/usr/include/trilinos/Stokhos_MonomialProjGramSchmidtPCEBasis2Imp.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#include "Stokhos_ReducedQuadratureFactory.hpp"
#include "Stokhos_BasisFactory.hpp"
#include "Stokhos_QuadratureFactory.hpp"
#include "Stokhos_CompletePolynomialBasis.hpp"
#include "Stokhos_OrthogonalizationFactory.hpp"
template <typename ordinal_type, typename value_type>
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
MonomialProjGramSchmidtPCEBasis2(
ordinal_type max_p,
const Teuchos::Array< Stokhos::OrthogPolyApprox<ordinal_type, value_type> >& pce,
const Teuchos::RCP<const Stokhos::Quadrature<ordinal_type, value_type> >& quad,
const Teuchos::ParameterList& params_) :
name("Monomial Proj Gram Schmidt PCE Basis"),
params(params_),
pce_basis(pce[0].basis()),
pce_sz(pce_basis->size()),
p(max_p),
d(pce.size()),
verbose(params.get("Verbose", false)),
rank_threshold(params.get("Rank Threshold", 1.0e-12)),
orthogonalization_method(params.get("Orthogonalization Method",
"Householder"))
{
// Check for pce's that are constant and don't represent true random
// dimensions
Teuchos::Array< Stokhos::OrthogPolyApprox<ordinal_type, value_type> > non_const_pce;
for (ordinal_type i=0; i<pce.size(); i++) {
if (pce[i].standard_deviation() > 1.0e-15)
non_const_pce.push_back(pce[i]);
}
d = non_const_pce.size();
// Build Q, Qp matrices
SDM A, F;
sz = buildQ(max_p, rank_threshold, non_const_pce, quad, terms, num_terms,
Qp, A, F);
Q.reshape(A.numRows(), sz);
ordinal_type ret =
Q.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, A, Qp, 0.0);
TEUCHOS_ASSERT(ret == 0);
//print_matlab(std::cout << "Qp = ", Qp);
// Compute reduced quadrature rule
Teuchos::ParameterList quad_params = params.sublist("Reduced Quadrature");
Stokhos::ReducedQuadratureFactory<ordinal_type,value_type> quad_factory(
quad_params);
SDM Q2;
if (quad_params.isParameter("Reduced Quadrature Method") &&
quad_params.get<std::string>("Reduced Quadrature Method") == "Q2") {
Teuchos::Array< Stokhos::MultiIndex<ordinal_type> > terms2;
Teuchos::Array<ordinal_type> num_terms2;
value_type rank_threshold2 = quad_params.get("Q2 Rank Threshold",
rank_threshold);
SDM Qp2, A2, F2;
// Build basis, quadrature of order 2*max_p
Teuchos::Array< Stokhos::OrthogPolyApprox<ordinal_type, value_type> > pce2(non_const_pce);
Teuchos::RCP<const Stokhos::Quadrature<ordinal_type, value_type> > quad2 = quad;
Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type,value_type> > basis2 = pce_basis;
if (2*max_p > pce_basis->order()) {
// Basis
Teuchos::RCP<const Stokhos::ProductBasis<ordinal_type,value_type> > prod_basis = Teuchos::rcp_dynamic_cast<const Stokhos::ProductBasis<ordinal_type,value_type> >(pce_basis);
ordinal_type dim = prod_basis->dimension();
Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<ordinal_type,value_type> > > bases(dim);
for (ordinal_type i=0; i<dim; i++)
bases[i] = prod_basis->getCoordinateBases()[i]->cloneWithOrder(2*max_p);
Teuchos::RCP< const Stokhos::CompletePolynomialBasis<ordinal_type,value_type> > cp_basis2 = Teuchos::rcp(new Stokhos::CompletePolynomialBasis<ordinal_type,value_type>(bases));
basis2 = cp_basis2;
//quad_params.sublist("Basis").set("Stochastic Galerkin Basis", basis2);
std::cout << "built new basis of dimension " << basis2->dimension()
<< " and order " << basis2->order()
<< " with total size " << basis2->size() << std::endl;
// Quadrature
// quad_params.sublist("Quadrature").set("Quadrature Order", 2*max_p);
// quad2 =
// Stokhos::QuadratureFactory<ordinal_type,value_type>::create(quad_params);
quad2 = Teuchos::rcp(new Stokhos::TensorProductQuadrature<ordinal_type,value_type>(cp_basis2));
std::cout << "built new quadrature with total size " << quad2->size()
<< std::endl;
// Project pce to new basis
for (ordinal_type i=0; i<d; i++) {
pce2[i].reset(basis2); // this keeps lower order coeffs and sets
// higher order ones to 0
}
}
// Build Q matrix of order 2*max_p
ordinal_type sz2 =
buildQ(2*max_p, rank_threshold2, pce2, quad2, terms2, num_terms2,
Qp2, A2, F2);
//print_matlab(std::cout << "Qp2 = ", Qp2);
// Get quadrature data
const Teuchos::Array<value_type>& weights = quad->getQuadWeights();
const Teuchos::Array< Teuchos::Array<value_type> >& points =
quad->getQuadPoints();
ordinal_type nqp = weights.size();
// Original basis at quadrature points -- needed to transform expansions
// in this basis back to original
ordinal_type pce_sz2 = basis2->size();
