This file is indexed.

/usr/include/trilinos/Stokhos_LTBSparse3Tensor.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
// @HEADER
// ***********************************************************************
// 
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
// 
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_LTB_SPARSE_3_TENSOR_HPP
#define STOKHOS_LTB_SPARSE_3_TENSOR_HPP

#include <ostream>

#include "Stokhos_TotalOrderBasis.hpp"
#include "Stokhos_OrthogPolyApprox.hpp"

namespace Stokhos {

  /*!
   * \brief Data structure storing a sparse 3-tensor C(i,j,k) in a
   * a tree-based format for lexicographically ordered product bases.
   */
  template <typename ordinal_type, typename value_type>
  class LTBSparse3Tensor {
  public:

    //! Node type used in constructing the tree
    struct CijkNode {
      Teuchos::Array< Teuchos::RCP<CijkNode> > children;
      Teuchos::Array<value_type> values;
      ordinal_type p_i, p_j, p_k;
      ordinal_type i_begin, j_begin, k_begin;
      ordinal_type i_size, j_size, k_size;
      ordinal_type my_num_entries, total_num_entries;
      ordinal_type total_num_leafs;
      bool is_leaf, parent_j_equals_k;
    };

    //! Constructor
    LTBSparse3Tensor(const bool symm) : is_symmetric(symm) {}

    //! Destructor
    ~LTBSparse3Tensor() {}

    //! Set the head node
    void setHeadNode(const Teuchos::RCP<CijkNode>& h) { head = h; }

    //! Get the head node
    Teuchos::RCP<const CijkNode> getHeadNode() const { return head; }

    //! Print tensor
    void print(std::ostream& os) const {}

    //! Get Cijk value for a given i, j, k indices
    value_type getValue(ordinal_type i, ordinal_type j, ordinal_type k) const
      {}

    //! Return number of non-zero entries
    ordinal_type num_entries() const {
      if (head != Teuchos::null)
        return head->total_num_entries;
      return 0;
    }

    //! Return number of nodes
    ordinal_type num_leafs() const {
      if (head != Teuchos::null)
        return head->total_num_leafs;
      return 0;
    }

    //! Return if symmetric
    bool symmetric() const { return is_symmetric; }

  private:

    // Prohibit copying
    LTBSparse3Tensor(const LTBSparse3Tensor&);

    // Prohibit Assignment
    LTBSparse3Tensor& operator=(const LTBSparse3Tensor& b);

  protected:

    Teuchos::RCP<CijkNode> head;
    bool is_symmetric;

  }; // class LTBSparse3Tensor

  /*! \relates LTBSparse3Tensor
   * Print triple product tensor to output stream
   */
  template <typename ordinal_type, typename value_type>
  std::ostream&
  operator << (std::ostream& os,
               const LTBSparse3Tensor<ordinal_type, value_type>& Cijk) {
    Cijk.print(os);
    return os;
  }

  template <typename ordinal_type>
  struct LexicographicTreeBasisNode {
    Teuchos::Array< Teuchos::RCP<LexicographicTreeBasisNode> > children;
    Teuchos::Array< Stokhos::MultiIndex<ordinal_type> > terms;
    ordinal_type index_begin;
    ordinal_type block_size;

    // Default constructor
    LexicographicTreeBasisNode() :
      children(), terms(), index_begin(0), block_size(0) {}

    // Copy constructor
    LexicographicTreeBasisNode(const LexicographicTreeBasisNode& node) :
      children(node.children.size()), terms(node.terms),
      index_begin(node.index_begin), block_size(node.block_size) {
      for (ordinal_type i=0; i<children.size(); ++i)
        children[i] =
          Teuchos::rcp(new LexicographicTreeBasisNode(*(node->children[i])));
    }

