/usr/include/trilinos/Stokhos_CGDivisionExpansionStrategy.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | // $Id$
// $Source$
// @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_CG_DIVISION_EXPANSION_STRATEGY_HPP
#define STOKHOS_CG_DIVISION_EXPANSION_STRATEGY_HPP
#include "Stokhos_DivisionExpansionStrategy.hpp"
#include "Stokhos_OrthogPolyBasis.hpp"
#include "Stokhos_Sparse3Tensor.hpp"
#include "Stokhos_DiagPreconditioner.hpp"
#include "Stokhos_JacobiPreconditioner.hpp"
#include "Stokhos_GSPreconditioner.hpp"
#include "Stokhos_SchurPreconditioner.hpp"
#include "Stokhos_InversePreconditioner.hpp"
#include "Stokhos_BlockPreconditioner.hpp"
#include "Teuchos_TimeMonitor.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include <iostream>
namespace Stokhos {
//! Strategy interface for computing PCE of a/b using only b[0]
/*!
* Such a strategy is only useful when the division occurs in a preconditioner
*/
template <typename ordinal_type, typename value_type, typename node_type>
class CGDivisionExpansionStrategy :
public DivisionExpansionStrategy<ordinal_type,value_type,node_type> {
public:
//! Constructor
CGDivisionExpansionStrategy(
const Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type, value_type> >& basis_,
const Teuchos::RCP<const Stokhos::Sparse3Tensor<ordinal_type, value_type> >& Cijk_,
const ordinal_type prec_iter_,
const value_type tol_,
const ordinal_type PrecNum_,
const ordinal_type max_it_,
const ordinal_type linear_,
const ordinal_type diag_,
const ordinal_type equil_);
//! Destructor
virtual ~CGDivisionExpansionStrategy() {}
// Division operation: c = \alpha*(a/b) + beta*c
virtual void divide(
Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& c,
const value_type& alpha,
const Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& a,
const Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& b,
const value_type& beta);
private:
// Prohibit copying
CGDivisionExpansionStrategy(
const CGDivisionExpansionStrategy&);
// Prohibit Assignment
CGDivisionExpansionStrategy& operator=(
const CGDivisionExpansionStrategy& b);
ordinal_type CG(
const Teuchos::SerialDenseMatrix<ordinal_type, value_type> & A,
Teuchos::SerialDenseMatrix<ordinal_type,value_type> & X,
const Teuchos::SerialDenseMatrix<ordinal_type,value_type> & B,
ordinal_type max_iter,
value_type tolerance,
ordinal_type prec_iter,
ordinal_type order,
ordinal_type dim,
ordinal_type PrecNum,
const Teuchos::SerialDenseMatrix<ordinal_type, value_type> & M,
ordinal_type diag);
protected:
//! Basis
Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type, value_type> > basis;
//! Short-hand for Cijk
typedef Stokhos::Sparse3Tensor<ordinal_type, value_type> Cijk_type;
//! Triple product
Teuchos::RCP<const Cijk_type> Cijk;
//! Dense matrices for linear system
Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type,value_type> > A, X, B, M;
//! Tolerance for CG
ordinal_type prec_iter;
value_type tol;
ordinal_type PrecNum;
ordinal_type max_it;
ordinal_type linear;
ordinal_type diag;
ordinal_type equil;
}; // class CGDivisionExpansionStrategy
} // namespace Stokhos
template <typename ordinal_type, typename value_type, typename node_type>
Stokhos::CGDivisionExpansionStrategy<ordinal_type,value_type,node_type>::
CGDivisionExpansionStrategy(
const Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type, value_type> >& basis_,
const Teuchos::RCP<const Stokhos::Sparse3Tensor<ordinal_type, value_type> >& Cijk_,
const ordinal_type prec_iter_,
const value_type tol_,
const ordinal_type PrecNum_,
const ordinal_type max_it_,
const ordinal_type linear_,
const ordinal_type diag_,
const ordinal_type equil_):
basis(basis_),
Cijk(Cijk_),
prec_iter(prec_iter_),
tol(tol_),
PrecNum(PrecNum_),
max_it(max_it_),
linear(linear_),
diag(diag_),
equil(equil_)
{
ordinal_type sz = basis->size();
A = Teuchos::rcp(new Teuchos::SerialDenseMatrix<ordinal_type,value_type>(
sz, sz));
B = Teuchos::rcp(new Teuchos::SerialDenseMatrix<ordinal_type,value_type>(
sz, 1));
X = Teuchos::rcp(new Teuchos::SerialDenseMatrix<ordinal_type,value_type>(
sz, 1));
M = Teuchos::rcp(new Teuchos::SerialDenseMatrix<ordinal_type,value_type>(
sz, sz));
}
template <typename ordinal_type, typename value_type, typename node_type>
void
Stokhos::CGDivisionExpansionStrategy<ordinal_type,value_type,node_type>::
divide(Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& c,
const value_type& alpha,
const Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& a,
const Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& b,
const value_type& beta)
{
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
TEUCHOS_FUNC_TIME_MONITOR("Stokhos::CGDivisionStrategy::divide()");
#endif
ordinal_type sz = basis->size();
ordinal_type pa = a.size();
ordinal_type pb = b.size();
ordinal_type pc;
if (pb > 1)
pc = sz;
else
pc = pa;
if (c.size() != pc)
c.resize(pc);
const value_type* ca = a.coeff();
const value_type* cb = b.coeff();
value_type* cc = c.coeff();
if (pb > 1) {
// Compute A
A->putScalar(0.0);
typename Cijk_type::k_iterator k_begin = Cijk->k_begin();
typename Cijk_type::k_iterator k_end = Cijk->k_end();
if (pb < Cijk->num_k())
k_end = Cijk->find_k(pb);
value_type cijk;
ordinal_type i,j,k;
for (typename Cijk_type::k_iterator k_it=k_begin; k_it!=k_end; ++k_it) {
k = index(k_it);
for (typename Cijk_type::kj_iterator j_it = Cijk->j_begin(k_it);
j_it != Cijk->j_end(k_it); ++j_it) {
j = index(j_it);
for (typename Cijk_type::kji_iterator i_it = Cijk->i_begin(j_it);
i_it != Cijk->i_end(j_it); ++i_it) {
i = index(i_it);
cijk = value(i_it);
(*A)(i,j) += cijk*cb[k];
}
}
}
// Compute B
B->putScalar(0.0);
for (ordinal_type i=0; i<pa; i++)
(*B)(i,0) = ca[i]*basis->norm_squared(i);
Teuchos::SerialDenseMatrix<ordinal_type,value_type> D(sz, 1);
//Equilibrate the linear system
if (equil == 1){
//Create diag mtx of max row entries
for (ordinal_type i=0; i<sz; i++){
Teuchos::SerialDenseMatrix<ordinal_type, value_type> r(Teuchos::View, *A, 1, sz, i, 0);
D(i,0)=sqrt(r.normOne());
}
//Compute inv(D)*A*inv(D)
for (ordinal_type i=0; i<sz; i++){
for (ordinal_type j=0; j<sz; j++){
(*A)(i,j)=(*A)(i,j)/(D(i,0)*D(j,0));
}
}
//Scale b by inv(D)
for (ordinal_type i=0; i<sz; i++){
(*B)(i,0)=(*B)(i,0)/D(i,0);
}
}
if (linear == 1){
//Compute M, the linear matrix to be used in the preconditioner
pb = basis->dimension()+1;
M->putScalar(0.0);
if (pb < Cijk->num_k())
k_end = Cijk->find_k(pb);
for (typename Cijk_type::k_iterator k_it=k_begin; k_it!=k_end; ++k_it) {
k = index(k_it);
for ( typename Cijk_type::kj_iterator j_it = Cijk->j_begin(k_it);
j_it != Cijk->j_end(k_it); ++j_it) {
j = index(j_it);
