/usr/include/trilinos/NOX_Solver_InexactTrustRegionBased.H is in libtrilinos-nox-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | // $Id$
// $Source$
//@HEADER
// ************************************************************************
//
// NOX: An Object-Oriented Nonlinear Solver Package
// Copyright (2002) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roger Pawlowski (rppawlo@sandia.gov) or
// Eric Phipps (etphipp@sandia.gov), Sandia National Laboratories.
// ************************************************************************
// CVS Information
// $Source$
// $Author$
// $Date$
// $Revision$
// ************************************************************************
//@HEADER
#ifndef NOX_SOLVER_INEXACTTRUSTREGIONBASED_H
#define NOX_SOLVER_INEXACTTRUSTREGIONBASED_H
#include "NOX_Solver_Generic.H" // base class
// Class data elements
#include "Teuchos_ParameterList.hpp"
#include "NOX_Direction_Utils_InexactNewton.H"
#include "NOX_Solver_PrePostOperator.H"
#include "Teuchos_RCP.hpp"
// Forward declarations
namespace NOX {
class Utils;
class GlobalData;
namespace MeritFunction {
class Generic;
}
namespace Direction {
class Generic;
}
}
namespace NOX {
namespace Solver {
/*!
\brief %Newton-like solver using a trust region.
Our goal is to solve: \f$ F(x) = 0, \f$ where \f$ F:\Re^n \rightarrow
\Re^n \f$. Alternatively, we might say that we wish to solve
\f$
\min f(x) \equiv \frac{1}{2} \|F(x)\|^2_2.
\f$
The trust region subproblem (TRSP) at iteration \f$k\f$ is given by
\f$
\min \; m_k(s) \equiv f_k + g_k^T d + \frac{1}{2} d^T B_k d,
\mbox{ s.t. } \|d\| \leq \Delta_k
\quad \mbox{(TRSP)}
\f$
where
<ul>
<li>\f$ f_k = f(x_k) = \frac{1}{2} \|F(x_k)\|^2_2 \f$,
<li>\f$ g_k = \nabla f(x_k) = J(x_k)^T F(x_k) \f$,
<li>\f$ B_k = J(x_k)^T J(x_k) \approx \nabla^2 f(x_k) \f$,
<li>\f$ J(x_k)\f$ is the Jacobian of \f$F\f$ at \f$x_k\f$, and
<li>\f$ \Delta_k \f$ is the trust region radius.
</ul>
The "improvement ratio" for a given step \f$ s \f$ is defined as
\f$
\rho = \displaystyle\frac{ f(x_k) - f(x_k + d) } { m_k(0) - m_k(d) }
\f$
An iteration consists of the following steps.
<ul>
<li> Compute Newton-like direction: \f$n\f$
<li> Compute Cauchy-like direction: \f$c\f$
<li> If this is the first iteration, initialize \f$\Delta\f$ as
follows: If \f$\|n\|_2 < \Delta_{\min}\f$, then \f$\Delta = 2
\Delta_{\min}\f$; else, \f$\Delta = \|n\|_2\f$.
<li> Initialize \f$\rho = -1\f$
<li> While \f$\rho < \rho_{\min}\f$ and \f$\Delta > \Delta_{\min}\f$, do the following.
<ul>
<li> Compute the direction \f$d\f$ as follows:
<ul>
<li> If \f$\|n\|_2 < \Delta\f$, then take a Newton step by
setting \f$d = n\f$
<li> Otherwise if \f$\|c\|_2 > \Delta\f$, then take a Cauchy
step by setting \f$d =
\displaystyle\frac{\Delta}{\|c\|_2} c\f$
<li> Otherwise, take a Dog Leg step by setting
\f$ d = (1-\gamma) c + \gamma n \f$ where
\f$
\gamma = \displaystyle\frac
{-c^T a + \sqrt{ (c^Ta)^2 - (c^Tc - \Delta^2) a^Ta}}{a^Ta}
\f$
with \f$a = n-c\f$.
</ul>
<li> Set \f$x_{\rm new} = x + d\f$ and calculate \f$f_{\rm new}\f$
<li> If \f$f_{\rm new} \geq f\f$, then \f$\rho = -1\f$ Otherwise
\f$ \rho = \displaystyle \frac {f - f_{\rm new}} {| d^T J F
+ \frac{1}{2} (J d)^T (J d)|} \f$
</ul>
<li> Update the solution: \f$x = x_{\rm new}\f$
<li> Update trust region:
<ul>
<li> If \f$\rho < \rho_{\rm s}\f$ and \f$\|n\|_2 < \Delta\f$,
then shrink the trust region to the size of the Newton step:
\f$\Delta = \|n\|_2\f$.