    // Assignment operator
    LexicographicTreeBasisNode&
    operator=(const LexicographicTreeBasisNode& node) {
      if (this != &node) {
        children.resize(node.children.size());
        for (ordinal_type i=0; i<children.size(); ++i)
          children[i] =
            Teuchos::rcp(new LexicographicTreeBasisNode(*(node->children[i])));
        terms = node.terms;
        index_begin = node.index_begin;
        block_size = node.block_size;
      }
      return *this;
    }
  };

  template <typename ordinal_type>
  Teuchos::RCP< LexicographicTreeBasisNode<ordinal_type> >
  build_lexicographic_basis_tree(
    const Teuchos::ArrayView<const ordinal_type>& basis_orders,
    const ordinal_type total_order,
    const ordinal_type index_begin = ordinal_type(0),
    const ordinal_type order_sum = ordinal_type(0),
    const Stokhos::MultiIndex<ordinal_type>& term_prefix =
    Stokhos::MultiIndex<ordinal_type>()) {

    typedef LexicographicTreeBasisNode<ordinal_type> node_type;

    ordinal_type my_d = basis_orders.size();
    ordinal_type prev_d = term_prefix.dimension();
    ordinal_type p = basis_orders[0];
    ordinal_type my_p = std::min(total_order-order_sum, p);

    Teuchos::RCP<node_type> node = Teuchos::rcp(new node_type);
    node->index_begin = index_begin;
    node->terms.resize(my_p+1);
    for (ordinal_type i=0; i<=my_p; ++i) {
      node->terms[i].resize(prev_d+1);
      for (ordinal_type j=0; j<prev_d; ++j)
        node->terms[i][j] = term_prefix[j];
      node->terms[i][prev_d] = i;
    }

    // Base case for dimension = 1
    if (my_d == 1) {
      node->block_size = my_p+1;
    }

    // General case -- call recursively stripping off first dimension
    else {
      Teuchos::ArrayView<const ordinal_type> bo =
        Teuchos::arrayView(&basis_orders[1],my_d-1);
      node->children.resize(my_p+1);
      node->index_begin = index_begin;
      node->block_size = 0;
      for (ordinal_type i=0; i<=my_p; ++i) {
        Teuchos::RCP<node_type> child = build_lexicographic_basis_tree(
          bo, total_order, index_begin+node->block_size, order_sum+i,
          node->terms[i]);
        node->children[i] = child;
        node->block_size += child->block_size;
      }
    }

    return node;
  }

  // An approach for building a sparse 3-tensor only for lexicographically
  // ordered total order basis using a tree-based format
  template <typename ordinal_type,
            typename value_type>
  Teuchos::RCP< LTBSparse3Tensor<ordinal_type, value_type> >
  computeTripleProductTensorLTB(
    const TotalOrderBasis<ordinal_type, value_type,LexographicLess<MultiIndex<ordinal_type> > >& product_basis,
    bool symmetric = false) {
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
    TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Time");
#endif
    using Teuchos::RCP;
    using Teuchos::rcp;
    using Teuchos::Array;
    using Teuchos::ArrayView;

    const Array< RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > >& bases = product_basis.getCoordinateBases();
    ordinal_type d = bases.size();
    ordinal_type p = product_basis.order();
    Array<ordinal_type> basis_orders(d);
    for (int i=0; i<d; ++i)
      basis_orders[i] = bases[i]->order();
    ArrayView<const ordinal_type> basis_orders_view = basis_orders();

    // Create 1-D triple products
    Array< RCP<Sparse3Tensor<ordinal_type,value_type> > > Cijk_1d(d);
    for (ordinal_type i=0; i<d; i++) {
      Cijk_1d[i] =
        bases[i]->computeSparseTripleProductTensor(bases[i]->order()+1);
    }
    ArrayView<const RCP<Sparse3Tensor<ordinal_type,value_type> > > Cijk_1d_view
      = Cijk_1d();

    // Create lexicographic tree basis
    Teuchos::RCP< LexicographicTreeBasisNode<ordinal_type> > ltb =
      build_lexicographic_basis_tree(basis_orders_view, p);

    // Current implementation is recursive on the dimension d
    typedef LTBSparse3Tensor<ordinal_type, value_type> Cijk_type;
    RCP<Cijk_type> Cijk = rcp(new Cijk_type(symmetric));
    RCP<typename Cijk_type::CijkNode> head =
      computeCijkLTBNode(
        basis_orders_view, Cijk_1d_view, ltb, ltb, ltb, p, symmetric);
    Cijk->setHeadNode(head);

