This file is indexed.

/usr/include/trilinos/MLAPI_MultiLevelSA.h is in libtrilinos-ml-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#ifndef MLAPI_MULTILEVEL_H
#define MLAPI_MULTILEVEL_H

/*!
\file MLAPI_MultiLevelSA.h

\brief Standard smoothed aggregation multilevel preconditioner.

\author Marzio Sala, D-INFK/ETHZ.

\date Last updated on Mar-06.
*/
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact      */
/* person and disclaimer.                                               */
/* ******************************************************************** */

#include "ml_common.h"
#include "ml_agg_genP.h"
#include "MLAPI_Error.h"
#include "MLAPI_CompObject.h"
#include "MLAPI_TimeObject.h"
#include "MLAPI_Operator.h"
#include "MLAPI_Operator_Utils.h"
#include "MLAPI_MultiVector.h"
#include "MLAPI_InverseOperator.h"
#include "MLAPI_Expressions.h"
#include "MLAPI_BaseOperator.h"
#include "MLAPI_Workspace.h"
#include "MLAPI_Aggregation.h"
#include "MLAPI_Eig.h"
#include <vector>

namespace MLAPI {

/*!
\class MultiLevelSA

\brief Black-box multilevel smoothed aggregation preconditioner.

\author Marzio Sala, SNL 9214

\date Last updated on Feb-05.

*/

class MultiLevelSA : public BaseOperator, public CompObject, public TimeObject {

public:

  // @{ \name Constructors and destructors

  //! Constructs the hierarchy for given Operator and parameters.
  MultiLevelSA(const Operator & FineMatrix, Teuchos::ParameterList& List,
               const bool ConstructNow = true) :
    IsComputed_(false)
  {
    FineMatrix_ = FineMatrix;
    List_ = List;
    if (ConstructNow) Compute();
  }

  //! Destructor.
  virtual ~MultiLevelSA()
  { }

  // @}
  // @{ \name Set and Get methods

  //! Returns a copy of the internally stored domain space.
  const Space GetOperatorDomainSpace() const
  {
    return(FineMatrix_.GetDomainSpace());
  }

  //! Returns a copy of the internally stored range space.
  const Space GetOperatorRangeSpace() const
  {
    return(FineMatrix_.GetRangeSpace());
  }

  //! Returns a copy of the internally stored domain space.
  inline const Space GetDomainSpace() const
  {
    return(FineMatrix_.GetDomainSpace());
  }

  //! Returns a copy of the internally stored range space.
  inline const Space GetRangeSpace() const
  {
    return(FineMatrix_.GetRangeSpace());
  }

  //! Returns a reference to the restriction operator of level \c i.
  inline const Operator& R(const int i) const
  {
    return(R_[i]);
  }

  //! Returns a reference to the operator of level \c i.
  inline const Operator& A(const int i) const
  {
    return(A_[i]);
  }

  //! Returns a reference to the prolongator operator of level \c i.
  inline const Operator& P(const int i) const
  {
    return(P_[i]);
  }

  //! Returns a reference to the inverse operator of level \c i.
  inline const InverseOperator& S(const int i) const
  {
    return(S_[i]);
  }

  //! Returns the actual number of levels
  inline int GetMaxLevels() const
  {
    return(MaxLevels_);
  }

  //! Returns \c true if the hierarchy has been successfully computed, \c false otherwise.
  inline bool IsComputed() const
  {
    return(IsComputed_);
  }

  // @}
  // @{ \name Mathematical methods

  //! Computes the hierarchy.
  void Compute()
  {
    ResetTimer();
    StackPush();
    IsComputed_ = false;

    // get parameter from the input list
    int         MaxLevels     = List_.get("max levels", 10);
    double      Damping       = List_.get("aggregation: damping factor", 1.3333);
    std::string      EigenAnalysis = List_.get("eigen-analysis: type", "Anorm");
    int         MaxCoarseSize = List_.get("coarse: max size", 32);
    MultiVector EmptySpace;
    MultiVector ThisNS        = List_.get("aggregation: null space", EmptySpace);
    int         NumPDEEqns    = List_.get("PDE equations", 1);
    std::string      SmootherType  = List_.get("smoother: type", "symmetric Gauss-Seidel");
    std::string      CoarseType    = List_.get("coarse: type", "Amesos-KLU");

