This file is indexed.

/usr/include/trilinos/Stokhos_CompletePolynomialBasis.hpp is in libtrilinos-stokhos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// @HEADER
// ***********************************************************************
// 
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
// 
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_COMPLETEPOLYNOMIALBASIS_HPP
#define STOKHOS_COMPLETEPOLYNOMIALBASIS_HPP

#include "Teuchos_RCP.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"

#include "Stokhos_ProductBasis.hpp"
#include "Stokhos_DerivBasis.hpp"
#include "Stokhos_OneDOrthogPolyBasis.hpp"
#include "Stokhos_ProductBasisUtils.hpp"

namespace Stokhos {

  /*!
   * \brief Multivariate orthogonal polynomial basis generated from a
   * total-order complete-polynomial tensor product of univariate 
   * polynomials.
   */
  /*!
   * The multivariate polynomials are given by 
   * \f[
   *     \Psi_i(x) = \psi_{i_1}(x_1)\dots\psi_{i_d}(x_d)
   * \f]
   * where \f$d\f$ is the dimension of the basis and \f$i_1+\dots+ i_d\leq p\f$,
   * where \f$p\f$ is the order of the basis.  The size of the basis is given
   * by \f$(d+p)!/(d!p!)\f$.
   *
   * NOTE:  Currently all coordinate bases must be of the samer order \f$p\f$.
   */
  template <typename ordinal_type, typename value_type>
  class CompletePolynomialBasis : 
    public ProductBasis<ordinal_type,value_type>,
    public DerivBasis<ordinal_type, value_type> {
  public:

    //! Constructor
    /*!
     * \param bases array of 1-D coordinate bases
     * \param sparse_tol tolerance used to drop terms in sparse triple-product
     *                   tensors
     * \param use_old_cijk_alg use old algorithm for computing the sparse
     *                         triple product tensor  (significantly slower,
     *                         but simpler)
     * \param deriv_coeffs direction used to define derivatives for
     *                     derivative product tensors.  Defaults to
     *                     all one's if not supplied.
     */
    CompletePolynomialBasis(
      const Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type,
 value_type> > >& bases,
      const value_type& sparse_tol = 1.0e-12,
      bool use_old_cijk_alg = false,
      const Teuchos::RCP< Teuchos::Array<value_type> >& deriv_coeffs = Teuchos::null);

    //! Destructor
    virtual ~CompletePolynomialBasis();

    //! \name Implementation of Stokhos::OrthogPolyBasis methods
    //@{

    //! Return order of basis
    ordinal_type order() const;

    //! Return dimension of basis
    ordinal_type dimension() const;

    //! Return total size of basis
    virtual ordinal_type size() const;

    //! Return array storing norm-squared of each basis polynomial
    /*!
     * Entry \f$l\f$ of returned array is given by \f$\langle\Psi_l^2\rangle\f$
     * for \f$l=0,\dots,P\f$ where \f$P\f$ is size()-1.
     */
    virtual const Teuchos::Array<value_type>& norm_squared() const;

    //! Return norm squared of basis polynomial \c i.
    virtual const value_type& norm_squared(ordinal_type i) const;

    //! Compute triple product tensor
    /*!
     * The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
     * \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
     * represents basis polynomial \f$l\f$ and \f$i,j,k=0,\dots,P\f$ where
     * \f$P\f$ is size()-1.
     */
    virtual 
    Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> > 
    computeTripleProductTensor() const;

    //! Compute linear triple product tensor where k = 0,1,..,d
    virtual 
    Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> > 
    computeLinearTripleProductTensor() const;

    //! Evaluate basis polynomial \c i at zero
    virtual value_type evaluateZero(ordinal_type i) const;

    //! Evaluate basis polynomials at given point \c point
    /*!
     * Size of returned array is given by size(), and coefficients are
     * ordered from order 0 up to size size()-1.
     */
    virtual void evaluateBases(
      const Teuchos::ArrayView<const value_type>& point,
      Teuchos::Array<value_type>& basis_vals) const;

    //! Print basis to stream \c os
    virtual void print(std::ostream& os) const;

    //! Return string name of basis
    virtual const std::string& getName() const;