SDM AA(nqp, pce_sz2);
Teuchos::Array<value_type> basis_vals(pce_sz2);
for (ordinal_type i=0; i<nqp; i++) {
basis2->evaluateBases(points[i], basis_vals);
for (ordinal_type j=0; j<pce_sz2; j++)
AA(i,j) = basis_vals[j];
}
Q2.reshape(nqp, sz2);
ret = Q2.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, AA, Qp2, 0.0);
TEUCHOS_ASSERT(ret == 0);
reduced_quad = quad_factory.createReducedQuadrature(Q, Q2, F, weights);
// // Get quadrature data
// const Teuchos::Array<value_type>& weights2 = quad2->getQuadWeights();
// ordinal_type nqp2 = weights2.size();
// Q2.reshape(nqp2, sz2);
// ret = Q2.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, A2, Qp2, 0.0);
// TEUCHOS_ASSERT(ret == 0);
// reduced_quad = quad_factory.createReducedQuadrature(Q, Q2, F2, weights2);
}
else {
const Teuchos::Array<value_type>& weights = quad->getQuadWeights();
reduced_quad = quad_factory.createReducedQuadrature(Q, Q2, F, weights);
}
// Basis is orthonormal by construction
norms.resize(sz, 1.0);
}
template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
buildQ(
ordinal_type max_p,
value_type threshold,
const Teuchos::Array< Stokhos::OrthogPolyApprox<ordinal_type, value_type> >& pce,
const Teuchos::RCP<const Stokhos::Quadrature<ordinal_type, value_type> >& quad,
Teuchos::Array< Stokhos::MultiIndex<ordinal_type> >& terms_,
Teuchos::Array<ordinal_type>& num_terms_,
SDM& Qp_, SDM& A_, SDM& F_)
{
Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type,value_type> > pce_basis_ = pce[0].basis();
ordinal_type pce_sz_ = pce_basis_->size();
// Get quadrature data
const Teuchos::Array<value_type>& weights = quad->getQuadWeights();
const Teuchos::Array< Teuchos::Array<value_type> >& points =
quad->getQuadPoints();
const Teuchos::Array< Teuchos::Array<value_type> >& basis_values =
quad->getBasisAtQuadPoints();
ordinal_type nqp = weights.size();
// Original basis at quadrature points -- needed to transform expansions
// in this basis back to original
A_.reshape(nqp, pce_sz_);
for (ordinal_type i=0; i<nqp; i++)
for (ordinal_type j=0; j<pce_sz_; j++)
A_(i,j) = basis_values[i][j];
// Compute norms of each pce for rescaling
Teuchos::Array<value_type> pce_norms(d, 0.0);
for (ordinal_type j=0; j<d; j++) {
for (ordinal_type i=0; i<pce_sz_; i++)
pce_norms[j] += (pce[j])[i]*(pce[j])[i]*pce_basis_->norm_squared(i);
pce_norms[j] = std::sqrt(pce_norms[j]);
}
// Compute F matrix -- PCEs evaluated at all quadrature points
// Since F is used in the reduced quadrature below as the quadrature points
// for this reduced basis, does scaling by the pce_norms mess up the points?
// No -- F essentially defines the random variables this basis is a function
// of, and thus they can be scaled in any way we want. Because we don't
// explicitly write the basis in terms of F, the scaling is implicit.
F_.reshape(nqp, d);
Teuchos::Array< Teuchos::Array<value_type> > values(nqp);
for (ordinal_type i=0; i<nqp; i++)
for (ordinal_type j=0; j<d; j++)
F_(i,j) = pce[j].evaluate(points[i], basis_values[i]);
// Build the reduced basis
// Compute basis terms -- 2-D array giving powers for each linear index
ordinal_type max_sz;
CPBUtils::compute_terms(max_p, d, max_sz, terms_, num_terms_);
// Compute B matrix -- monomials in F
// for i=0,...,nqp-1
// for j=0,...,sz-1
// B(i,j) = F(i,1)^terms_[j][1] * ... * F(i,d)^terms_[j][d]
// where sz is the total size of a basis up to order p and terms_[j]
// is an array of powers for each term in the total-order basis
SDM B(nqp, max_sz);
for (ordinal_type i=0; i<nqp; i++) {
for (ordinal_type j=0; j<max_sz; j++) {
B(i,j) = 1.0;
for (ordinal_type k=0; k<d; k++)
B(i,j) *= std::pow(F_(i,k), terms_[j][k]);
}
}
// Project B into original basis -- should use SPAM for this
SDM Bp(pce_sz_, max_sz);
const Teuchos::Array<value_type>& basis_norms =
pce_basis_->norm_squared();
for (ordinal_type i=0; i<pce_sz_; i++) {
for (ordinal_type j=0; j<max_sz; j++) {
Bp(i,j) = 0.0;
for (ordinal_type k=0; k<nqp; k++)
Bp(i,j) += weights[k]*B(k,j)*A_(k,i);
Bp(i,j) /= basis_norms[i];
}
}
// Rescale columns of Bp to have unit norm
for (ordinal_type j=0; j<max_sz; j++) {
value_type nrm = 0.0;
for (ordinal_type i=0; i<pce_sz_; i++)
nrm += Bp(i,j)*Bp(i,j)*basis_norms[i];
nrm = std::sqrt(nrm);
for (ordinal_type i=0; i<pce_sz_; i++)
Bp(i,j) /= nrm;
}
// Compute our new basis -- each column of Qp is the coefficients of the
// new basis in the original basis. Constraint pivoting so first d+1
// columns and included in Qp.