    // build up the default null space
    if (ThisNS.GetNumVectors() == 0) {
      ThisNS.Reshape(FineMatrix_.GetDomainSpace(),NumPDEEqns);
      if (NumPDEEqns == 1)
        ThisNS = 1.0;
      else
      {
        ThisNS = 0.0;
        for (int i = 0 ; i < ThisNS.GetMyLength() ; ++i)
          for (int j = 0 ; j < NumPDEEqns ;++j)
            if (i % NumPDEEqns == j)
              ThisNS(i,j) = 1.0;
      }
    }

    MultiVector NextNS;     // contains the next-level null space

    A_.resize(MaxLevels);
    R_.resize(MaxLevels);
    P_.resize(MaxLevels);
    S_.resize(MaxLevels);

    // work on increasing hierarchies only.
    A_[0] = FineMatrix_;

    double LambdaMax;
    Operator Aop;
    Operator C;
    Operator Rop;
    Operator Pop;
    Operator Ptent;
    Operator IminusA;
    InverseOperator Sop;

    int level;

    for (level = 0 ; level < MaxLevels - 1 ; ++level) {

      // only an alias
      Aop = A_[level];

      if (level)
        List_.set("PDE equations", ThisNS.GetNumVectors());

      if (GetPrintLevel()) {
        ML_print_line("-", 80);
        std::cout << "current working level   = " << level << std::endl;
        std::cout << "number of global rows   = " << Aop.GetNumGlobalRows() << std::endl;
        std::cout << "number of global nnz    = " << Aop.GetNumGlobalNonzeros() << std::endl;
        std::cout << "threshold               = " << List_.get("aggregation: threshold", 0.0) << std::endl;
        std::cout << "number of PDE equations = " << NumPDEEqns << std::endl;
        std::cout << "null space dimension    = " << ThisNS.GetNumVectors() << std::endl;
      }

      // load current level into database
      List_.set("workspace: current level", level);

      GetPtent(Aop, List_, ThisNS, Ptent, NextNS);
      ThisNS = NextNS;

      if (Damping) {

        if (EigenAnalysis == "Anorm")
          LambdaMax = MaxEigAnorm(Aop,true);
        else if (EigenAnalysis == "cg")
          LambdaMax = MaxEigCG(Aop,true);
        else if (EigenAnalysis == "power-method")
          LambdaMax = MaxEigPowerMethod(Aop,true);
        else
          ML_THROW("incorrect parameter (" + EigenAnalysis + ")", -1);

#if 0
        MultiVector Diag = GetDiagonal(Aop);
        Diag.Reciprocal();
        Diag.Scale(Damping / LambdaMax);
        Operator Dinv = GetDiagonal(Diag);
        Operator DinvA = Dinv * Aop;
        Operator I = GetIdentity(Aop.GetDomainSpace(),Aop.GetRangeSpace());
        Operator IminusA = I - DinvA;
#else
        IminusA = GetJacobiIterationOperator(Aop,Damping / LambdaMax);
#endif
        Pop = IminusA * Ptent;
      }
      else {
        Pop = Ptent;
        LambdaMax = -1.0;
      }

      if (GetPrintLevel()) {
        std::cout << "omega                   = " << Damping << std::endl;
        if (LambdaMax != -1.0) {
          std::cout << "lambda max              = " << LambdaMax << std::endl;
          std::cout << "damping factor          = " << Damping / LambdaMax << std::endl;
        }
        std::cout << "smoother type           = " << SmootherType << std::endl;
        std::cout << "relaxation sweeps       = " << List_.get("smoother: sweeps", 1) << std::endl;
        std::cout << "smoother damping        = " << List_.get("smoother: damping factor", 0.67) << std::endl;
      }

      Rop = GetTranspose(Pop);
      C = GetRAP(Rop,Aop,Pop);
      // build smoothers
      Sop.Reshape(Aop, SmootherType, List_);

      // put operators and inverse in hierarchy
      R_[level    ] = Rop;
      P_[level    ] = Pop;
      A_[level + 1] = C;
      S_[level    ] = Sop;

      // break if coarse matrix is below specified tolerance
      if (C.GetNumGlobalRows() <= MaxCoarseSize) {
        ++level;
        break;
      }
    }