<li> Otherwise if \f$\rho < \rho_{\rm s}\f$, then shrink the
trust region: \f$\Delta = \max \{ \beta_{\rm s} \Delta,
\Delta_{\min} \} \f$.
<li> Otherwise if \f$\rho > \rho_{\rm e}\f$ and \f$\|d\|_2 =
\Delta\f$, then expand the trust region: \f$\Delta = \min \{
\beta_{\rm e} \Delta, \Delta_{\rm max} \} \f$.
</ul>
</ul>
<B>Input Paramters</B>
The following parameters should be specified in the "Trust Region"
sublist based to the solver.
- "Inner Iteration Method" - Choice of trust region algorithm to use.
Choices are:
<ul>
<li> "Standard Trust Region"
<li> "Inexact Trust Region"
</ul>
- "Direction" - Sublist of the direction parameters for the %Newton
point, passed to the NOX::Direction::Manager constructor. If this
sublist does not exist, it is created by default. Furthermore, if
"Method" is not specified in this sublist, it is added with a value of
"Newton".
- "Cauchy %Direction" - Sublist of the direction parameters for the
Cauchy point, passed to the NOX::Direction::Manager constructor. If
this sublist does not exist, it is created by default. Furthermore, if
"Method" is not specified in this sublist, it is added with a value of
"Steepest Descent" Finally, if the sub-sublist "Steepest Descent" does
not exist, it is created and the parameter "Scaling Type" is added and
set to "Quadratic Min Model".
- "Minimum Trust Region Radius" (\f$\Delta_{\min}\f$) - Minimum allowable trust region
radius. Defaults to 1.0e-6.
- "Maximum Trust Region Radius" (\f$\Delta_{\max}\f$) - Minimum allowable trust region
radius. Defaults to 1.0e+10.
- "Minimum Improvement Ratio" (\f$\rho_{\min}\f$) - Minimum improvement ratio to accept
the step. Defaults to 1.0e-4.
- "Contraction Trigger Ratio" (\f$\rho_{\rm s}\f$) - If the improvement ratio is less than
this value, then the trust region is contracted by the amount
specified by the "Contraction Factor". Must be larger than "Minimum
Improvement Ratio". Defaults to 0.1.
- "Contraction Factor" (\f$\beta_{\rm s}\f$) - See above. Defaults to 0.25.
- "Expansion Trigger Ratio" (\f$\rho_{\rm e}\f$) - If the
improvement ratio is greater than this value, then the trust region
is contracted by the amount specified by the "Expansion
Factor". Defaults to 0.75.
- "Expansion Factor" (\f$\beta_{\rm e}\f$) - See above. Defaults to 4.0.
- "Recovery Step" - Defaults to 1.0.
- "Use Ared/Pred Ratio Calculation" (boolean) - Defaults to false. If
set to true, this option replaces the algorithm used to compute the
improvement ratio, \f$ \rho \f$, as described above. The improvement
ratio is replaced by an "Ared/Pred" sufficient decrease criteria
similar to that used in line search algorithms (see Eisenstat and
Walker, SIAM Journal on Optimization V4 no. 2 (1994) pp 393-422):
- \f$\rho = \frac{\|F(x) \| - \| F(x + d) \| }
{\| F(x) \| - \| F(x) + Jd \| } \f$
- "Use Cauchy in Newton Direction" - Boolean. Used only by the
"Inexact Trust Region" algorithm. If set to true, the initial guess
for the Newton direction computation will use the Cauchy direction as
the initial guess. Defaults to false.
- "Use Dogleg Segment Minimization" - Boolean. Used only by the
"Inexact Trust Region" algorithm. If set to true, the \f$ \tau \f$
parameter is minimized over the dogleg line segments instead of
being computed at the trust regioin radius. Used only by the
"Inexact Trust Region" algorithm. Defaults to false.
- "Use Counters" - Boolean. If set to true, solver statistics will be stored. Defaults to true.
- "Write Output Parameters" - Boolean. If set to true, the solver statistics will be written to the relevant "Output" sublists (see Output Parameters). Defaults to true.
- "Solver Options" - Sublist of general solver options.
<ul>
<li> "User Defined Pre/Post Operator" is supported. See NOX::Parameter::PrePostOperator for more details.
