This file is indexed.

/usr/include/trilinos/Stokhos_KL_OneDExponentialCovarianceFunction.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_KL_ONE_D_EXPONENTIAL_COVARIANCE_FUNCTION_HPP
#define STOKHOS_KL_ONE_D_EXPONENTIAL_COVARIANCE_FUNCTION_HPP

#include <string>
#include <cmath>
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Stokhos_KL_OneDExponentialEigenPair.hpp"

namespace Stokhos {

  namespace KL {

    /*!
     * \brief Class representing an exponential covariance function and its %KL
     * eigevalues/eigenfunctions.
     */
    /*!
     * This class provides the exponential covariance function
     * \f[
     *     \mbox{cov}(x,x') = \exp(-|x-x'|/L).
     * \f]
     * The corresponding eigenfunctions can be shown to be
     * \f$A_n\cos(\omega_n(x-\beta))\f$ and
     * \f$B_n\sin(\omega^\ast_n(x-\beta))\f$ for
     * \f$x\in[a,b]\f$ where \f$\omega_n\f$ and \f$\omega^\ast_n\f$
     * satisfy
     * \f[
     *     1 - L\omega_n\tan(\omega_n\alpha) = 0
     * \f]
     * and
     * \f[
     *     L\omega^\ast_n + \tan(\omega^\ast_n\alpha) = 0
     * \f]
     * respectively, where \f$\alpha=(b-a)/2\f$ and \f$\beta=(b+a)/2\f$.  Then
     * \f[
     *  A_n = \frac{1}{\left(\int_a^b\cos^2(\omega_n(x-\beta)) dx\right)^{1/2}}
     *      = \frac{1}{\sqrt{\alpha + \frac{\sin(2\omega_n\alpha)}{2\omega_n}}},
     * \f]
     * \f[
     *  B_n
     *    = \frac{1}{\left(\int_a^b\sin^2(\omega^\ast_n(x-\beta)) dx\right)^{1/2}}
     *    = \frac{1}{\sqrt{\alpha - \frac{\sin(2\omega_n^\ast\alpha)}{2\omega^\ast_n}}}
     * \f]
     * and the corresponding eigenvalues are given by
     * \f[
     *     \lambda_n = \frac{2L}{(L\omega_n)^2 + 1}
     * \f]
     * and
     * \f[
     *     \lambda^\ast_n = \frac{2L}{(L\omega^\ast_n)^2 + 1}.
     * \f]
     * It is straightforward to show that for each \f$n\f$,
     * \f$\omega^\ast_n < \omega_n\f$, and thus
     * \f$\lambda_n < \lambda^\ast_n\f$.  Hence when sorted on decreasing
     * eigenvalue, the eigenfunctions alternate between cosine and sine.
     * See "Stochastic Finite Elements" by Ghanem and Spanos for a complete
     * description of how to derive these relationships.
     *
     * For a given value of \f$M\f$, the code works by computing the \f$M\f$
     * eigenfunctions using a bisection root solver to compute the frequencies
     * \f$\omega_n\f$ and \f$\omega^\ast_n\f$.
     *
     * Data for the root solver is passed through a Teuchos::ParameterList,
     * which accepts the following parameters:
     * <ul>
     *   <li> "Bound Peturbation Size" -- [value_type] (1.0e-6)
     *        Perturbation away from \f$i\pi/2\f$ for bounding the
     *        frequencies \f$\omega\f$ in the bisection algorithm
     *   <li> "Nonlinear Solver Tolerance" -- [value_type] (1.0e-10)
     *        Tolerance for bisection nonlinear solver for computing frequencies
     *   <li> "Maximum Nonlinear Solver Iterations" -- [int] (100)
     *        Maximum number of nonlinear solver iterations for computing
     *        the frequencies.
     * </ul>
     */
    template <typename value_type>
    class OneDExponentialCovarianceFunction {
    public:

      typedef ExponentialOneDEigenFunction<value_type> eigen_function_type;
      typedef OneDEigenPair<eigen_function_type> eigen_pair_type;

      //! Constructor
      OneDExponentialCovarianceFunction(int M,
                                        const value_type& a,
                                        const value_type& b,
                                        const value_type& L,
                                        const int dim_name,
                                        Teuchos::ParameterList& solverParams);

      //! Destructor
      ~OneDExponentialCovarianceFunction() {}

      //! Evaluate covariance
      value_type evaluateCovariance(const value_type& x,
                                    const value_type& xp) const {
        return std::exp(-std::abs(x-xp)/L);
      }

      //! Get eigenpairs
      const Teuchos::Array<eigen_pair_type>& getEigenPairs() const {
        return eig_pair;
      }

    private:

      //! Prohibit copying
      OneDExponentialCovarianceFunction(const OneDExponentialCovarianceFunction&);

      //! Prohibit copying
      OneDExponentialCovarianceFunction& operator=(const OneDExponentialCovarianceFunction&);

    protected:

      typedef typename Teuchos::ScalarTraits<value_type>::magnitudeType magnitude_type;

      //! Correlation length
      value_type L;

      //! Eigenpairs
      Teuchos::Array<eigen_pair_type> eig_pair;

      //! A basic root finder based on Newton's method
      template <class Func>
      value_type newton(const Func& func, const value_type& a,
                        const value_type& b, magnitude_type tol,
                        int max_num_its);

      //! A basic root finder based on bisection
      template <class Func>
      value_type bisection(const Func& func, const value_type& a,
                           const value_type& b, magnitude_type tol,
                           int max_num_its);

      /*!
       * \brief Nonlinear function whose roots define eigenvalues for sin()
       * eigenfunction
       */
      struct EigFuncSin {
        const value_type& alpha;
        EigFuncSin(const value_type& alpha_) : alpha(alpha_) {}
        value_type eval(const value_type& u) const {
          return alpha*std::tan(u) + u; }
        value_type deriv(const value_type& u) const {
          return alpha/(std::cos(u)*std::cos(u)) + 1.0; }
      };

      /*!
       * \brief Nonlinear function whose roots define eigenvalues for cos()
       * eigenfunction
       */
      struct EigFuncCos {
        const value_type& alpha;
        EigFuncCos(const value_type& alpha_) : alpha(alpha_) {}
        value_type eval(const value_type& u) const {
          return alpha - u*std::tan(u); }
        value_type deriv(const value_type& u) const {
          return -std::tan(u) - u/(std::cos(u)*std::cos(u)); }
      };

    }; // class OneDExponentialCovarianceFunction

  } // namespace KL

} // namespace Stokhos

// Include template definitions
#include "Stokhos_KL_OneDExponentialCovarianceFunctionImp.hpp"

#endif // STOKHOS_KL_ONE_D_EXPONENTIAL_COVARIANCE_FUNCTION_HPP