    // set coarse solver
    Sop.Reshape(A_[level], CoarseType, List_);
    S_[level] = Sop;
    MaxLevels_ = level + 1;

    // set the label
    SetLabel("SA, L = " + GetString(MaxLevels_) +
             ", smoother = " + SmootherType);

    if (GetPrintLevel()) {
      ML_print_line("-", 80);
      std::cout << "final level             = " << level << std::endl;
      std::cout << "number of global rows   = " << A_[level].GetNumGlobalRows() << std::endl;
      std::cout << "number of global nnz    = " << A_[level].GetNumGlobalNonzeros() << std::endl;
      std::cout << "coarse solver           = " << CoarseType << std::endl;
      std::cout << "time spent in constr.   = " << GetTime() << " (s)" << std::endl;
      ML_print_line("-", 80);
    }

    IsComputed_ = true;
    StackPop();

    // FIXME: update flops!
    UpdateTime();

  }

  //! Applies the preconditioner to \c b_f, returns the result in \c x_f.
  int Apply(const MultiVector& b_f, MultiVector& x_f) const
  {
    ResetTimer();
    StackPush();

    if (IsComputed() == false)
      ML_THROW("Method Compute() must be called before Apply()", -1);
    SolveMultiLevelSA(b_f,x_f,0);
    UpdateTime();

    StackPop();
    return(0);
  }

  //! Recursively called core of the multi level preconditioner.
  int SolveMultiLevelSA(const MultiVector& b_f,MultiVector& x_f, int level) const
  {
    if (level == MaxLevels_ - 1) {
      x_f = S(level) * b_f;
      return(0);
    }

    MultiVector r_f(P(level).GetRangeSpace());
    MultiVector r_c(P(level).GetDomainSpace());
    MultiVector z_c(P(level).GetDomainSpace());

    // reset flop counter
    S(level).SetFlops(0.0);
    A(level).SetFlops(0.0);
    R(level).SetFlops(0.0);
    P(level).SetFlops(0.0);

    // apply pre-smoother
    x_f = S(level) * b_f;
    // new residual
    r_f = b_f - A(level) * x_f;
    // restrict to coarse
    r_c = R(level) * r_f;
    // solve coarse problem
    SolveMultiLevelSA(r_c,z_c,level + 1);
    // prolongate back and add to solution
    x_f = x_f + P(level) * z_c;
    // apply post-smoother
    S(level).Apply(b_f,x_f);

    UpdateFlops(2.0 * S(level).GetFlops());
    UpdateFlops(A(level).GetFlops());
    UpdateFlops(R(level).GetFlops());
    UpdateFlops(P(level).GetFlops());
    UpdateFlops(2.0 * x_f.GetGlobalLength());

    return(0);
  }

  // @}
  // @{ \name Miscellaneous methods

  //! Prints basic information about \c this preconditioner.
  std::ostream& Print(std::ostream& os,
                      const bool verbose = true) const
  {
    if (GetMyPID() == 0) {
      os << std::endl;
      os << "*** MLAPI::MultiLevelSA, label = `" << GetLabel() << "'" << std::endl;
      os << std::endl;
      os << "Number of levels = " << GetMaxLevels() << std::endl;
      os << "Flop count       = " << GetFlops() << std::endl;
      os << "Cumulative time  = " << GetTime() << std::endl;
      if (GetTime() != 0.0)
        os << "MFlops rate      = " << 1.0e-6 * GetFlops() / GetTime() << std::endl;
      else
        os << "MFlops rate      = 0.0" << std::endl;
      os << std::endl;
    }
    return(os);
  }

  // @}

private:

  //! Maximum number of levels.
  int MaxLevels_;
  //! Fine-level matrix.
  Operator FineMatrix_;
  //! Contains the hierarchy of operators.
  std::vector<Operator> A_;
  //! Contains the hierarchy of restriction operators.
  std::vector<Operator> R_;
  //! Contains the hierarchy of prolongator operators.
  std::vector<Operator> P_;
  //! Contains the hierarchy of inverse operators.
  std::vector<InverseOperator> S_;
  //! Contains a copy of the input list.
  Teuchos::ParameterList List_;
  //! \c true if the hierarchy has been successfully computed, \c false otherwise.
  bool IsComputed_;

};

} // namespace MLAPI

#endif