for ( typename Cijk_type::kji_iterator i_it = Cijk->i_begin(j_it);
i_it != Cijk->i_end(j_it); ++i_it) {
i = index(i_it);
cijk = value(i_it);
(*M)(i,j) += cijk*cb[k];
}
}
}
//Scale M
if (equil == 1){
//Compute inv(D)*M*inv(D)
for (ordinal_type i=0; i<sz; i++){
for (ordinal_type j=0; j<sz; j++){
(*M)(i,j)=(*M)(i,j)/(D(i,0)*D(j,0));
}
}
}
CG(*A,*X,*B, max_it, tol, prec_iter, basis->order(), basis->dimension(), PrecNum, *M, diag);
}
else{
CG(*A,*X,*B, max_it, tol, prec_iter, basis->order(), basis->dimension(), PrecNum, *A, diag);
}
if (equil == 1 ) {
//Rescale X
for (ordinal_type i=0; i<sz; i++){
(*X)(i,0)=(*X)(i,0)/D(i,0);
}
}
// Compute c
for (ordinal_type i=0; i<pc; i++)
cc[i] = alpha*(*X)(i,0) + beta*cc[i];
}
else {
for (ordinal_type i=0; i<pc; i++)
cc[i] = alpha*ca[i]/cb[0] + beta*cc[i];
}
}
template <typename ordinal_type, typename value_type, typename node_type>
ordinal_type
Stokhos::CGDivisionExpansionStrategy<ordinal_type,value_type,node_type>::
CG(const Teuchos::SerialDenseMatrix<ordinal_type, value_type> & A,
Teuchos::SerialDenseMatrix<ordinal_type,value_type> & X,
const Teuchos::SerialDenseMatrix<ordinal_type,value_type> & B,
ordinal_type max_iter,
value_type tolerance,
ordinal_type prec_iter,
ordinal_type order ,
ordinal_type m,
ordinal_type PrecNum,
const Teuchos::SerialDenseMatrix<ordinal_type, value_type> & M,
ordinal_type diag)
{
ordinal_type n = A.numRows();
ordinal_type k=0;
value_type resid;
Teuchos::SerialDenseMatrix<ordinal_type, value_type> Ax(n,1);
Ax.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,1.0, A, X, 0.0);
Teuchos::SerialDenseMatrix<ordinal_type, value_type> r(Teuchos::Copy,B);
r-=Ax;
resid=r.normFrobenius();
Teuchos::SerialDenseMatrix<ordinal_type, value_type> p(r);
Teuchos::SerialDenseMatrix<ordinal_type, value_type> rho(1,1);
Teuchos::SerialDenseMatrix<ordinal_type, value_type> oldrho(1,1);
Teuchos::SerialDenseMatrix<ordinal_type, value_type> pAp(1,1);
Teuchos::SerialDenseMatrix<ordinal_type, value_type> Ap(n,1);
value_type b;
value_type a;
while (resid > tolerance && k < max_iter){
Teuchos::SerialDenseMatrix<ordinal_type, value_type> z(r);
//Solve Mz=r
if (PrecNum != 0){
if (PrecNum == 1){
Stokhos::DiagPreconditioner<ordinal_type, value_type> precond(M);
precond.ApplyInverse(r,z,prec_iter);
}
else if (PrecNum == 2){
Stokhos::JacobiPreconditioner<ordinal_type, value_type> precond(M);
precond.ApplyInverse(r,z,2);
}
else if (PrecNum == 3){
Stokhos::GSPreconditioner<ordinal_type, value_type> precond(M,0);
precond.ApplyInverse(r,z,1);
}
else if (PrecNum == 4){
Stokhos::SchurPreconditioner<ordinal_type, value_type> precond(M, order, m, diag);
precond.ApplyInverse(r,z,prec_iter);
}
}
rho.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,1.0, r, z, 0.0);
if (k==0){
p.assign(z);
rho.multiply(Teuchos::TRANS, Teuchos::NO_TRANS, 1.0, r, z, 0.0);
}
else {
b=rho(0,0)/oldrho(0,0);
p.scale(b);
p+=z;
}
Ap.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,1.0, A, p, 0.0);
pAp.multiply(Teuchos::TRANS,Teuchos::NO_TRANS,1.0, p, Ap, 0.0);
a=rho(0,0)/pAp(0,0);
Teuchos::SerialDenseMatrix<ordinal_type, value_type> scalep(p);
scalep.scale(a);
X+=scalep;
Ap.scale(a);
r-=Ap;
oldrho.assign(rho);
resid=r.normFrobenius();
k++;
}
//std::cout << "iteration count " << k << std::endl;
return 0;
}
#endif // STOKHOS_DIVISION_EXPANSION_STRATEGY_HPP
|