This file is indexed.

/usr/include/trilinos/Stokhos_MonomialProjGramSchmidtPCEBasis2Imp.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// @HEADER
// ***********************************************************************
// 
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
// 
// ***********************************************************************
// @HEADER

#include "Stokhos_ReducedQuadratureFactory.hpp"
#include "Stokhos_BasisFactory.hpp"
#include "Stokhos_QuadratureFactory.hpp"
#include "Stokhos_CompletePolynomialBasis.hpp"
#include "Stokhos_OrthogonalizationFactory.hpp"

template <typename ordinal_type, typename value_type>
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
MonomialProjGramSchmidtPCEBasis2(
  ordinal_type max_p,
  const Teuchos::Array< Stokhos::OrthogPolyApprox<ordinal_type, value_type> >& pce,
  const Teuchos::RCP<const Stokhos::Quadrature<ordinal_type, value_type> >& quad,
  const Teuchos::ParameterList& params_) :
  name("Monomial Proj Gram Schmidt PCE Basis"),
  params(params_),
  pce_basis(pce[0].basis()),
  pce_sz(pce_basis->size()),
  p(max_p),
  d(pce.size()),
  verbose(params.get("Verbose", false)),
  rank_threshold(params.get("Rank Threshold", 1.0e-12)),
  orthogonalization_method(params.get("Orthogonalization Method", 
				      "Householder"))
{
  // Check for pce's that are constant and don't represent true random
  // dimensions
  Teuchos::Array< Stokhos::OrthogPolyApprox<ordinal_type, value_type> > non_const_pce;
  for (ordinal_type i=0; i<pce.size(); i++) {
    if (pce[i].standard_deviation() > 1.0e-15)
      non_const_pce.push_back(pce[i]);
  }
  d = non_const_pce.size();

  // Build Q, Qp matrices
  SDM A, F;
  sz = buildQ(max_p, rank_threshold, non_const_pce, quad, terms, num_terms, 
	      Qp, A, F);
  Q.reshape(A.numRows(), sz);
  ordinal_type ret = 
    Q.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, A, Qp, 0.0);
  TEUCHOS_ASSERT(ret == 0);

//print_matlab(std::cout << "Qp = ", Qp);

  // Compute reduced quadrature rule
  Teuchos::ParameterList quad_params = params.sublist("Reduced Quadrature");
  Stokhos::ReducedQuadratureFactory<ordinal_type,value_type> quad_factory(
    quad_params);
  SDM Q2;
  if (quad_params.isParameter("Reduced Quadrature Method") &&
      quad_params.get<std::string>("Reduced Quadrature Method") == "Q2") {
    Teuchos::Array< Stokhos::MultiIndex<ordinal_type> > terms2;
    Teuchos::Array<ordinal_type> num_terms2;
    value_type rank_threshold2 = quad_params.get("Q2 Rank Threshold", 
						 rank_threshold);
    SDM Qp2, A2, F2;

    // Build basis, quadrature of order 2*max_p
    Teuchos::Array< Stokhos::OrthogPolyApprox<ordinal_type, value_type> > pce2(non_const_pce);
    Teuchos::RCP<const Stokhos::Quadrature<ordinal_type, value_type> > quad2 = quad;
    Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type,value_type> > basis2 = pce_basis;
    if (2*max_p > pce_basis->order()) {
      
      // Basis
      Teuchos::RCP<const Stokhos::ProductBasis<ordinal_type,value_type> > prod_basis = Teuchos::rcp_dynamic_cast<const Stokhos::ProductBasis<ordinal_type,value_type> >(pce_basis);
      ordinal_type dim = prod_basis->dimension();
      Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<ordinal_type,value_type> > > bases(dim);
      for (ordinal_type i=0; i<dim; i++)
	bases[i] = prod_basis->getCoordinateBases()[i]->cloneWithOrder(2*max_p);
      Teuchos::RCP< const Stokhos::CompletePolynomialBasis<ordinal_type,value_type> > cp_basis2 = Teuchos::rcp(new Stokhos::CompletePolynomialBasis<ordinal_type,value_type>(bases));
      basis2 = cp_basis2;
      //quad_params.sublist("Basis").set("Stochastic Galerkin Basis", basis2);
      std::cout << "built new basis of dimension " << basis2->dimension() 
		<< " and order " << basis2->order() 
		<< " with total size " << basis2->size() << std::endl;

