/usr/include/trilinos/NOX_MeritFunction_SumOfSquares.H is in libtrilinos-nox-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | // $Id$
// $Source$
//@HEADER
// ************************************************************************
//
// NOX: An Object-Oriented Nonlinear Solver Package
// Copyright (2002) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roger Pawlowski (rppawlo@sandia.gov) or
// Eric Phipps (etphipp@sandia.gov), Sandia National Laboratories.
// ************************************************************************
// CVS Information
// $Source$
// $Author$
// $Date$
// $Revision$
// ************************************************************************
//@HEADER
#ifndef NOX_MERITFUNCTION_SUMOFSQUARES_H
#define NOX_MERITFUNCTION_SUMOFSQUARES_H
#include "NOX_Common.H" // for std::ostream
#include "Teuchos_RCP.hpp"
#include "NOX_Utils.H"
#include "NOX_MeritFunction_Generic.H"
#include "NOX_LineSearch_Utils_Slope.H"
namespace NOX {
namespace MeritFunction {
//! Sum of squares merit function.
/*!
A basic merit function used in many nonlinear equation solvers:
\f[
f = \frac{1}{2} \| F(x) \| ^2
\f]
Where the norm is the 2-Norm using the NOX::Abstract::Vector's
inner product.
This is the default merit function used in nox.
This merit function is taken from: J. E. Dennis Jr. and Robert B.
Schnabel, "Numerical Methods for Unconstrained Optimization and
Nonlinear Equations," Prentice Hall, 1983
*/
class SumOfSquares : public virtual NOX::MeritFunction::Generic {
public:
//! Constructor.
SumOfSquares(const Teuchos::RCP<NOX::Utils>& u);
//! Destructor.
virtual ~SumOfSquares();
//! Computes the merit function, \f$ f(x) = \frac{1}{2}\| F(x) \|^2 \f$.
virtual double computef(const NOX::Abstract::Group& grp) const;
//! Computes the gradient, \f$ g = \nabla f(x) = J(x)^T F(x) \f$.
virtual void computeGradient(const NOX::Abstract::Group& group,
NOX::Abstract::Vector& result) const;
//! Computes the slope, \f$ s(x,d) = d^T \nabla f(x) = d^T J(x)^T F(x) \f$.
/*! If the Jacobian is not computed in the \c grp object, then the
slope can be approximated using directional derivatives. More
information can be found in the method computeSlopeWithoutJac.
*/
virtual double computeSlope(const NOX::Abstract::Vector& dir,
const NOX::Abstract::Group& grp) const;
//! Computes the quadratic model, \f$ m(x,d) = f(x) + \nabla f(x)^T d + d^T \nabla^2 f(x) d \f$.
/*!
We approximate \f$ \nabla^2f(x) \approx J^TJ \f$:
\f[
m(d) = f(x) + (J(x)^T F)^T d + \frac{1}{2} d^T B d
\f]
*/
virtual double computeQuadraticModel(const NOX::Abstract::Vector& dir,
const NOX::Abstract::Group& grp) const;
//! Computes the vector in the steepest descent direction that minimizes, the quadratic model.
/*!
Computes the vector \c result:
\f[
result = \frac{\nabla f^T \nabla f}{\nabla f^T B \nabla f} \nabla f = -\frac{(J^T F)^T (J^T F)}{(J J^T F)^T (J J^T F)} J^T F
\f]
*/
virtual void computeQuadraticMinimizer(const NOX::Abstract::Group& grp,
NOX::Abstract::Vector& result) const;
virtual const std::string& name() const;
private:
//! Disallow default ctor.
SumOfSquares() {};
//! This is a variant of the computeSlope() method above optimized to work with out having to compute an explicit Jacobian.
/*!
Calculates and returns
\f[
\zeta = d^T \nabla f(x) = d^TJ^TF
\f]
Here \f$d\f$ represents the input parameter \c dir \f$\nabla
f(x)\f$ is the gradient associated with the given group (for
nonlinear solves this equates to \f$ J^TF \f$ where \f$ J \f$ is
the Jacobian and \f$ F \f$ is the original nonlinear function).
We can rewrite this equation as:
\f[ d^TJ^TF = F^TJd \f]
which allows us to use directional derivatives to estimate \f$ J^TF \f$:
\f[ F^TJd = F^T \frac{F(x + \eta d) - F(x)}{\eta} \f]
This may allow for faster computations of the slope if the
Jacobian is expensive to evaluate.
where \f$\eta\f$ is a scalar perturbation calculated by:
\f[ \eta = \lambda * (\lambda + \frac{\| x\|}{\| d\|} ) \f]
\f$ \lambda \f$ is a constant fixed at 1.0e-6.
*/
virtual double
computeSlopeWithoutJacobian(const NOX::Abstract::Vector& dir,
const NOX::Abstract::Group& grp) const;
//! This is a variant of the computeSlope() method above that works when the Jacobian operator is available but doesn't support transpose
/*!
Calculates and returns
\f[
\zeta = d^T \nabla f(x) = (Jd)^TF
\f]
Variables are as defined above. This alternative form for the slope
is provided to support Jacobian operators which do not
support the transpose operation.
*/
virtual double
computeSlopeWithoutJacobianTranspose(const NOX::Abstract::Vector& dir,
const NOX::Abstract::Group& grp) const;
private:
//!Printing utilities.
Teuchos::RCP<Utils> utils;
//! Temporary vector for computations.
mutable Teuchos::RCP<NOX::Abstract::Vector> tmpVecPtr;
//! Temporary vector for computations.
/*! Only allocated if the method computeJacobianWithOutJac is called. */
mutable Teuchos::RCP<NOX::Abstract::Group> tmpGrpPtr;
//! Name of this function
std::string meritFunctionName;
};
} // namespace MeritFunction
} // namespace NOX
#endif
|