This file is indexed.

/usr/include/trilinos/RTOpPack_RTOpT_decl.hpp is in libtrilinos-rtop-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
// @HEADER
// ***********************************************************************
// 
// RTOp: Interfaces and Support Software for Vector Reduction Transformation
//       Operations
//                Copyright (2006) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER


#ifndef RTOPPACK_RTOP_NEW_T_DECL_HPP
#define RTOPPACK_RTOP_NEW_T_DECL_HPP


#include "RTOpPack_Types.hpp"
#include "Teuchos_Describable.hpp"


namespace RTOpPack {


/** \brief Abstract base class for all reduction objects.
 */
class ReductTarget : public Teuchos::Describable
{};


/** \brief Templated interface to vector reduction/transformation operators
 * {abstract}.
 *
 * The purpose of this base class is to allow users to specify
 * arbitrary reduction/transformation operations on vectors without
 * requiring the vectors to reveal their implementation details.  The
 * design is motivated partly by the "Visitor" patter (Gamma, 1995).
 *
 * This interface is designed to allow implementation of a distributed
 * parallel abstract numerical algorithm without the explicit knowledge of the
 * algorithm.
 *
 * In the following discussion, <tt>v[k]</tt>, <tt>x</tt>, <tt>y</tt> and
 * <tt>z</tt> are some abstract vector objects of dimension <tt>n</tt>.  Users
 * can define operators to perform reduction and/or transformation operations.
 * Reduction operations applied over all of the elements of a vector require
 * communication between nodes in a parallel environment but do not change any
 * of the vectors involved.  Transformation operations don't require
 * communication between nodes in a parallel environment.  The targets of a
 * transformation operation is a set of one or more vectors which are changed
 * in some way.
 *
 * The idea is that the user may want to perform reduction operations of the
 * form:
 *
 \verbatim

 op(v[0]...v[*],z[0]...z[*]) -> reduct_obj
 \endverbatim
 *
 * where <tt>reduct_obj</tt> is a single object based on a reduction over
 * all the elements of the vector arguments, or transformation
 * operations of the form:
 *
 \verbatim

 op(v[0](i)...v[*](i),z[0](i)...z[*](i)) -> z[0](i)...z[*](i), for i = 0...n-1
 \endverbatim
 *
 * Operators can also be defined that perform reduction and transformation
 * operations on the same vectors that that should only be done for efficiency
 * reasons.
 *
 * The tricky part though, is that the <tt>reduct_obj</tt> object of
 * the reduction operation may be more complex than a single scalar
 * value.  For instance, it could be a <tt>double</tt> and an
 * <tt>int</tt> pair such as in the reduction operation:
 *
 \verbatim

 min{ |x(i)|, i = 0...n-1 } -> [ x(j_min), j_min ]
 \endverbatim
 *
 * or it could perform several reductions at once and store
 * several scalar values such as in:
 *
 \verbatim

 min_max_sum{ x(i), i = 0...n-1 } -> [ x(j_min), j_min, x(j_max), j_max, x_sum ]
 \endverbatim
 *
 * Transformation operations are much simpler to think about and to deal with.
 * Some off-the-wall examples of transformation operations that this design
 * will support are:
 *
 \verbatim

 max{ |x(i)|, |y(i)| } + |z(i)| -> z(i), for i = 0...n-1
 
 alpha * |z(i)| / x(i) -> z(i), for i = 0...n-1
 
 alpha * x(i) * y(i) + beta * z(i) -> z(i), for i = 0...n-1
 \endverbatim
 *
 * Reduction operations present the more difficult technical challenge since
 * they require information gathered from all of the elements to arrive at the
 * final result.  This design allows operator classes to be defined that can
 * simultaneously perform reduction and transformation operations:
 *
 \verbatim