</ul>
<B>Output Paramters</B>
A sublist called "Output" will be created at the top level of the parameter list and contain the following general solver parameters:
- "Nonlinear Iterations" - Number of nonlinear iterations
- "2-Norm or Residual" - Two-norm of final residual
A sublist called "Output" will be created in the "Trust Region" sublist and contain the following trust region specific output parameters:
- "Number of Cauchy Steps" - Number of cauchy steps taken during the solve.
- "Number of Newton Steps" - Number of Newton steps taken during the solve.
- "Number of Dogleg Steps" - Number of Dogleg steps taken during the solve.
- "Number of Trust Region Inner Iterations" - Number of inner iterations
required to adjust the trust region radius.
- "Dogleg Steps: Average Fraction of Newton Step Length" - Average value of the fraction a dogleg step took compared to the full Newton step. The fractional value is computed as \f$ \mbox{frac} = \frac{\| d \|}{\| n\|} \f$.
- "Dogleg Steps: Average Fraction Between Cauchy and Newton Direction" - Average value of the fraction a dogleg step took between the Cauchy and Newton directions. This is the \f$ \gamma \f$ variable in the standard dogleg algorithm and the \f$ \tau \f$ parameter in the inexact dogleg algorithm. A value of 0.0 is a full step in the Cauchy direction and a value of 1.0 is a full step in the Newton direction.
\author Tammy Kolda (SNL 8950), Roger Pawlowski (SNL 9233)
*/
class InexactTrustRegionBased : public Generic {
public:
/*!
\brief Constructor
See reset() for description.
*/
InexactTrustRegionBased(
const Teuchos::RCP<NOX::Abstract::Group>& grp,
const Teuchos::RCP<NOX::StatusTest::Generic>& tests,
const Teuchos::RCP<Teuchos::ParameterList>& params);
//! Destructor
virtual ~InexactTrustRegionBased();
virtual void reset(const NOX::Abstract::Vector& initialGuess,
const Teuchos::RCP<NOX::StatusTest::Generic>& tests);
virtual void reset(const NOX::Abstract::Vector& initialGuess);
virtual NOX::StatusTest::StatusType getStatus();
virtual NOX::StatusTest::StatusType step();
virtual NOX::StatusTest::StatusType solve();
virtual const NOX::Abstract::Group& getSolutionGroup() const;
virtual const NOX::Abstract::Group& getPreviousSolutionGroup() const;
virtual int getNumIterations() const;
virtual const Teuchos::ParameterList& getList() const;
inline virtual Teuchos::RCP< const NOX::Abstract::Group > getSolutionGroupPtr() const {return solnPtr;};
inline virtual Teuchos::RCP< const NOX::Abstract::Group > getPreviousSolutionGroupPtr() const {return oldSolnPtr;};
inline virtual Teuchos::RCP< const Teuchos::ParameterList > getListPtr() const {return paramsPtr;};
protected:
//! "Standard" trust region implementation
virtual NOX::StatusTest::StatusType iterateStandard();
//! "Inexact Trust Region"
virtual NOX::StatusTest::StatusType iterateInexact();
//! Print out initialization information and calcuation the RHS.
virtual void init();
//! Prints the current iteration information.
virtual void printUpdate();
//! Print an error message and throw an error during parameter reads
virtual void invalid(const std::string& param, double value) const;
//! Print an error message and throw an error
virtual void throwError(const std::string& method, const std::string& mesage) const;
//! Resets the counters in the solver.
virtual void resetCounters();
//! Check to see if the current step is acceptable. If not, it reduces the trust region radius accordingly.
NOX::StatusTest::StatusType checkStep(const NOX::Abstract::Vector& step,
double& radius);
//! Computes the norm of a given vector.
/*! Defaults to the L-2 norm but could use a user defined norm also. */
virtual double computeNorm(const NOX::Abstract::Vector& v);
protected:
//! Type of Trust Region algorithm to use.
enum TrustRegionType {
//! Basic trust region method for nonlinear systems (Nocedal and Wright?).
Standard,
//! Inexact Trust region WITHOUT minimization of the local linear model over the line segments.
Inexact
};
//! Type of trust region algorithm to use.
TrustRegionType method;
//! Return types for inner iteration status test
enum InnerIterationReturnType {
//! Converged.
Converged,
//! Unconverged.
Unconverged,
//! Failed by hitting minimum radius bound.
Failed
};
//! Pointer to the global data object.
Teuchos::RCP<NOX::GlobalData> globalDataPtr;
//! Utils
Teuchos::RCP<NOX::Utils> utils;
//! Current status of the trust region inner iteration.
InnerIterationReturnType innerIterationStatus;
//! Current solution.
Teuchos::RCP<NOX::Abstract::Group> solnPtr;
//! Previous solution pointer.
