/usr/include/trilinos/Stokhos_KL_OneDExponentialCovarianceFunction.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_KL_ONE_D_EXPONENTIAL_COVARIANCE_FUNCTION_HPP
#define STOKHOS_KL_ONE_D_EXPONENTIAL_COVARIANCE_FUNCTION_HPP
#include <string>
#include <cmath>
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Stokhos_KL_OneDExponentialEigenPair.hpp"
namespace Stokhos {
namespace KL {
/*!
* \brief Class representing an exponential covariance function and its %KL
* eigevalues/eigenfunctions.
*/
/*!
* This class provides the exponential covariance function
* \f[
* \mbox{cov}(x,x') = \exp(-|x-x'|/L).
* \f]
* The corresponding eigenfunctions can be shown to be
* \f$A_n\cos(\omega_n(x-\beta))\f$ and
* \f$B_n\sin(\omega^\ast_n(x-\beta))\f$ for
* \f$x\in[a,b]\f$ where \f$\omega_n\f$ and \f$\omega^\ast_n\f$
* satisfy
* \f[
* 1 - L\omega_n\tan(\omega_n\alpha) = 0
* \f]
* and
* \f[
* L\omega^\ast_n + \tan(\omega^\ast_n\alpha) = 0
* \f]
* respectively, where \f$\alpha=(b-a)/2\f$ and \f$\beta=(b+a)/2\f$. Then
* \f[
* A_n = \frac{1}{\left(\int_a^b\cos^2(\omega_n(x-\beta)) dx\right)^{1/2}}
* = \frac{1}{\sqrt{\alpha + \frac{\sin(2\omega_n\alpha)}{2\omega_n}}},
* \f]
* \f[
* B_n
* = \frac{1}{\left(\int_a^b\sin^2(\omega^\ast_n(x-\beta)) dx\right)^{1/2}}
* = \frac{1}{\sqrt{\alpha - \frac{\sin(2\omega_n^\ast\alpha)}{2\omega^\ast_n}}}
* \f]
* and the corresponding eigenvalues are given by
* \f[
* \lambda_n = \frac{2L}{(L\omega_n)^2 + 1}
* \f]
* and
* \f[
* \lambda^\ast_n = \frac{2L}{(L\omega^\ast_n)^2 + 1}.
* \f]
* It is straightforward to show that for each \f$n\f$,
* \f$\omega^\ast_n < \omega_n\f$, and thus
* \f$\lambda_n < \lambda^\ast_n\f$. Hence when sorted on decreasing
* eigenvalue, the eigenfunctions alternate between cosine and sine.
* See "Stochastic Finite Elements" by Ghanem and Spanos for a complete
* description of how to derive these relationships.
*
* For a given value of \f$M\f$, the code works by computing the \f$M\f$
* eigenfunctions using a bisection root solver to compute the frequencies
* \f$\omega_n\f$ and \f$\omega^\ast_n\f$.
*
* Data for the root solver is passed through a Teuchos::ParameterList,
* which accepts the following parameters:
* <ul>
* <li> "Bound Peturbation Size" -- [value_type] (1.0e-6)
* Perturbation away from \f$i\pi/2\f$ for bounding the
* frequencies \f$\omega\f$ in the bisection algorithm
* <li> "Nonlinear Solver Tolerance" -- [value_type] (1.0e-10)
* Tolerance for bisection nonlinear solver for computing frequencies
* <li> "Maximum Nonlinear Solver Iterations" -- [int] (100)
* Maximum number of nonlinear solver iterations for computing
* the frequencies.
* </ul>
*/
template <typename value_type>
class OneDExponentialCovarianceFunction {
public:
typedef ExponentialOneDEigenFunction<value_type> eigen_function_type;
typedef OneDEigenPair<eigen_function_type> eigen_pair_type;
//! Constructor
OneDExponentialCovarianceFunction(int M,
const value_type& a,
const value_type& b,
const value_type& L,
const int dim_name,
Teuchos::ParameterList& solverParams);
//! Destructor
~OneDExponentialCovarianceFunction() {}
//! Evaluate covariance
value_type evaluateCovariance(const value_type& x,
const value_type& xp) const {
return std::exp(-std::abs(x-xp)/L);
}
//! Get eigenpairs
const Teuchos::Array<eigen_pair_type>& getEigenPairs() const {
return eig_pair;
}
private:
//! Prohibit copying
OneDExponentialCovarianceFunction(const OneDExponentialCovarianceFunction&);
//! Prohibit copying
OneDExponentialCovarianceFunction& operator=(const OneDExponentialCovarianceFunction&);
protected:
typedef typename Teuchos::ScalarTraits<value_type>::magnitudeType magnitude_type;
//! Correlation length
value_type L;
//! Eigenpairs
Teuchos::Array<eigen_pair_type> eig_pair;
//! A basic root finder based on Newton's method
template <class Func>
value_type newton(const Func& func, const value_type& a,
const value_type& b, magnitude_type tol,
int max_num_its);
//! A basic root finder based on bisection
template <class Func>
value_type bisection(const Func& func, const value_type& a,
const value_type& b, magnitude_type tol,
int max_num_its);
/*!
* \brief Nonlinear function whose roots define eigenvalues for sin()
* eigenfunction
*/
struct EigFuncSin {
const value_type& alpha;
EigFuncSin(const value_type& alpha_) : alpha(alpha_) {}
value_type eval(const value_type& u) const {
return alpha*std::tan(u) + u; }
value_type deriv(const value_type& u) const {
return alpha/(std::cos(u)*std::cos(u)) + 1.0; }
};
/*!
* \brief Nonlinear function whose roots define eigenvalues for cos()
* eigenfunction
*/
struct EigFuncCos {
const value_type& alpha;
EigFuncCos(const value_type& alpha_) : alpha(alpha_) {}
value_type eval(const value_type& u) const {
return alpha - u*std::tan(u); }
value_type deriv(const value_type& u) const {
return -std::tan(u) - u/(std::cos(u)*std::cos(u)); }
};
}; // class OneDExponentialCovarianceFunction
} // namespace KL
} // namespace Stokhos
// Include template definitions
#include "Stokhos_KL_OneDExponentialCovarianceFunctionImp.hpp"
#endif // STOKHOS_KL_ONE_D_EXPONENTIAL_COVARIANCE_FUNCTION_HPP
|