   op(v[0](i)...v[*](i),z[0](i)...z[*](i)) -> z[0](i)...z[*](i),reduct_obj,
      for i = 0...n-1
 \endverbatim
 *
 * This design is based on a few assumptions about the reduction and
 * transformation operations and vector implementations themselves.  First, we
 * will assume that vectors are stored and manipulated as chunks of
 * sub-vectors (of dimension <tt>subDim</tt>) where each sub-vector is
 * sufficiently large to overcome the inherent overhead of this design.  This
 * design supports dense strided sub-vectors (see <tt>ConstSubVectorView</tt>
 * and <tt>SubVectorView</tt>) but is relatively flexible.
 *
 * It is strictly the responsibility of the vector implementations to
 * determine how these operators are applied.  For instance, if we are
 * performing a transformation operation of the form:
 *
 \verbatim

 op( x(i), y(i), z(i) ) -> z(i), for i = 0...n-1
 \endverbatim
 *
 * where <tt>x</tt>, <tt>y</tt>, and <tt>z</tt> are distributed parallel
 * vectors, then we would assume that the elements would be partitioned onto
 * the various processors with the same local elements stored on each
 * processor so as not to require any communication between processors.
 */
template<class Scalar>
class RTOpT : public Teuchos::Describable {
public:

  /** @name public types */
  //@{

  /** \brief . */
  typedef typename PrimitiveTypeTraits<Scalar,Scalar>::primitiveType
  primitive_value_type;

  //@}

  /** @name Reduction object functions (NVI) */
  //@{

  /** \brief Get the number of entries of each basic data type in the externalized state for
   * a reduction object for this operator.
   *
   * Note that a specific reduction object is not passed in as an
   * argument. This is because the structure of a reduction object is
   * completely determined by its associated operator object and this
   * structure can not change as a result of a reduction operation
   * (this is needed to simplify global communication code when used *
   * with MPI).
   *
   * The default implementation returns zeros for
   * <tt>*num_values</tt>, <tt>*num_indexes</tt> and
   * <tt>*num_chars</tt> (i.e. by default there is no reduction
   * operation performed).
   */
  void get_reduct_type_num_entries(
    const Ptr<int> &num_values,
    const Ptr<int> &num_indexes,
    const Ptr<int> &num_chars
    ) const
    {
      get_reduct_type_num_entries_impl(num_values, num_indexes, num_chars);
    }

  /** \brief Creates a new reduction target object initialized and ready to be used in
   * a reduction.
   *
   * The default implementation returns <tt>returnVal.get()==NULL</tt>
   * (i.e. by default there is no reduction operation performed).
   */
  Teuchos::RCP<ReductTarget> reduct_obj_create() const
    {
      return reduct_obj_create_impl();
    }

  /** \brief Reduce intermediate reduction target objects.
   *
   * The default implementation does not do anything (i.e. by default
   * there is no reduction operation performed).
   */
  void reduce_reduct_objs(
    const ReductTarget& in_reduct_obj, const Ptr<ReductTarget>& inout_reduct_obj
    ) const
    {
      reduce_reduct_objs_impl( in_reduct_obj, inout_reduct_obj );
    }

  /** \brief Reinitialize an already created reduction object.
   *
   * The default implementation does nothing (i.e. by default there is
   * no reduction operation performed).
   *
   * \param reduct_obj [in/out] Reduction object is reinitialized on output.
   */
  void reduct_obj_reinit( const Ptr<ReductTarget> &reduct_obj ) const
    {
      reduct_obj_reinit_impl(reduct_obj);
    }

  /** \brief Extract the state of an already created reduction object.
   *
   * This method allows the state of a reduction target object to be
   * externalized so that it can be passed over a heterogeneous
   * network of computers.
   *
   * The default implementation does nothing (i.e. by default there is
   * no reduction operation performed).
   */
  void extract_reduct_obj_state(
    const ReductTarget &reduct_obj,
    const ArrayView<primitive_value_type> &value_data,
    const ArrayView<index_type> &index_data,
    const ArrayView<char_type> &char_data
    ) const
    {
      extract_reduct_obj_state_impl( reduct_obj,
        value_data, index_data, char_data );
    }