    //@}

    //! \name Implementation of Stokhos::ProductBasis methods
    //@{

    //! Get orders of each coordinate polynomial given an index \c i
    /*!
     * The returned array is of size \f$d\f$, where \f$d\f$ is the dimension of
     * the basis, and entry \f$l\f$ is given by \f$i_l\f$ where
     * \f$\Psi_i(x) = \psi_{i_1}(x_1)\dots\psi_{i_d}(x_d)\f$.
     */
    virtual const MultiIndex<ordinal_type>& term(ordinal_type i) const;

    //! Get index of the multivariate polynomial given orders of each coordinate
    /*!
     * Given the array \c term storing \f$i_1,\dots,\i_d\f$, returns the index
     * \f$i\f$ such that \f$\Psi_i(x) = \psi_{i_1}(x_1)\dots\psi_{i_d}(x_d)\f$.
     */
    virtual ordinal_type index(const MultiIndex<ordinal_type>& term) const;

    //! Return coordinate bases
    /*!
     * Array is of size dimension().
     */
    Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type, 
							   value_type> > > 
    getCoordinateBases() const;

    //! Return maximum order allowable for each coordinate basis
    virtual MultiIndex<ordinal_type> getMaxOrders() const;

    //@}

    //! \name Implementation of Stokhos::DerivBasis methods
    //@{

    /*! 
     * \brief Compute triple product tensor 
     * \f$D_{ijk} = \langle\Psi_i\Psi_j D_v\Psi_k\rangle\f$ where 
     * \f$D_v\Psi_k\f$ represents the derivative of \f$\Psi_k\f$ in the 
     * direction \f$v\f$.
     */
    /*!
     * The definition of \f$v\f$ is defined by the \c deriv_coeffs 
     * constructor argument.
     */
    virtual 
    Teuchos::RCP< Stokhos::Dense3Tensor<ordinal_type, value_type> > 
    computeDerivTripleProductTensor(
      const Teuchos::RCP< const Teuchos::SerialDenseMatrix<ordinal_type, value_type> >& Bij,
      const Teuchos::RCP< const Stokhos::Sparse3Tensor<ordinal_type, value_type> >& Cijk
      ) const;

    /*! 
     * \brief Compute double product tensor 
     * \f$B_{ij} = \langle \Psi_i D_v\Psi_j\rangle\f$ where \f$D_v\Psi_j\f$
     * represents the derivative of \f$\Psi_j\f$ in the direction \f$v\f$.
     */
    /*!
     * The definition of \f$v\f$ is defined by  the \c deriv_coeffs 
     * constructor argument.
     */
    virtual 
    Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type, value_type> > 
    computeDerivDoubleProductTensor() const;

    //@}

  protected:

    //! Compute triple product tensor using old algorithm
    virtual 
    Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> > 
    computeTripleProductTensorOld(ordinal_type order) const;

    //! Compute triple product tensor using new algorithm
    virtual 
    Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> > 
    computeTripleProductTensorNew(ordinal_type order) const;

  private:

    // Prohibit copying
    CompletePolynomialBasis(const CompletePolynomialBasis&);

    // Prohibit Assignment
    CompletePolynomialBasis& operator=(const CompletePolynomialBasis& b);
    
  protected:

    typedef Stokhos::CompletePolynomialBasisUtils<ordinal_type,value_type> CPBUtils;

    //! Name of basis
    std::string name;

    //! Total order of basis
    ordinal_type p;

    //! Total dimension of basis
    ordinal_type d;

    //! Total size of basis
    ordinal_type sz;

    //! Array of bases
    Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > > bases;

    //! Array storing order of each basis
    Teuchos::Array<ordinal_type> basis_orders;

    //! Tolerance for computing sparse Cijk
    value_type sparse_tol;

    //! Use old algorithm for computing Cijk
    bool use_old_cijk_alg;

    //! Coefficients for derivative
    Teuchos::RCP< Teuchos::Array<value_type> > deriv_coeffs;

    //! Norms
    Teuchos::Array<value_type> norms;

    //! 2-D array of basis terms
    Teuchos::Array< MultiIndex<ordinal_type> > terms;

    //! Number of terms up to each order
    Teuchos::Array<ordinal_type> num_terms;

    //! Temporary array used in basis evaluation
    mutable Teuchos::Array< Teuchos::Array<value_type> > basis_eval_tmp;

    //! Short-hand for Cijk
    typedef Stokhos::Sparse3Tensor<ordinal_type, value_type> Cijk_type;

  }; // class CompletePolynomialBasis

} // Namespace Stokhos

// Include template definitions
#include "Stokhos_CompletePolynomialBasisImp.hpp"

#endif