Teuchos::Array<value_type> w(pce_sz_, 1.0);
SDM R;
Teuchos::Array<ordinal_type> piv(max_sz);
for (int i=0; i<d+1; i++)
piv[i] = 1;
typedef Stokhos::OrthogonalizationFactory<ordinal_type,value_type> SOF;
ordinal_type sz_ = SOF::createOrthogonalBasis(
orthogonalization_method, threshold, verbose, Bp, w, Qp_, R, piv);
return sz_;
}
template <typename ordinal_type, typename value_type>
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
~MonomialProjGramSchmidtPCEBasis2()
{
}
template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
order() const
{
return p;
}
template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
dimension() const
{
return d;
}
template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
size() const
{
return sz;
}
template <typename ordinal_type, typename value_type>
const Teuchos::Array<value_type>&
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
norm_squared() const
{
return norms;
}
template <typename ordinal_type, typename value_type>
const value_type&
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
norm_squared(ordinal_type i) const
{
return norms[i];
}
template <typename ordinal_type, typename value_type>
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
computeTripleProductTensor() const
{
return Teuchos::null;
}
template <typename ordinal_type, typename value_type>
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
computeLinearTripleProductTensor() const
{
return Teuchos::null;
}
template <typename ordinal_type, typename value_type>
value_type
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
evaluateZero(ordinal_type i) const
{
TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Not implemented!");
}
template <typename ordinal_type, typename value_type>
void
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
evaluateBases(const Teuchos::ArrayView<const value_type>& point,
Teuchos::Array<value_type>& basis_vals) const
{
TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Not implemented!");
}
template <typename ordinal_type, typename value_type>
const std::string&
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
getName() const
{
return name;
}
template <typename ordinal_type, typename value_type>
void
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
print(std::ostream& os) const
{
os << "Gram-Schmidt basis of order " << p << ", dimension " << d
<< ", and size " << sz << ". Matrix coefficients:\n";
os << Qp << std::endl;
os << "Basis vector norms (squared):\n\t";
for (ordinal_type i=0; i<sz; i++)
os << norms[i] << " ";
os << "\n";
}
template <typename ordinal_type, typename value_type>
void
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
transformToOriginalBasis(const value_type *in, value_type *out,
ordinal_type ncol, bool transpose) const
{
if (transpose) {
SDM zbar(Teuchos::View, const_cast<value_type*>(in), ncol, ncol, sz);
SDM z(Teuchos::View, out, ncol, ncol, pce_sz);
ordinal_type ret =
z.multiply(Teuchos::NO_TRANS, Teuchos::TRANS, 1.0, zbar, Qp, 0.0);
TEUCHOS_ASSERT(ret == 0);
}
else {
SDM zbar(Teuchos::View, const_cast<value_type*>(in), sz, sz, ncol);
SDM z(Teuchos::View, out, pce_sz, pce_sz, ncol);
ordinal_type ret =
z.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, Qp, zbar, 0.0);
TEUCHOS_ASSERT(ret == 0);
}
}
template <typename ordinal_type, typename value_type>
void
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
transformFromOriginalBasis(const value_type *in, value_type *out,
ordinal_type ncol, bool transpose) const
{
if (transpose) {
SDM z(Teuchos::View, const_cast<value_type*>(in), ncol, ncol, pce_sz);
SDM zbar(Teuchos::View, out, ncol, ncol, sz);
ordinal_type ret =
zbar.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, z, Qp, 0.0);
TEUCHOS_ASSERT(ret == 0);
}
else {
SDM z(Teuchos::View, const_cast<value_type*>(in), pce_sz, pce_sz, ncol);
SDM zbar(Teuchos::View, out, sz, sz, ncol);
ordinal_type ret =
zbar.multiply(Teuchos::TRANS, Teuchos::NO_TRANS, 1.0, Qp, z, 0.0);
TEUCHOS_ASSERT(ret == 0);
}
}
template <typename ordinal_type, typename value_type>
Teuchos::RCP<const Stokhos::Quadrature<ordinal_type, value_type> >
Stokhos::MonomialProjGramSchmidtPCEBasis2<ordinal_type, value_type>::
getReducedQuadrature() const
{
return reduced_quad;
}
|