      // Quadrature
      // quad_params.sublist("Quadrature").set("Quadrature Order", 2*max_p);
      // quad2 = 
      // 	Stokhos::QuadratureFactory<ordinal_type,value_type>::create(quad_params);

      quad2 = Teuchos::rcp(new Stokhos::TensorProductQuadrature<ordinal_type,value_type>(cp_basis2));
      std::cout << "built new quadrature with total size " << quad2->size()
      		<< std::endl;

      // Project pce to new basis
      for (ordinal_type i=0; i<d; i++) {
      	pce2[i].reset(basis2); // this keeps lower order coeffs and sets 
      	                       // higher order ones to 0
      }
    }

    // Build Q matrix of order 2*max_p
    ordinal_type sz2 = 
      buildQ(2*max_p, rank_threshold2, pce2, quad2, terms2, num_terms2, 
	     Qp2, A2, F2);
    //print_matlab(std::cout << "Qp2 = ", Qp2);

    // Get quadrature data
    const Teuchos::Array<value_type>& weights = quad->getQuadWeights();
    const Teuchos::Array< Teuchos::Array<value_type> >& points = 
      quad->getQuadPoints(); 
    ordinal_type nqp = weights.size();

    // Original basis at quadrature points -- needed to transform expansions
    // in this basis back to original
    ordinal_type pce_sz2 = basis2->size();
    SDM AA(nqp, pce_sz2);
    Teuchos::Array<value_type> basis_vals(pce_sz2);
    for (ordinal_type i=0; i<nqp; i++) {
      basis2->evaluateBases(points[i], basis_vals);
      for (ordinal_type j=0; j<pce_sz2; j++)
    	AA(i,j) = basis_vals[j];
    }
    Q2.reshape(nqp, sz2);
    ret = Q2.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, AA, Qp2, 0.0);
    TEUCHOS_ASSERT(ret == 0);
    reduced_quad = quad_factory.createReducedQuadrature(Q, Q2, F, weights);

    // // Get quadrature data
    // const Teuchos::Array<value_type>& weights2 = quad2->getQuadWeights();
    // ordinal_type nqp2 = weights2.size();
    // Q2.reshape(nqp2, sz2);
    // ret = Q2.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, A2, Qp2, 0.0);
    // TEUCHOS_ASSERT(ret == 0);
    // reduced_quad = quad_factory.createReducedQuadrature(Q, Q2, F2, weights2);
  } 
  else {
    const Teuchos::Array<value_type>& weights = quad->getQuadWeights();
    reduced_quad = quad_factory.createReducedQuadrature(Q, Q2, F, weights);
  }

  // Basis is orthonormal by construction
  norms.resize(sz, 1.0);
}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
buildQ(
  ordinal_type max_p,
  value_type threshold, 
  const Teuchos::Array< Stokhos::OrthogPolyApprox<ordinal_type, value_type> >& pce,
  const Teuchos::RCP<const Stokhos::Quadrature<ordinal_type, value_type> >& quad,
  Teuchos::Array< Stokhos::MultiIndex<ordinal_type> >& terms_,
  Teuchos::Array<ordinal_type>& num_terms_,
  SDM& Qp_, SDM& A_, SDM& F_)
{
  Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type,value_type> > pce_basis_ = pce[0].basis();
  ordinal_type pce_sz_ = pce_basis_->size();

  // Get quadrature data
  const Teuchos::Array<value_type>& weights = quad->getQuadWeights();
  const Teuchos::Array< Teuchos::Array<value_type> >& points = 
    quad->getQuadPoints(); 
  const Teuchos::Array< Teuchos::Array<value_type> >& basis_values = 
    quad->getBasisAtQuadPoints();
  ordinal_type nqp = weights.size();

