/usr/include/trilinos/RTOpPack_RTOpT_decl.hpp is in libtrilinos-rtop-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | // @HEADER
// ***********************************************************************
//
// RTOp: Interfaces and Support Software for Vector Reduction Transformation
// Operations
// Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef RTOPPACK_RTOP_NEW_T_DECL_HPP
#define RTOPPACK_RTOP_NEW_T_DECL_HPP
#include "RTOpPack_Types.hpp"
#include "Teuchos_Describable.hpp"
namespace RTOpPack {
/** \brief Abstract base class for all reduction objects.
*/
class ReductTarget : public Teuchos::Describable
{};
/** \brief Templated interface to vector reduction/transformation operators
* {abstract}.
*
* The purpose of this base class is to allow users to specify
* arbitrary reduction/transformation operations on vectors without
* requiring the vectors to reveal their implementation details. The
* design is motivated partly by the "Visitor" patter (Gamma, 1995).
*
* This interface is designed to allow implementation of a distributed
* parallel abstract numerical algorithm without the explicit knowledge of the
* algorithm.
*
* In the following discussion, <tt>v[k]</tt>, <tt>x</tt>, <tt>y</tt> and
* <tt>z</tt> are some abstract vector objects of dimension <tt>n</tt>. Users
* can define operators to perform reduction and/or transformation operations.
* Reduction operations applied over all of the elements of a vector require
* communication between nodes in a parallel environment but do not change any
* of the vectors involved. Transformation operations don't require
* communication between nodes in a parallel environment. The targets of a
* transformation operation is a set of one or more vectors which are changed
* in some way.
*
* The idea is that the user may want to perform reduction operations of the
* form:
*
\verbatim
op(v[0]...v[*],z[0]...z[*]) -> reduct_obj
\endverbatim
*
* where <tt>reduct_obj</tt> is a single object based on a reduction over
* all the elements of the vector arguments, or transformation
* operations of the form:
*
\verbatim
op(v[0](i)...v[*](i),z[0](i)...z[*](i)) -> z[0](i)...z[*](i), for i = 0...n-1
\endverbatim
*
* Operators can also be defined that perform reduction and transformation
* operations on the same vectors that that should only be done for efficiency
* reasons.
*
* The tricky part though, is that the <tt>reduct_obj</tt> object of
* the reduction operation may be more complex than a single scalar
* value. For instance, it could be a <tt>double</tt> and an
* <tt>int</tt> pair such as in the reduction operation:
*
\verbatim
min{ |x(i)|, i = 0...n-1 } -> [ x(j_min), j_min ]
\endverbatim
*
* or it could perform several reductions at once and store
* several scalar values such as in:
*
\verbatim
min_max_sum{ x(i), i = 0...n-1 } -> [ x(j_min), j_min, x(j_max), j_max, x_sum ]
\endverbatim
*
* Transformation operations are much simpler to think about and to deal with.
* Some off-the-wall examples of transformation operations that this design
* will support are:
*
\verbatim
max{ |x(i)|, |y(i)| } + |z(i)| -> z(i), for i = 0...n-1
alpha * |z(i)| / x(i) -> z(i), for i = 0...n-1
alpha * x(i) * y(i) + beta * z(i) -> z(i), for i = 0...n-1
\endverbatim
*
* Reduction operations present the more difficult technical challenge since
* they require information gathered from all of the elements to arrive at the
* final result. This design allows operator classes to be defined that can
* simultaneously perform reduction and transformation operations:
*
\verbatim
op(v[0](i)...v[*](i),z[0](i)...z[*](i)) -> z[0](i)...z[*](i),reduct_obj,
for i = 0...n-1
\endverbatim
*
* This design is based on a few assumptions about the reduction and
* transformation operations and vector implementations themselves. First, we
* will assume that vectors are stored and manipulated as chunks of
* sub-vectors (of dimension <tt>subDim</tt>) where each sub-vector is
* sufficiently large to overcome the inherent overhead of this design. This
* design supports dense strided sub-vectors (see <tt>ConstSubVectorView</tt>
* and <tt>SubVectorView</tt>) but is relatively flexible.
*
* It is strictly the responsibility of the vector implementations to
* determine how these operators are applied. For instance, if we are
* performing a transformation operation of the form:
*
\verbatim
op( x(i), y(i), z(i) ) -> z(i), for i = 0...n-1
\endverbatim
*
* where <tt>x</tt>, <tt>y</tt>, and <tt>z</tt> are distributed parallel
* vectors, then we would assume that the elements would be partitioned onto
* the various processors with the same local elements stored on each
* processor so as not to require any communication between processors.
*/
template<class Scalar>
class RTOpT : public Teuchos::Describable {
public:
/** @name public types */
//@{
/** \brief . */
typedef typename PrimitiveTypeTraits<Scalar,Scalar>::primitiveType
primitive_value_type;
//@}
/** @name Reduction object functions (NVI) */
//@{
/** \brief Get the number of entries of each basic data type in the externalized state for
* a reduction object for this operator.
