This file is indexed.

/usr/include/trilinos/Stokhos_KL_ExponentialRandomFieldImp.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#include <cmath>
#include <algorithm>
#include "Teuchos_Array.hpp"

#include "Stokhos_KL_OneDExponentialCovarianceFunction.hpp"

template <typename value_type, typename execution_space>
Stokhos::KL::ExponentialRandomField<value_type,execution_space>::
ExponentialRandomField(Teuchos::ParameterList& solverParams)
{
  // Get required parameters
  num_KL = solverParams.get<int>("Number of KL Terms");
  mean = solverParams.get<double>("Mean");
  std_dev = solverParams.get<double>("Standard Deviation");

  Teuchos::Array<double> domain_upper_bound_double;
  Teuchos::Array<double> domain_lower_bound_double;
  Teuchos::Array<double> correlation_length_double;

  // Get Domain Upper Bounds
  if (solverParams.isType<std::string>("Domain Upper Bounds"))
    domain_upper_bound_double =
      Teuchos::getArrayFromStringParameter<double>(
        solverParams, "Domain Upper Bounds");
  else
    domain_upper_bound_double =
      solverParams.get< Teuchos::Array<double> >("Domain Upper Bounds");

  // (Convert each element from double to value_type)
  Teuchos::Array<value_type> domain_upper_bound(domain_upper_bound_double.size());
  for (int i=0; i<domain_upper_bound.size(); i++)
    domain_upper_bound[i]=domain_upper_bound_double[i];

  // Get Domain Lower Bounds
  if (solverParams.isType<std::string>("Domain Lower Bounds"))
    domain_lower_bound_double =
      Teuchos::getArrayFromStringParameter<double>(
        solverParams, "Domain Lower Bounds");
  else
    domain_lower_bound_double =
      solverParams.get< Teuchos::Array<double> >("Domain Lower Bounds");

  // (Convert each element from double to value_type)
  Teuchos::Array<value_type> domain_lower_bound(domain_lower_bound_double.size());
  for (int i=0; i<domain_lower_bound.size(); i++)
    domain_lower_bound[i]=domain_lower_bound_double[i];

  // Get Correlation Lengths
  if (solverParams.isType<std::string>("Correlation Lengths"))
    correlation_length_double =
      Teuchos::getArrayFromStringParameter<double>(
        solverParams, "Correlation Lengths");
  else
    correlation_length_double =
      solverParams.get< Teuchos::Array<double> >("Correlation Lengths");

  // (Convert each element from double to value_type)
  Teuchos::Array<value_type> correlation_length(correlation_length_double.size());
  for (int i=0; i<correlation_length.size(); i++)
    correlation_length[i]=correlation_length_double[i];

  // Compute 1-D eigenfunctions for each dimension
  dim = domain_upper_bound.size();
  Teuchos::Array< Teuchos::Array< one_d_eigen_pair_type > > eig_pairs(dim);
  for (int i=0; i<dim; i++) {
    eig_pairs[i].resize(num_KL);
    OneDExponentialCovarianceFunction<value_type> cov_func(
      num_KL, domain_lower_bound[i], domain_upper_bound[i],
      correlation_length[i], i, solverParams);
    eig_pairs[i] = cov_func.getEigenPairs();
  }

  // Compute all possible tensor product combinations of 1-D eigenfunctions
  int num_prod = static_cast<int>(std::pow(static_cast<double>(num_KL),
                                           static_cast<double>(dim)));
  Teuchos::Array<product_eigen_pair_type> product_eig_pairs(num_prod);
  Teuchos::Array<int> index(dim, 0);
  int cnt = 0;
  Teuchos::Array<value_type> vals(dim);
  Teuchos::Array<one_d_eigen_pair_type> eigs(dim);
  while (cnt < num_prod) {
    for (int i=0; i<dim; i++) {
      eigs[i] = eig_pairs[i][index[i]];
    }
    product_eig_pairs[cnt].set(eigs);
    ++index[0];
    int j = 0;
    while (j < dim-1 && index[j] == num_KL) {
      index[j] = 0;
      ++j;
      ++index[j];
    }
    ++cnt;
  }

