This file is indexed.

/usr/include/trilinos/Stokhos_KL_OneDExponentialEigenPair.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_KL_ONE_D_EXPONENTIAL_EIGENPAIR_HPP
#define STOKHOS_KL_ONE_D_EXPONENTIAL_EIGENPAIR_HPP

#include <iostream>
#include <cmath>

#include "Kokkos_Core.hpp"

namespace Stokhos {

  //! Namespace for analytic %KL expansions
  namespace KL {

    //! Container for one-dimensional eigenfunction and eigenvalue
    template <typename eigen_function_type>
    struct OneDEigenPair {
      typedef typename eigen_function_type::value_type value_type;
      eigen_function_type eig_func;
      value_type eig_val;
    }; // struct OneDEigenPair

    //! One-dimensional eigenfunction for exponential covariance function
    /*!
     * Represents an eigenfunction of the form \f$A \sin(\omega (x-(b+a)/2))\f$
     * or  \f$A \cos(\omega (x-(b+a)/2))\f$ over the domain \f$[a,b]\f$ where
     * \f[
     *   A = \frac{1}{\sqrt{\frac{b-a}{2} \pm \frac{\sin(\omega(b-a)}{2\omega}}}
     * \f]
     * for \f$\cos\f$, \f$\sin\f$ respectively.
     */
    template <typename Value>
    class ExponentialOneDEigenFunction {
    public:

      typedef Value value_type;

      //! Enum identifying the type of eigenfunction
      enum TYPE {
        SIN, ///< A*sin(omega*(x-b))
        COS  ///< A*cos(omega*(x-b))
      };

      //! Default Constructor
      KOKKOS_INLINE_FUNCTION
      ExponentialOneDEigenFunction() :
        type(SIN), a(0), b(0), A(0), omega(0), dim_name(0) {}

      //! Constructor
      KOKKOS_INLINE_FUNCTION
      ExponentialOneDEigenFunction(TYPE type_, const value_type& a_,
                                   const value_type& b_,
                                   const value_type& omega_,
                                   const int dim_name_) :
        type(type_), a((b_-a_)/2.0), b((b_+a_)/2.0), omega(omega_),
        dim_name(dim_name_) {
        if (type == SIN)
          A = 1.0/std::sqrt(a - std::sin(2.*omega*a)/(2.*omega));
        else
          A = 1.0/std::sqrt(a + std::sin(2.*omega*a)/(2.*omega));
      }

      //! Destructor
      KOKKOS_INLINE_FUNCTION
      ~ExponentialOneDEigenFunction() {}

      //! Evaluate eigenfunction
      KOKKOS_INLINE_FUNCTION
      value_type evaluate(const value_type& x) const {
        if (type == SIN)
          return A*sin(omega*(x-b));
        return A*cos(omega*(x-b));
      }

      //! Print eigenfunction
      void print(std::ostream& os) const {
        os << A << " * ";
        if (type == SIN)
          os << "sin(";
        else
          os << "cos(";
        os << omega << " * (x_" << dim_name << " - " << b << "))";
      }

      //! Return type
      KOKKOS_INLINE_FUNCTION
      TYPE getType() const { return type; }

      //! Return frequency
      KOKKOS_INLINE_FUNCTION
      value_type getFrequency() const { return omega; }

      //! Return multiplier
      KOKKOS_INLINE_FUNCTION
      value_type getMultiplier() const { return A; }

      //! Get shift
      KOKKOS_INLINE_FUNCTION
      value_type getShift() const { return b; }

    protected:

      //! Type of eigenfunction (sin or cos)
      TYPE type;

      //! Domain length
      value_type a;

      //! Domain center
      value_type b;

      //! Multiplier for eigenfunction
      value_type A;

      //! Frequency of eigenfunction
      value_type omega;

      //! Dimesion name (e.g., x_1) for printing eigenfunction
      int dim_name;
    };

  } // namespace KL

} // namespace Stokhos

#endif // STOKHOS_KL_ONE_D_EXPONENTIALEIGENPAIR_HPP