*
* Note that a specific reduction object is not passed in as an
* argument. This is because the structure of a reduction object is
* completely determined by its associated operator object and this
* structure can not change as a result of a reduction operation
* (this is needed to simplify global communication code when used *
* with MPI).
*
* The default implementation returns zeros for
* <tt>*num_values</tt>, <tt>*num_indexes</tt> and
* <tt>*num_chars</tt> (i.e. by default there is no reduction
* operation performed).
*/
void get_reduct_type_num_entries(
const Ptr<int> &num_values,
const Ptr<int> &num_indexes,
const Ptr<int> &num_chars
) const
{
get_reduct_type_num_entries_impl(num_values, num_indexes, num_chars);
}
/** \brief Creates a new reduction target object initialized and ready to be used in
* a reduction.
*
* The default implementation returns <tt>returnVal.get()==NULL</tt>
* (i.e. by default there is no reduction operation performed).
*/
Teuchos::RCP<ReductTarget> reduct_obj_create() const
{
return reduct_obj_create_impl();
}
/** \brief Reduce intermediate reduction target objects.
*
* The default implementation does not do anything (i.e. by default
* there is no reduction operation performed).
*/
void reduce_reduct_objs(
const ReductTarget& in_reduct_obj, const Ptr<ReductTarget>& inout_reduct_obj
) const
{
reduce_reduct_objs_impl( in_reduct_obj, inout_reduct_obj );
}
/** \brief Reinitialize an already created reduction object.
*
* The default implementation does nothing (i.e. by default there is
* no reduction operation performed).
*
* \param reduct_obj [in/out] Reduction object is reinitialized on output.
*/
void reduct_obj_reinit( const Ptr<ReductTarget> &reduct_obj ) const
{
reduct_obj_reinit_impl(reduct_obj);
}
/** \brief Extract the state of an already created reduction object.
*
* This method allows the state of a reduction target object to be
* externalized so that it can be passed over a heterogeneous
* network of computers.
*
* The default implementation does nothing (i.e. by default there is
* no reduction operation performed).
*/
void extract_reduct_obj_state(
const ReductTarget &reduct_obj,
const ArrayView<primitive_value_type> &value_data,
const ArrayView<index_type> &index_data,
const ArrayView<char_type> &char_data
) const
{
extract_reduct_obj_state_impl( reduct_obj,
value_data, index_data, char_data );
}
/** \brief Load the state of an already created reduction object given
* arrays of primitive objects.
*
* The default implementation does nothing.
*/
void load_reduct_obj_state(
const ArrayView<const primitive_value_type> &value_data,
const ArrayView<const index_type> &index_data,
const ArrayView<const char_type> &char_data,
const Ptr<ReductTarget> &reduct_obj
) const
{
load_reduct_obj_state_impl( value_data, index_data, char_data, reduct_obj );
}
//@}
/** @name Operator functions (NIV) */
//@{
/** \brief Return the name (as a null-terminated C-style string) of the operator.
*
* This name is used to differentiate an operator subclass from all
* other operator subclasses. This is an important property needed
* for a client/server or master/slave runtime configuration.
*
* The default implementation uses the value created in the
* constructor <tt>RTOpT()</tt>.
*/
std::string op_name() const
{
return op_name_impl();
}
// 2007/11/14: rabartl: ToDo: Above: change to return std::string. Don't
// bother deprecating the old function since you can't really do it very
// well.
/** \brief Returns <tt>true</tt> if this operator is coordinate invariant.
*
* The default implementation returns <tt>true</tt> as most vector
* operators are coordinate invariant.
*/
bool coord_invariant() const
{
return coord_invariant_impl();
}
/** \brief Returns the continuous range of elements that this operator is
* defined over.
*
* Vector client implementations are free to ignore this but they can use
* this information to optimize rare operators that only interact with a
* subset of elements.
*
* The default implementation return <tt>Range1D()</tt> which means all of
* the elements.
*/
Range1D range() const
{
return range_impl();
}
/** \brief Apply the reduction/transformation operator to a set of
* sub-vectors.
*
* <tt>op(sub_vecs[], targ_sub_vecs[], reduct_obj) -> targ_sub_vecs[], reduct_obj</tt>.
*
* This is the bread and butter of the whole design. Through this method, a
* vector implementation applies a reduction/transformation operator to a
* set of sub-vectors.
*
* \param sub_vecs [in] Array (length <tt>num_vecs</tt>) of non-mutable
* vectors to apply the operator over. The ordering of these sub-vectors
* <tt>sub_vecs[k], for k = 0...num_vecs-1</tt>, is significant to the this
* operator object. If <tt>num_vecs==0</tt> then <tt>sub_vecs</tt> can be
* <tt>NULL</tt>.
*
* \param targ_sub_vecs [in/out] Array (length <tt>num_targ_vecs</tt>) of
* mutable vectors to apply the operator over and be mutated. The ordering
* of these sub-vectors <tt>targ_sub_vecs[k], for k =
* 0...num_targ_vecs-1</tt>, is significant to this operator object. If
* <tt>num_targ_vecs==0</tt> then <tt>targ_sub_vecs</tt> can be
* <tt>NULL</tt>.