  // Sort product eigenfunctions based on product eigenvalue
  std::sort(product_eig_pairs.begin(), product_eig_pairs.end(),
            ProductEigenPairGreater<one_d_eigen_func_type, execution_space>());

  // Copy eigenpairs into view
  product_eigen_funcs =
    eigen_func_array_type("product eigen functions", num_prod, dim);
  product_eigen_values =
    eigen_value_array_type("product eigen vvalues", num_prod);
  typename eigen_func_array_type::HostMirror host_product_eigen_funcs =
    Kokkos::create_mirror_view(product_eigen_funcs);
  typename eigen_value_array_type::HostMirror host_product_eigen_values =
    Kokkos::create_mirror_view(product_eigen_values);
  for (int i=0; i<num_prod; ++i) {
    host_product_eigen_values(i) = 1.0;
    for (int j=0; j<dim; ++j) {
      host_product_eigen_values(i) *= product_eig_pairs[i].eig_pairs[j].eig_val;
      host_product_eigen_funcs(i,j) =
        product_eig_pairs[i].eig_pairs[j].eig_func;
    }
  }
  Kokkos::deep_copy(product_eigen_funcs, host_product_eigen_funcs);
  Kokkos::deep_copy(product_eigen_values, host_product_eigen_values);
}

template <typename value_type, typename execution_space>
template <typename point_type, typename rv_type>
KOKKOS_INLINE_FUNCTION
typename Teuchos::PromotionTraits<typename rv_type::value_type, value_type>::promote
Stokhos::KL::ExponentialRandomField<value_type,execution_space>::
evaluate(const point_type& point, const rv_type& random_variables) const
{
  typedef typename Teuchos::PromotionTraits<typename rv_type::value_type, value_type>::promote result_type;
  result_type result = mean;
  for (int i=0; i<num_KL; ++i) {
    value_type t = std_dev*std::sqrt(product_eigen_values(i));
    for (int j=0; j<dim; ++j)
      t *= product_eigen_funcs(i,j).evaluate(point[j]);
    result += random_variables[i]*t;
  }
  return result;
}

template <typename value_type, typename execution_space>
template <typename point_type>
KOKKOS_INLINE_FUNCTION
value_type
Stokhos::KL::ExponentialRandomField<value_type,execution_space>::
evaluate_standard_deviation(const point_type& point) const
{
  value_type result = 0.0;
  for (int i=0; i<num_KL; i++) {
    value_type t = 1.0;
    for (int j=0; j<dim; ++j)
      t *= product_eigen_funcs(i,j).evaluate(point[j]);
    result += product_eigen_values(i).eig_val*t*t;
  }
  return std::sqrt(result);
}

template <typename value_type, typename execution_space>
template <typename point_type>
KOKKOS_INLINE_FUNCTION
value_type
Stokhos::KL::ExponentialRandomField<value_type,execution_space>::
evaluate_eigenfunction(const point_type& point, int i) const
{
  value_type t = std_dev*std::sqrt(product_eigen_values(i));
  for (int j=0; j<dim; ++j)
    t *= product_eigen_funcs(i,j).evaluate(point[j]);
  return t;
}

template <typename value_type, typename execution_space>
void
Stokhos::KL::ExponentialRandomField<value_type,execution_space>::
print(std::ostream& os) const
{
  os << "KL expansion using " << num_KL << " terms in " << dim
     << " dimensions:" << std::endl;
  os << "\tMean = " << mean << ", standard deviation = " << std_dev
     << std::endl;
  os << "\tEigenvalues, Eigenfunctions:" << std::endl;
  for (int i=0; i<num_KL; i++) {
    os << "\t\t" << product_eigen_values(i) << ", ";
    for (int j=0; j<dim-1; ++j) {
      os << "(";
      product_eigen_funcs(i,j).print(os);
      os << ") * ";
    }
    os << "(";
    product_eigen_funcs(i,dim-1).print(os);
    os << ")" << std::endl;
  }
}