    return Cijk;
  }

  template <typename ordinal_type,
            typename value_type>
  Teuchos::RCP<typename LTBSparse3Tensor<ordinal_type, value_type>::CijkNode>
  computeCijkLTBNode(
    const Teuchos::ArrayView<const ordinal_type>& basis_orders,
    const Teuchos::ArrayView<const Teuchos::RCP<Sparse3Tensor<ordinal_type,value_type> > >& Cijk_1d,
    const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& i_ltb,
    const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& j_ltb,
    const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& k_ltb,
    const ordinal_type total_order,
    const bool symmetric,
    const ordinal_type sum_i = ordinal_type(0),
    const ordinal_type sum_j = ordinal_type(0),
    const ordinal_type sum_k = ordinal_type(0),
    const value_type cijk_base = value_type(1)) {

    using Teuchos::RCP;
    using Teuchos::rcp;
    using Teuchos::ArrayView;
    using Teuchos::arrayView;
    typedef typename LTBSparse3Tensor<ordinal_type, value_type>::CijkNode node_type;
    typedef ProductBasisUtils::Cijk_1D_Iterator<ordinal_type> Cijk_Iterator;

    ordinal_type my_d = basis_orders.size();
    ordinal_type p = basis_orders[0];
    ordinal_type p_i = std::min(total_order-sum_i, p);
    ordinal_type p_j = std::min(total_order-sum_j, p);
    ordinal_type p_k = std::min(total_order-sum_k, p);
    Cijk_Iterator cijk_iterator(p_i, p_j, p_k, symmetric);

    RCP<node_type> node = rcp(new node_type);
    node->p_i = p_i;
    node->p_j = p_j;
    node->p_k = p_k;
    node->i_begin = i_ltb->index_begin;
    node->j_begin = j_ltb->index_begin;
    node->k_begin = k_ltb->index_begin;
    node->i_size = i_ltb->block_size;
    node->j_size = j_ltb->block_size;
    node->k_size = k_ltb->block_size;

    // Base case -- compute the actual cijk values
    if (my_d == 1) {
      node->is_leaf = true;
      bool more = true;
      while (more) {
        value_type cijk =
          Cijk_1d[0]->getValue(cijk_iterator.i,
                               cijk_iterator.j,
                               cijk_iterator.k);
        node->values.push_back(cijk*cijk_base);
        more = cijk_iterator.increment();
      }
      node->my_num_entries = node->values.size();
      node->total_num_entries = node->values.size();
      node->total_num_leafs = 1;
    }

    // General case -- call recursively stripping off first dimension
    else {
      node->is_leaf = false;
      ArrayView<const ordinal_type> bo = arrayView(&basis_orders[1], my_d-1);
      ArrayView<const RCP<Sparse3Tensor<ordinal_type,value_type> > > c1d =
        arrayView(&Cijk_1d[1], my_d-1);
      node->total_num_entries = 0;
      node->total_num_leafs = 0;
      bool more = true;
      while (more) {
        value_type cijk =
          Cijk_1d[0]->getValue(cijk_iterator.i,
                               cijk_iterator.j,
                               cijk_iterator.k);
        RCP<node_type> child =
          computeCijkLTBNode(bo, c1d,
                             i_ltb->children[cijk_iterator.i],
                             j_ltb->children[cijk_iterator.j],
                             k_ltb->children[cijk_iterator.k],
                             total_order, symmetric,
                             sum_i + cijk_iterator.i,
                             sum_j + cijk_iterator.j,
                             sum_k + cijk_iterator.k,
                             cijk_base*cijk);
        node->children.push_back(child);
        node->total_num_entries += child->total_num_entries;
        node->total_num_leafs += child->total_num_leafs;
        more = cijk_iterator.increment();
      }
      node->my_num_entries = node->children.size();
    }

    return node;
  }

  // An approach for building a sparse 3-tensor only for lexicographically
  // ordered total order basis using a tree-based format -- the leaf nodes
  // are replaced by a dense p_i x p_j x p_k block
  template <typename ordinal_type,
            typename value_type>
  Teuchos::RCP< LTBSparse3Tensor<ordinal_type, value_type> >
  computeTripleProductTensorLTBBlockLeaf(
    const TotalOrderBasis<ordinal_type, value_type,LexographicLess<MultiIndex<ordinal_type> > >& product_basis,
    bool symmetric = false) {
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
    TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Time");
#endif
    using Teuchos::RCP;
    using Teuchos::rcp;
    using Teuchos::Array;
    using Teuchos::ArrayView;

    const Array< RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > >& bases = product_basis.getCoordinateBases();
    ordinal_type d = bases.size();
    ordinal_type p = product_basis.order();
    Array<ordinal_type> basis_orders(d);
    for (int i=0; i<d; ++i)
      basis_orders[i] = bases[i]->order();
    ArrayView<const ordinal_type> basis_orders_view = basis_orders();