  /** \brief Load the state of an already created reduction object given
   * arrays of primitive objects.
   *
   * The default implementation does nothing.
   */
  void load_reduct_obj_state(
    const ArrayView<const primitive_value_type> &value_data,
    const ArrayView<const index_type> &index_data,
    const ArrayView<const char_type> &char_data,
    const Ptr<ReductTarget> &reduct_obj
    ) const
    {
      load_reduct_obj_state_impl( value_data, index_data, char_data, reduct_obj );
    }

  //@}

  /** @name Operator functions (NIV) */
  //@{

  /** \brief Return the name (as a null-terminated C-style string) of the operator.
   *
   * This name is used to differentiate an operator subclass from all
   * other operator subclasses. This is an important property needed
   * for a client/server or master/slave runtime configuration.
   *
   * The default implementation uses the value created in the
   * constructor <tt>RTOpT()</tt>.
   */
  std::string op_name() const
    {
      return op_name_impl();
    }

  // 2007/11/14: rabartl: ToDo: Above: change to return std::string.  Don't
  // bother deprecating the old function since you can't really do it very
  // well.

  /** \brief Returns <tt>true</tt> if this operator is coordinate invariant.
   *
   * The default implementation returns <tt>true</tt> as most vector
   * operators are coordinate invariant.
   */
  bool coord_invariant() const
    {
      return coord_invariant_impl();
    }

  /** \brief Returns the continuous range of elements that this operator is
   * defined over.
   *
   * Vector client implementations are free to ignore this but they can use
   * this information to optimize rare operators that only interact with a
   * subset of elements.
   *
   * The default implementation return <tt>Range1D()</tt> which means all of
   * the elements.
   */
  Range1D range() const
    {
      return range_impl();
    }

  /** \brief Apply the reduction/transformation operator to a set of
   * sub-vectors.
   *
   * <tt>op(sub_vecs[], targ_sub_vecs[], reduct_obj) -> targ_sub_vecs[], reduct_obj</tt>.
   *
   * This is the bread and butter of the whole design. Through this method, a
   * vector implementation applies a reduction/transformation operator to a
   * set of sub-vectors.
   *
   * \param sub_vecs [in] Array (length <tt>num_vecs</tt>) of non-mutable
   * vectors to apply the operator over. The ordering of these sub-vectors
   * <tt>sub_vecs[k], for k = 0...num_vecs-1</tt>, is significant to the this
   * operator object. If <tt>num_vecs==0</tt> then <tt>sub_vecs</tt> can be
   * <tt>NULL</tt>.
   *
   * \param targ_sub_vecs [in/out] Array (length <tt>num_targ_vecs</tt>) of
   * mutable vectors to apply the operator over and be mutated. The ordering
   * of these sub-vectors <tt>targ_sub_vecs[k], for k =
   * 0...num_targ_vecs-1</tt>, is significant to this operator object. If
   * <tt>num_targ_vecs==0</tt> then <tt>targ_sub_vecs</tt> can be
   * <tt>NULL</tt>.
   *
   * \param reduct_obj [in/out] This reduction object must have been created
   * by a <tt>this->reduct_obj_create()</tt> call and it may have * already
   * passed through one or more other reduction operations (accumulating the
   * reductions along the way). If
   * <tt>this->get_reduct_type_num_entries()</tt> returns
   * <tt>num_values==0</tt>, <tt>num_indexes==0</tt> and
   * <tt>num_chars==0</tt>, then <tt>reduct_obj</tt> should be set to
   * <tt>NULL</tt> as no reduction will be performed.
   *
   * Preconditions:<ul>
   *
   * <li> <tt>globalOffset==sub_vecs[k].globalOffset</tt> , for <tt>k =
   * 0,...,sub_vecs.subDim()-1</tt>
   *
   * <li> <tt>globalOffset==targ_sub_vecs[k].globalOffset</tt> , for <tt>k =
   * 0,...,targ_vecs.subDim()-1</tt>
   *
   * <li> <tt>subDim==sub_vecs[k].subDim()</tt> , for <tt>k =
   * 0,...,sub_vecs.subDim()-1</tt>
   *
   * <li> <tt>subDim==targ_sub_vecs[k].subDim()</tt> , for <tt>k =
   * 0,...,targ_vecs.subDim()-1</tt>
   *
   * </ul>
   *
   * If <tt>nonnull(reduct_obj)==true</tt> then the reduction operation will
   * be accumulated as:
   *
   \verbatim
   op(sub_vecs[], targ_sub_vecs[], reduct_obj) -> reduct_obj
   \endverbatim
   *
   * By allowing an in/out <tt>reduct_obj</tt> and an accumulation of
   * the reduction, the maximum reuse of memory is achieved. If
   * <tt>this->reduct_obj_create()</tt> or
   * <tt>this->reduct_obj_reinit()</tt> (passing in
   * <tt>reduct_obj</tt>) was called immediately before this function,
   * then on return, <tt>reduct_obj</tt> will contain only the
   * reduction from this function call.
   *
   * If the sizes of <tt>sub_vecs</tt> and <tt>targ_sub_vecs</tt> is
   * incompatible with the underlying operator object then
   * <tt>InvalidNumVecs</tt> is thrown. If the sub-vectors are not compatible
   * (i.e. <tt>globalOffset</tt> and/or <tt>subDim</tt> not the same) then
   * <tt>IncompatibleVecs</tt> is thrown.
   */
  void apply_op(
    const ArrayView<const ConstSubVectorView<Scalar> > &sub_vecs,
    const ArrayView<const SubVectorView<Scalar> > &targ_sub_vecs,
    const Ptr<ReductTarget> &reduct_obj
    ) const
    {
      apply_op_impl(sub_vecs, targ_sub_vecs, reduct_obj);
    }