  // Original basis at quadrature points -- needed to transform expansions
  // in this basis back to original
  A_.reshape(nqp, pce_sz_);
  for (ordinal_type i=0; i<nqp; i++)
    for (ordinal_type j=0; j<pce_sz_; j++)
      A_(i,j) = basis_values[i][j];

  // Compute norms of each pce for rescaling
  Teuchos::Array<value_type> pce_norms(d, 0.0);
  for (ordinal_type j=0; j<d; j++) {
    for (ordinal_type i=0; i<pce_sz_; i++)
      pce_norms[j] += (pce[j])[i]*(pce[j])[i]*pce_basis_->norm_squared(i);
    pce_norms[j] = std::sqrt(pce_norms[j]);
  }

  // Compute F matrix -- PCEs evaluated at all quadrature points
  // Since F is used in the reduced quadrature below as the quadrature points
  // for this reduced basis, does scaling by the pce_norms mess up the points?
  // No -- F essentially defines the random variables this basis is a function
  // of, and thus they can be scaled in any way we want.  Because we don't 
  // explicitly write the basis in terms of F, the scaling is implicit.
  F_.reshape(nqp, d);
  Teuchos::Array< Teuchos::Array<value_type> > values(nqp);
  for (ordinal_type i=0; i<nqp; i++) 
    for (ordinal_type j=0; j<d; j++)
      F_(i,j) = pce[j].evaluate(points[i], basis_values[i]);

  // Build the reduced basis
  // Compute basis terms -- 2-D array giving powers for each linear index
  ordinal_type max_sz;
  CPBUtils::compute_terms(max_p, d, max_sz, terms_, num_terms_);

  // Compute B matrix -- monomials in F
  // for i=0,...,nqp-1
  //   for j=0,...,sz-1
  //      B(i,j) = F(i,1)^terms_[j][1] * ... * F(i,d)^terms_[j][d]
  // where sz is the total size of a basis up to order p and terms_[j] 
  // is an array of powers for each term in the total-order basis
  SDM B(nqp, max_sz);
  for (ordinal_type i=0; i<nqp; i++) {
    for (ordinal_type j=0; j<max_sz; j++) {
      B(i,j) = 1.0;
      for (ordinal_type k=0; k<d; k++)
	B(i,j) *= std::pow(F_(i,k), terms_[j][k]);
    }
  }

  // Project B into original basis -- should use SPAM for this
  SDM Bp(pce_sz_, max_sz);
  const Teuchos::Array<value_type>& basis_norms = 
    pce_basis_->norm_squared();
  for (ordinal_type i=0; i<pce_sz_; i++) {
    for (ordinal_type j=0; j<max_sz; j++) {
      Bp(i,j) = 0.0;
      for (ordinal_type k=0; k<nqp; k++)
	Bp(i,j) += weights[k]*B(k,j)*A_(k,i);
      Bp(i,j) /= basis_norms[i];
    }
  }

  // Rescale columns of Bp to have unit norm
  for (ordinal_type j=0; j<max_sz; j++) {
    value_type nrm = 0.0;
    for (ordinal_type i=0; i<pce_sz_; i++)
      nrm += Bp(i,j)*Bp(i,j)*basis_norms[i];
    nrm = std::sqrt(nrm);
    for (ordinal_type i=0; i<pce_sz_; i++)
      Bp(i,j) /= nrm;
  }