    // Create 1-D triple products
    Array< RCP<Dense3Tensor<ordinal_type,value_type> > > Cijk_1d(d);
    for (ordinal_type i=0; i<d; i++) {
      Cijk_1d[i] = bases[i]->computeTripleProductTensor();
    }
    ArrayView<const RCP<Dense3Tensor<ordinal_type,value_type> > > Cijk_1d_view
      = Cijk_1d();

    // Create lexicographic tree basis
    Teuchos::RCP< LexicographicTreeBasisNode<ordinal_type> > ltb =
      build_lexicographic_basis_tree(basis_orders_view, p);

    // Current implementation is recursive on the dimension d
    typedef LTBSparse3Tensor<ordinal_type, value_type> Cijk_type;
    RCP<Cijk_type> Cijk = rcp(new Cijk_type(symmetric));
    RCP<typename Cijk_type::CijkNode> head =
      computeCijkLTBNodeBlockLeaf(
        basis_orders_view, Cijk_1d_view, ltb, ltb, ltb, p, symmetric);
    Cijk->setHeadNode(head);

    return Cijk;
  }

  template <typename ordinal_type,
            typename value_type>
  Teuchos::RCP<typename LTBSparse3Tensor<ordinal_type, value_type>::CijkNode>
  computeCijkLTBNodeBlockLeaf(
    const Teuchos::ArrayView<const ordinal_type>& basis_orders,
    const Teuchos::ArrayView<const Teuchos::RCP<Dense3Tensor<ordinal_type,value_type> > >& Cijk_1d,
    const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& i_ltb,
    const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& j_ltb,
    const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& k_ltb,
    const ordinal_type total_order,
    const bool symmetric,
    const ordinal_type sum_i = ordinal_type(0),
    const ordinal_type sum_j = ordinal_type(0),
    const ordinal_type sum_k = ordinal_type(0),
    const value_type cijk_base = value_type(1),
    const bool parent_j_equals_k = true) {

    using Teuchos::RCP;
    using Teuchos::rcp;
    using Teuchos::ArrayView;
    using Teuchos::arrayView;
    typedef typename LTBSparse3Tensor<ordinal_type, value_type>::CijkNode node_type;

    ordinal_type my_d = basis_orders.size();
    ordinal_type p = basis_orders[0];
    ordinal_type p_i = std::min(total_order-sum_i, p);
    ordinal_type p_j = std::min(total_order-sum_j, p);
    ordinal_type p_k = std::min(total_order-sum_k, p);

    RCP<node_type> node = rcp(new node_type);
    node->p_i = p_i;
    node->p_j = p_j;
    node->p_k = p_k;
    node->i_begin = i_ltb->index_begin;
    node->j_begin = j_ltb->index_begin;
    node->k_begin = k_ltb->index_begin;
    node->i_size = i_ltb->block_size;
    node->j_size = j_ltb->block_size;
    node->k_size = k_ltb->block_size;
    node->parent_j_equals_k = parent_j_equals_k;

    // Base case -- compute the actual cijk values as a "brick"
    // Could store values as a "pyramid" using commented out code below
    // However that seems to result in very bad performance, e.g., a lot
    // of register spill in multiply code based on this tensor
    if (my_d == 1) {
      node->is_leaf = true;
      node->values.reserve((p_i+1)*(p_j+1)*(p_k+1));
      for (ordinal_type i=0; i<=p_i; ++i) {
        for (ordinal_type j=0; j<=p_j; ++j) {
          // ordinal_type k0 = parent_j_equals_k ? std::max(j,std::abs(i-j)) :
          //   std::abs(i-j);
          // if (symmetric && (k0%2 != (i+j)%2)) ++k0;
          // const ordinal_type k_end = std::min(p_k,i+j);
          // const ordinal_type k_inc = symmetric ? 2 : 1;
          ordinal_type k0 = parent_j_equals_k ? j : 0;
          if (symmetric && (k0%2 != (i+j)%2)) ++k0;
          const ordinal_type k_end = p_k;
          const ordinal_type k_inc = symmetric ? 2 : 1;
          for (ordinal_type k=k0; k<=k_end; k+=k_inc) {
            value_type cijk = (*Cijk_1d[0])(i, j, k);
            if (j+node->j_begin == k+node->k_begin) cijk *= 0.5;
            node->values.push_back(cijk*cijk_base);
          }
        }
      }
      node->my_num_entries = node->values.size();
      node->total_num_entries = node->values.size();
      node->total_num_leafs = 1;
    }