  //@}

protected:

  /** \name Protected virtual functions to be overridden by subclasses. */
  //@{

  /** \brief . */
  virtual void get_reduct_type_num_entries_impl(
    const Ptr<int> &num_values,
    const Ptr<int> &num_indexes,
    const Ptr<int> &num_chars
    ) const;

  /** \brief . */
  virtual Teuchos::RCP<ReductTarget> reduct_obj_create_impl() const;

  /** \brief . */
  virtual void reduce_reduct_objs_impl(
    const ReductTarget& in_reduct_obj, const Ptr<ReductTarget>& inout_reduct_obj
    ) const;

  /** \brief . */
  virtual void reduct_obj_reinit_impl( const Ptr<ReductTarget> &reduct_obj ) const;

  /** \brief . */
  virtual void extract_reduct_obj_state_impl(
    const ReductTarget &reduct_obj,
    const ArrayView<primitive_value_type> &value_data,
    const ArrayView<index_type> &index_data,
    const ArrayView<char_type> &char_data
    ) const;

  /** \brief . */
  virtual void load_reduct_obj_state_impl(
    const ArrayView<const primitive_value_type> &value_data,
    const ArrayView<const index_type> &index_data,
    const ArrayView<const char_type> &char_data,
    const Ptr<ReductTarget> &reduct_obj
    ) const;

  /** \brief . */
  virtual std::string op_name_impl() const;

  /** \brief . */
  virtual bool coord_invariant_impl() const;

  /** \brief . */
  virtual Range1D range_impl() const;

  /** \brief . */
  virtual void apply_op_impl(
    const ArrayView<const ConstSubVectorView<Scalar> > &sub_vecs,
    const ArrayView<const SubVectorView<Scalar> > &targ_sub_vecs,
    const Ptr<ReductTarget> &reduct_obj
    ) const = 0;

  //@}

  /** \name Nonvirtual protected functions. */
  //@{

  /** \brief Constructor that creates an operator name appended with the
   * type. */
  RTOpT( const std::string &op_name_base = "" );

  /** \brief Just set the operator name. */
  void setOpNameBase( const std::string &op_name_base );

  //@}

public:


private:

  std::string op_name_;

  void throwNoReductError() const;

}; // end class RTOpT


// 2007/11/14: rabartl: ToDo: Break off an RTOpDefaultBase interface and put
// all default implementation functions in there.


} // end namespace RTOpPack


#endif // RTOPPACK_RTOP_NEW_T_DECL_HPP