Teuchos::RCP<NOX::Abstract::Group> oldSolnPtr;
//! Current newton direction pointer.
Teuchos::RCP<NOX::Abstract::Vector> newtonVecPtr;
//! Current cauchy direction pointer.
Teuchos::RCP<NOX::Abstract::Vector> cauchyVecPtr;
//! Extra vector used in computations
Teuchos::RCP<NOX::Abstract::Vector> rCauchyVecPtr;
//! Extra vector used in computations
Teuchos::RCP<NOX::Abstract::Vector> residualVecPtr;
//! Extra vector used in computations
Teuchos::RCP<NOX::Abstract::Vector> aVecPtr;
//! Extra vector used in computations
Teuchos::RCP<NOX::Abstract::Vector> bVecPtr;
//! Stopping test.
Teuchos::RCP<NOX::StatusTest::Generic> testPtr;
//! Input parameters.
Teuchos::RCP<Teuchos::ParameterList> paramsPtr;
//! Inexact Newton utitilities.
NOX::Direction::Utils::InexactNewton inNewtonUtils;
//! %Newton %Search %Direction.
Teuchos::RCP<NOX::Direction::Generic> newtonPtr;
//! Cauchy %Search %Direction.
Teuchos::RCP<NOX::Direction::Generic> cauchyPtr;
//! Radius of the trust region
double radius;
//! Minimum improvement ratio to accept step
double minRatio;
//! Minimum trust region radius
double minRadius;
//! Maximum trust region radius
double maxRadius;
//! ratio < alpha triggers contraction
double contractTriggerRatio;
//! ratio > beta triggers expansion
double expandTriggerRatio;
//! Expansion factor
double expandFactor;
//! Constraction factor
double contractFactor;
//! Take a step of this length in the Newton direction if the
//! trust-region search fails
double recoveryStep;
//! Value of \f$ f \f$ at current solution
double newF;
//! Value of \f$ f \f$ at previous solution
double oldF;
//! norm(xnew - xold)
double dx;
//! Number of nonlinear iterations.
int nIter;
//! Current linear solve tolerance (inexact only).
double eta;
//! Linear solve tolerance used in last iteration (inexact only).
double eta_last;
//! %Status of nonlinear solver.
NOX::StatusTest::StatusType status;
//! Type of check to use for status tests. See NOX::StatusTest for more details.
NOX::StatusTest::CheckType checkType;
//! Enumerated list for each direction that may be required in the Trust region computation.
enum StepType
{
//! Use the Newton direction
Newton,
//! Use the Cauchy direction
Cauchy,
//! Use the doglog direction
Dogleg
};
//! Type of step to be taken.
StepType stepType;
//! Stores merit function supplied by global data.
Teuchos::RCP<NOX::MeritFunction::Generic> meritFuncPtr;
//! If set to true, the initial guess for the Newton direction computation will use the Cauchy direction as the initial guess.
bool useCauchyInNewtonDirection;
//! If set to true, statistics/counters will be output to the output list
bool writeOutputParamsToList;
//! If set to true, counters will be stored by the solver.
bool useCounters;
//! Counter for the number of cauchy steps taken.
int numCauchySteps;
//! Counter for the number of Newton steps taken.
int numNewtonSteps;
//! Counter for the number of Dogleg steps taken.
int numDoglegSteps;
//! Number of inner iterations required to adjust the trust region radius.
int numTrustRegionInnerIterations;
//! Hold the sum of the value of the fraction a dogleg step took between the Cauchy and Newton directions. This is the \f$ \gamma \f$ variable in the standard dogleg algorithm and the \f$ \tau \f$ parameter in the inexact dogleg algorithm. A value of 0.0 is a full step in the Cauchy direction and a value of 1.0 is a full step in the Newton direction.
double sumDoglegFracCauchyToNewton;
//! Holds the sum of the values of the fraction a dogleg step took compared to the full Newton step. The fractional value is computed as \f$ \mbox{frac} = \frac{\| d \|}{\| n\|} \f$.
double sumDoglegFracNewtonLength;
//! If set to true, the minimum improvement ratio condition uses an Ared/Pred approach.
bool useAredPredRatio;
//! If set to true, the \f$ \tau \f$ parameter is minimized over the dogleg line segments instead of being computed at the trust regioin radius.
bool useDoglegMinimization;
//! Pointer to a user defined NOX::Abstract::PrePostOperator object.
NOX::Solver::PrePostOperator prePostOperator;
};
} // namespace Solver
} // namespace NOX
#endif
|