual LevelToOrderFnPtr getSparseGridGrowthRule() const = 0;
//! Set sparse grid rule
virtual void setSparseGridGrowthRule(LevelToOrderFnPtr ptr) = 0;
private:
// Prohibit copying
OneDOrthogPolyBasis(const OneDOrthogPolyBasis&);
// Prohibit Assignment
OneDOrthogPolyBasis& operator=(const OneDOrthogPolyBasis& b);
}; // class OrthogPolyBasis
//! Print basis to stream \c os.
template <typename ordinal_type, typename value_type>
std::ostream&
operator << (std::ostream& os,
const OneDOrthogPolyBasis<ordinal_type, value_type>& b) {
b.print(os);
return os;
}
} // Namespace Stokhos
#endif
|