    // General case -- call recursively stripping off first dimension
    else {
      node->is_leaf = false;
      ArrayView<const ordinal_type> bo = arrayView(&basis_orders[1], my_d-1);
      ArrayView<const RCP<Dense3Tensor<ordinal_type,value_type> > > c1d =
        arrayView(&Cijk_1d[1], my_d-1);
      node->total_num_entries = 0;
      node->total_num_leafs = 0;
      for (ordinal_type i=0; i<=p_i; ++i) {
        for (ordinal_type j=0; j<=p_j; ++j) {
          ordinal_type k0 = parent_j_equals_k ? std::max(j,std::abs(i-j)) :
            std::abs(i-j);
          if (symmetric && (k0%2 != (i+j)%2)) ++k0;
          const ordinal_type k_end = std::min(p_k,i+j);
          const ordinal_type k_inc = symmetric ? 2 : 1;
          for (ordinal_type k=k0; k<=k_end; k+=k_inc) {
            value_type cijk = (*Cijk_1d[0])(i, j, k);
            RCP<node_type> child =
              computeCijkLTBNodeBlockLeaf(bo, c1d,
                                          i_ltb->children[i],
                                          j_ltb->children[j],
                                          k_ltb->children[k],
                                          total_order, symmetric,
                                          sum_i + i,
                                          sum_j + j,
                                          sum_k + k,
                                          cijk_base*cijk,
                                          parent_j_equals_k && j == k);
            node->children.push_back(child);
            node->total_num_entries += child->total_num_entries;
            node->total_num_leafs += child->total_num_leafs;
          }
        }
      }
      node->my_num_entries = node->children.size();
    }

    return node;
  }

  template <typename ordinal_type>
  struct FlatLTBSparse3TensorNode {
    ordinal_type i_begin, j_begin, k_begin;
    ordinal_type p_i, p_j, p_k;
    bool parent_j_equals_k;
  };

  template <typename ordinal_type, typename value_type>
  struct FlatLTBSparse3Tensor {
    typedef Teuchos::Array< FlatLTBSparse3TensorNode<ordinal_type> > node_array_type;
    typedef Teuchos::Array< value_type > cijk_array_type;

    typedef typename node_array_type::iterator node_iterator;
    typedef typename node_array_type::const_iterator node_const_iterator;
    typedef typename cijk_array_type::iterator cijk_iterator;
    typedef typename cijk_array_type::const_iterator cijk_const_iterator;

    node_array_type node;
    cijk_array_type cijk;
    bool symmetric;
  };

  template <typename ordinal_type, typename value_type>
  Teuchos::RCP< FlatLTBSparse3Tensor<ordinal_type,value_type> >
  computeFlatTripleProductTensorLTB(
    const TotalOrderBasis<ordinal_type, value_type,LexographicLess<MultiIndex<ordinal_type> > >& product_basis,
    bool symmetric = false) {
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
    TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Flat Triple-Product Tensor Time");
#endif
    using Teuchos::RCP;
    using Teuchos::rcp;

    // Build LTB 3 tensor
    typedef LTBSparse3Tensor<ordinal_type, value_type> Cijk_LTB_type;
    RCP<Cijk_LTB_type> ltb_tensor =
      computeTripleProductTensorLTBBlockLeaf(product_basis, symmetric);

    // Create flat LTB 3 tensor
    RCP< FlatLTBSparse3Tensor<ordinal_type,value_type> > flat_tensor =
      rcp(new FlatLTBSparse3Tensor<ordinal_type,value_type>);
    flat_tensor->node.reserve(ltb_tensor->num_leafs());
    flat_tensor->cijk.reserve(ltb_tensor->num_entries());
    flat_tensor->symmetric = symmetric;

    // Fill flat 3 tensor
    typedef typename Cijk_LTB_type::CijkNode node_type;
    Teuchos::Array< Teuchos::RCP<const node_type> > node_stack;
    Teuchos::Array< ordinal_type > index_stack;
    node_stack.push_back(ltb_tensor->getHeadNode());
    index_stack.push_back(0);
    Teuchos::RCP<const node_type> node;
    ordinal_type child_index;
    while (node_stack.size() > 0) {
      node = node_stack.back();
      child_index = index_stack.back();