*
* \param reduct_obj [in/out] This reduction object must have been created
* by a <tt>this->reduct_obj_create()</tt> call and it may have * already
* passed through one or more other reduction operations (accumulating the
* reductions along the way). If
* <tt>this->get_reduct_type_num_entries()</tt> returns
* <tt>num_values==0</tt>, <tt>num_indexes==0</tt> and
* <tt>num_chars==0</tt>, then <tt>reduct_obj</tt> should be set to
* <tt>NULL</tt> as no reduction will be performed.
*
* Preconditions:<ul>
*
* <li> <tt>globalOffset==sub_vecs[k].globalOffset</tt> , for <tt>k =
* 0,...,sub_vecs.subDim()-1</tt>
*
* <li> <tt>globalOffset==targ_sub_vecs[k].globalOffset</tt> , for <tt>k =
* 0,...,targ_vecs.subDim()-1</tt>
*
* <li> <tt>subDim==sub_vecs[k].subDim()</tt> , for <tt>k =
* 0,...,sub_vecs.subDim()-1</tt>
*
* <li> <tt>subDim==targ_sub_vecs[k].subDim()</tt> , for <tt>k =
* 0,...,targ_vecs.subDim()-1</tt>
*
* </ul>
*
* If <tt>nonnull(reduct_obj)==true</tt> then the reduction operation will
* be accumulated as:
*
\verbatim
op(sub_vecs[], targ_sub_vecs[], reduct_obj) -> reduct_obj
\endverbatim
*
* By allowing an in/out <tt>reduct_obj</tt> and an accumulation of
* the reduction, the maximum reuse of memory is achieved. If
* <tt>this->reduct_obj_create()</tt> or
* <tt>this->reduct_obj_reinit()</tt> (passing in
* <tt>reduct_obj</tt>) was called immediately before this function,
* then on return, <tt>reduct_obj</tt> will contain only the
* reduction from this function call.
*
* If the sizes of <tt>sub_vecs</tt> and <tt>targ_sub_vecs</tt> is
* incompatible with the underlying operator object then
* <tt>InvalidNumVecs</tt> is thrown. If the sub-vectors are not compatible
* (i.e. <tt>globalOffset</tt> and/or <tt>subDim</tt> not the same) then
* <tt>IncompatibleVecs</tt> is thrown.
*/
void apply_op(
const ArrayView<const ConstSubVectorView<Scalar> > &sub_vecs,
const ArrayView<const SubVectorView<Scalar> > &targ_sub_vecs,
const Ptr<ReductTarget> &reduct_obj
) const
{
apply_op_impl(sub_vecs, targ_sub_vecs, reduct_obj);
}
//@}
protected:
/** \name Protected virtual functions to be overridden by subclasses. */
//@{
/** \brief . */
virtual void get_reduct_type_num_entries_impl(
const Ptr<int> &num_values,
const Ptr<int> &num_indexes,
const Ptr<int> &num_chars
) const;
/** \brief . */
virtual Teuchos::RCP<ReductTarget> reduct_obj_create_impl() const;
/** \brief . */
virtual void reduce_reduct_objs_impl(
const ReductTarget& in_reduct_obj, const Ptr<ReductTarget>& inout_reduct_obj
) const;
/** \brief . */
virtual void reduct_obj_reinit_impl( const Ptr<ReductTarget> &reduct_obj ) const;
/** \brief . */
virtual void extract_reduct_obj_state_impl(
const ReductTarget &reduct_obj,
const ArrayView<primitive_value_type> &value_data,
const ArrayView<index_type> &index_data,
const ArrayView<char_type> &char_data
) const;
/** \brief . */
virtual void load_reduct_obj_state_impl(
const ArrayView<const primitive_value_type> &value_data,
const ArrayView<const index_type> &index_data,
const ArrayView<const char_type> &char_data,
const Ptr<ReductTarget> &reduct_obj
) const;
/** \brief . */
virtual std::string op_name_impl() const;
/** \brief . */
virtual bool coord_invariant_impl() const;
/** \brief . */
virtual Range1D range_impl() const;
/** \brief . */
virtual void apply_op_impl(
const ArrayView<const ConstSubVectorView<Scalar> > &sub_vecs,
const ArrayView<const SubVectorView<Scalar> > &targ_sub_vecs,
const Ptr<ReductTarget> &reduct_obj
) const = 0;
//@}
/** \name Nonvirtual protected functions. */
//@{
/** \brief Constructor that creates an operator name appended with the
* type. */
RTOpT( const std::string &op_name_base = "" );
/** \brief Just set the operator name. */
void setOpNameBase( const std::string &op_name_base );
//@}
public:
private:
std::string op_name_;
void throwNoReductError() const;
}; // end class RTOpT
// 2007/11/14: rabartl: ToDo: Break off an RTOpDefaultBase interface and put
// all default implementation functions in there.
} // end namespace RTOpPack
#endif // RTOPPACK_RTOP_NEW_T_DECL_HPP
|