This file is indexed.

/usr/include/trilinos/Stokhos_OneDOrthogPolyBasis.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_ONEDORTHOGPOLYBASIS_HPP
#define STOKHOS_ONEDORTHOGPOLYBASIS_HPP

#include <ostream>
#include <string>
#include "Stokhos_Dense3Tensor.hpp"
#include "Stokhos_Sparse3Tensor.hpp"
#include "Teuchos_Array.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"

#include "Stokhos_ConfigDefs.h"
#ifdef HAVE_STOKHOS_DAKOTA
#include "sandia_rules.hpp"
#endif

//! Top-level namespace for Stokhos classes and functions.
namespace Stokhos {

  //! Abstract base class for 1-D orthogonal polynomials.
  /*!
   * This class provides an abstract interface for univariate orthogonal
   * polynomials.  Orthogonality is defined by the inner product
   * \f[
   *      (f,g) = \langle fg \rangle =
   *              \int_{-\infty}^{\infty} f(x)g(x) \rho(x) dx
   * \f]
   * where \f$\rho\f$ is the density function of the measure associated with
   * the orthogonal polynomials.
   * See Stokhos::RecurrenceBasis for a general implementation
   * of this interface based on the three-term recurrence satisfied by
   * these polynomials.  Multivariate polynomials can be formed from
   * a collection of univariate polynomials through tensor products (see
   * Stokhos::CompletePolynomialBasis).
   *
   * Like most classes in Stokhos, the class is templated on the ordinal
   * and value types.  Typically \c ordinal_type = \c int and \c value_type
   * = \c double.
   */
  template <typename ordinal_type, typename value_type>
  class OneDOrthogPolyBasis {
  public:

    //! Default constructor
    OneDOrthogPolyBasis() {};

    //! Destructor
    virtual ~OneDOrthogPolyBasis() {};

    //! Return order of basis (largest monomial degree \f$P\f$).
    virtual ordinal_type order() const = 0;

    //! Return total size of basis (given by order() + 1).
    virtual ordinal_type size() const = 0;

    //! Return array storing norm-squared of each basis polynomial
    /*!
     * Entry \f$l\f$ of returned array is given by \f$\langle\psi_l^2\rangle\f$
     * for \f$l=0,\dots,P\f$ where \f$P\f$ is given by order().
     */
    virtual const Teuchos::Array<value_type>& norm_squared() const = 0;

    //! Return norm squared of basis polynomial \c i.
    virtual const value_type& norm_squared(ordinal_type i) const = 0;

    //! Compute triple product tensor
    /*!
     * The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
     * \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
     * represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
     * \f$P\f$ is size()-1 and \f$k=0,\dots,p\f$ where \f$p\f$
     * is the supplied \c order.
     */
    virtual
    Teuchos::RCP< Stokhos::Dense3Tensor<ordinal_type, value_type> >
    computeTripleProductTensor() const = 0;

    //! Compute triple product tensor
    /*!
     * The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
     * \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
     * represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
     * \f$P\f$ is size()-1 and \f$k=0,\dots,p\f$ where \f$p\f$
     * is the supplied \c order.
     */
    virtual
    Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
    computeSparseTripleProductTensor(ordinal_type order) const = 0;

    //! Compute derivative double product tensor
    /*!
     * The \f$(i,j)\f$ entry of the tensor \f$B_{ij}\f$ is given by
     * \f$B_{ij} = \langle\psi_i'\psi_j\rangle\f$ where \f$\psi_l\f$
     * represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
     * \f$P\f$ is the order of the basis.
     */
    virtual
    Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type, value_type> >
    computeDerivDoubleProductTensor() const = 0;

    //! Evaluate each basis polynomial at given point \c point
    /*!
     * Size of returned array is given by size(), and coefficients are
     * ordered from order 0 up to order order().
     */
    virtual void evaluateBases(const value_type& point,
                               Teuchos::Array<value_type>& basis_pts) const = 0;

    /*!
     * \brief Evaluate basis polynomial given by order \c order at given
     * point \c point.
     */
    virtual value_type evaluate(const value_type& point,
                                ordinal_type order) const = 0;

    //! Print basis to stream \c os
    virtual void print(std::ostream& os) const {};

    //! Return string name of basis
    virtual const std::string& getName() const = 0;

    /*!
     * \brief Compute quadrature points, weights, and values of
     * basis polynomials at given set of points \c points.
     */
    /*!
     * \c quad_order specifies the order to which the quadrature should be
     * accurate, not the number of quadrature points.  The number of points
     * is given by (\c quad_order + 1) / 2.   Note however the passed arrays
     * do NOT need to be sized correctly on input as they will be resized
     * appropriately.
     */
    virtual void
    getQuadPoints(ordinal_type quad_order,
                  Teuchos::Array<value_type>& points,
                  Teuchos::Array<value_type>& weights,
                  Teuchos::Array< Teuchos::Array<value_type> >& values) const = 0;

    /*!
     * Return polynomial degree of exactness for a given number of quadrature
     * points.
     */
    virtual ordinal_type quadDegreeOfExactness(ordinal_type n) const = 0;

    /*!
     * \brief Clone this object with the option of building a higher order
     * basis.
     */
    /*!
     * This method is following the Prototype pattern (see Design Pattern's textbook).
     * The slight variation is that it allows the order of the polynomial to be modified,
     * otherwise an exact copy is formed. The use case for this is creating basis functions
     * for column indices in a spatially varying adaptive refinement context.
     */
    virtual Teuchos::RCP<OneDOrthogPolyBasis<ordinal_type,value_type> > cloneWithOrder(ordinal_type p) const = 0;

    //! Evaluate coefficient growth rule for Smolyak-type bases
    virtual ordinal_type coefficientGrowth(ordinal_type n) const = 0;

    //! Evaluate point growth rule for Smolyak-type bases
    virtual ordinal_type pointGrowth(ordinal_type n) const = 0;

    //! Function pointer needed for level_to_order mappings
    typedef int ( *LevelToOrderFnPtr ) ( int level, int growth );

    //! Get sparse grid level_to_order mapping function
    /*!
     * Predefined functions are:
     *  webbur::level_to_order_linear_wn Symmetric Gaussian linear growth
     *  webbur::level_to_order_linear_nn Asymmetric Gaussian linear growth
     *  webbur::level_to_order_exp_cc    Clenshaw-Curtis exponential growth
     *  webbur::level_to_order_exp_gp    Gauss-Patterson exponential growth
     *  webbur::level_to_order_exp_hgk   Genz-Keister exponential growth
     *  webbur::level_to_order_exp_f2    Fejer-2 exponential growth
     */
    virtual LevelToOrderFnPtr getSparseGridGrowthRule() const = 0;

    //! Set sparse grid rule
    virtual void setSparseGridGrowthRule(LevelToOrderFnPtr ptr) = 0;

  private:

    // Prohibit copying
    OneDOrthogPolyBasis(const OneDOrthogPolyBasis&);

    // Prohibit Assignment
    OneDOrthogPolyBasis& operator=(const OneDOrthogPolyBasis& b);


  }; // class OrthogPolyBasis

  //! Print basis to stream \c os.
  template <typename ordinal_type, typename value_type>
  std::ostream&
  operator << (std::ostream& os,
               const OneDOrthogPolyBasis<ordinal_type, value_type>& b) {
    b.print(os);
    return os;
  }

} // Namespace Stokhos

#endif