      // Leaf
      if (node->is_leaf) {
        FlatLTBSparse3TensorNode<ordinal_type> leaf;
        leaf.i_begin = node->i_begin;
        leaf.j_begin = node->j_begin;
        leaf.k_begin = node->k_begin;
        leaf.p_i = node->p_i;
        leaf.p_j = node->p_j;
        leaf.p_k = node->p_k;
        leaf.parent_j_equals_k = node->parent_j_equals_k;
        flat_tensor->node.push_back(leaf);
        flat_tensor->cijk.insert(flat_tensor->cijk.end(), 
                                 node->values.begin(),
                                 node->values.end());
        node_stack.pop_back();
        index_stack.pop_back();
      }

      // More children to process -- process them first
      else if (child_index < node->children.size()) {
        ++index_stack.back();
        node = node->children[child_index];
        node_stack.push_back(node);
        index_stack.push_back(0);
      }

      // No more children
      else {
        node_stack.pop_back();
        index_stack.pop_back();
      }

    }

    return flat_tensor;
  }

  template <int max_size, typename ordinal_type, typename value_type>
  void
  flatLTB3TensorMultiply(
    OrthogPolyApprox<ordinal_type,value_type>& c,
    const OrthogPolyApprox<ordinal_type,value_type>& a,
    const OrthogPolyApprox<ordinal_type,value_type>& b,
    const FlatLTBSparse3Tensor<ordinal_type,value_type>& cijk) {
    value_type ab[max_size][max_size];

    // Set coefficients to 0
    c.init(value_type(0));

    // Get pointers to coefficients
    const value_type *ca = a.coeff();
    const value_type *cb = b.coeff();
    value_type *cc = c.coeff();

    typedef FlatLTBSparse3Tensor<ordinal_type,value_type> cijk_type;
    typedef typename cijk_type::node_const_iterator node_iterator;
    typedef typename cijk_type::cijk_const_iterator cijk_iterator;
    node_iterator ni = cijk.node.begin();
    node_iterator ni_end = cijk.node.end();
    cijk_iterator ci = cijk.cijk.begin();
    for (; ni != ni_end; ++ni) {
      value_type *c_block = cc + ni->i_begin;
      const value_type *a_j_block = ca + ni->j_begin;
      const value_type *b_k_block = cb + ni->k_begin;
      const value_type *a_k_block = ca + ni->k_begin;
      const value_type *b_j_block = cb + ni->j_begin;
      const ordinal_type p_i = ni->p_i;
      const ordinal_type p_j = ni->p_j;
      const ordinal_type p_k = ni->p_k;
      for (ordinal_type j=0; j<=p_j; ++j)
        for (ordinal_type k=0; k<=p_k; ++k)
          ab[j][k] = a_j_block[j]*b_k_block[k] + a_k_block[k]*b_j_block[j];
      for (ordinal_type i=0; i<=p_i; ++i) {
        value_type tmp = value_type(0);
        for (ordinal_type j=0; j<=p_j; ++j) {
          // This is for pyramid instead of brick
          // ordinal_type k0 = ni->parent_j_equals_k ? std::max(j,std::abs(i-j)) :
          //   std::abs(i-j);
          // if (cijk.symmetric && (k0%2 != (i+j)%2)) ++k0;
          // const ordinal_type k_end = std::min(p_k,i+j);
          // const ordinal_type k_inc = cijk.symmetric ? 2 : 1;

          ordinal_type k0 = ni->parent_j_equals_k ? j : 0;
          if (cijk.symmetric && (k0%2 != (i+j)%2)) ++k0;
          const ordinal_type k_end = p_k;
          const ordinal_type k_inc = cijk.symmetric ? 2 : 1;
          for (ordinal_type k=k0; k<=k_end; k+=k_inc) {
            tmp += (*ci)*ab[j][k];
            ++ci;
          }
        }
        c_block[i] += tmp;
      }
    }
  }

} // namespace Stokhos

// Include template definitions
//#include "Stokhos_LTBSparse3TensorImp.hpp"

#endif // STOKHOS_LTB_SPARSE_3_TENSOR_HPP