  // Compute our new basis -- each column of Qp is the coefficients of the
  // new basis in the original basis.  Constraint pivoting so first d+1
  // columns and included in Qp.
  Teuchos::Array<value_type> w(pce_sz_, 1.0);
  SDM R;
  Teuchos::Array<ordinal_type> piv(max_sz);
  for (int i=0; i<d+1; i++)
    piv[i] = 1;
  typedef Stokhos::OrthogonalizationFactory<ordinal_type,value_type> SOF;
  ordinal_type sz_ = SOF::createOrthogonalBasis(
    orthogonalization_method, threshold, verbose, Bp, w, Qp_, R, piv);
  
  return sz_;
}

template <typename ordinal_type, typename value_type>
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
~MonomialProjGramSchmidtPCEBasis2()
{
}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
order() const
{
  return p;
}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
dimension() const
{
  return d;
}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
size() const
{
  return sz;
}

template <typename ordinal_type, typename value_type>
const Teuchos::Array<value_type>&
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
norm_squared() const
{
  return norms;
}

template <typename ordinal_type, typename value_type>
const value_type&
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
norm_squared(ordinal_type i) const
{
  return norms[i];
}

template <typename ordinal_type, typename value_type>
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
computeTripleProductTensor() const

{
  return Teuchos::null;
}

template <typename ordinal_type, typename value_type>
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
computeLinearTripleProductTensor() const

{
  return Teuchos::null;
}

template <typename ordinal_type, typename value_type>
value_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
evaluateZero(ordinal_type i) const
{
  TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Not implemented!");
}

template <typename ordinal_type, typename value_type>
void
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
evaluateBases(const Teuchos::ArrayView<const value_type>& point,
	      Teuchos::Array<value_type>& basis_vals) const
{
  TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Not implemented!");
}

template <typename ordinal_type, typename value_type>
const std::string&
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
getName() const
{
  return name;
}

template <typename ordinal_type, typename value_type>
void
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
print(std::ostream& os) const
{
  os << "Gram-Schmidt basis of order " << p << ", dimension " << d 
     << ", and size " << sz << ".  Matrix coefficients:\n";
  os << Qp << std::endl;
  os << "Basis vector norms (squared):\n\t";
  for (ordinal_type i=0; i<sz; i++)
    os << norms[i] << " ";
  os << "\n";
}

template <typename ordinal_type, typename value_type>
void
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
transformToOriginalBasis(const value_type *in, value_type *out,
			 ordinal_type ncol, bool transpose) const
{
  if (transpose) {
    SDM zbar(Teuchos::View, const_cast<value_type*>(in), ncol, ncol, sz);
    SDM z(Teuchos::View, out, ncol, ncol, pce_sz);
    ordinal_type ret = 
      z.multiply(Teuchos::NO_TRANS, Teuchos::TRANS, 1.0, zbar, Qp, 0.0);
    TEUCHOS_ASSERT(ret == 0);
  }
  else {
    SDM zbar(Teuchos::View, const_cast<value_type*>(in), sz, sz, ncol);
    SDM z(Teuchos::View, out, pce_sz, pce_sz, ncol);
    ordinal_type ret = 
      z.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, Qp, zbar, 0.0);
    TEUCHOS_ASSERT(ret == 0);
  }
}

template <typename ordinal_type, typename value_type>
void
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
transformFromOriginalBasis(const value_type *in, value_type *out,
			 ordinal_type ncol, bool transpose) const
{
  if (transpose) {
    SDM z(Teuchos::View, const_cast<value_type*>(in), ncol, ncol, pce_sz);
    SDM zbar(Teuchos::View, out, ncol, ncol, sz);
    ordinal_type ret = 
      zbar.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, z, Qp, 0.0);
    TEUCHOS_ASSERT(ret == 0);
  }
  else {
    SDM z(Teuchos::View, const_cast<value_type*>(in), pce_sz, pce_sz, ncol);
    SDM zbar(Teuchos::View, out, sz, sz, ncol);
    ordinal_type ret = 
      zbar.multiply(Teuchos::TRANS, Teuchos::NO_TRANS, 1.0, Qp, z, 0.0);
    TEUCHOS_ASSERT(ret == 0);
  }
}

template <typename ordinal_type, typename value_type>
Teuchos::RCP<const Stokhos::Quadrature<ordinal_type, value_type> >
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
getReducedQuadrature() const
{
  return reduced_quad;
}