/usr/include/trilinos/Stokhos_GrowthRules.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_GROWTH_RULES
#define STOKHOS_GROWTH_RULES
namespace Stokhos {
//! Interface for abstract growth rules
template <typename value_type>
class GrowthRule {
public:
//! Constructor
GrowthRule() {}
//! Destructor
virtual ~GrowthRule() {}
//! Evaluate growth rule
virtual value_type operator() (const value_type& x) const = 0;
};
//! A growth rule that is the identity
template <typename value_type>
class IdentityGrowthRule : public GrowthRule<value_type> {
public:
//! Constructor
IdentityGrowthRule() {}
//! Destructor
virtual ~IdentityGrowthRule() {}
//! Evaluate growth rule
virtual value_type operator() (const value_type& x) const { return x; }
};
//! A linear growth rule
template <typename value_type>
class LinearGrowthRule : public GrowthRule<value_type> {
public:
//! Constructor
LinearGrowthRule(const value_type& a_ = value_type(1),
const value_type& b_ = value_type(0)) :
a(a_), b(b_) {}
//! Destructor
virtual ~LinearGrowthRule() {}
//! Evaluate growth rule
virtual value_type operator() (const value_type& x) const { return a*x+b; }
protected:
//! Slope
value_type a;
//! Offset
value_type b;
};
//! A growth rule that always makes the supplied order even
/*!
* When used in conjunction with Gaussian quadrature that generates n+1
* points for a quadrature of order n, this always results in an odd
* number of points, and thus includes 0. This allows some nesting
* in Gaussian-based sparse grids.
*/
template <typename value_type>
class EvenGrowthRule : public GrowthRule<value_type> {
public:
//! Constructor
EvenGrowthRule() {}
//! Destructor
virtual ~EvenGrowthRule() {}
//! Evaluate growth rule
virtual value_type operator() (const value_type& x) const {
if (x % value_type(2) == value_type(1)) return x+value_type(1);
return x;
}
};
//! An exponential growth rule for Clenshaw-Curtis
template <typename value_type>
class ClenshawCurtisExponentialGrowthRule : public GrowthRule<value_type> {
public:
//! Constructor
ClenshawCurtisExponentialGrowthRule() {}
//! Destructor
virtual ~ClenshawCurtisExponentialGrowthRule() {}
//! Evaluate growth rule
virtual value_type operator() (const value_type& x) const {
if (x == value_type(0)) return value_type(0);
return std::pow(value_type(2),x-value_type(1));
}
};
//! An exponential growth rule for Gauss-Patterson
template <typename value_type>
class GaussPattersonExponentialGrowthRule : public GrowthRule<value_type> {
public:
//! Constructor
GaussPattersonExponentialGrowthRule() {}
//! Destructor
virtual ~GaussPattersonExponentialGrowthRule() {}
//! Evaluate growth rule
virtual value_type operator() (const value_type& x) const {
// Gauss-Patterson rules have precision 3*2*l-1, which is odd.
// Since discrete orthogonality requires integrating polynomials of
// order 2*p, setting p = 3*2*{l-1}-1 will yield the largest p such that
// 2*p <= 3*2^l-1
if (x == value_type(0)) return value_type(0);
return 3*std::pow(value_type(2),x-value_type(1))-value_type(1);
}
};
}
#endif
|