/usr/include/trilinos/Threads/Kokkos_ThreadsTeam.hpp is in libtrilinos-kokkos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 | /*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_THREADSTEAM_HPP
#define KOKKOS_THREADSTEAM_HPP
#include <stdio.h>
#include <utility>
#include <impl/Kokkos_spinwait.hpp>
#include <impl/Kokkos_FunctorAdapter.hpp>
#include <Kokkos_Atomic.hpp>
//----------------------------------------------------------------------------
namespace Kokkos {
namespace Impl {
//----------------------------------------------------------------------------
template< class > struct ThreadsExecAdapter ;
//----------------------------------------------------------------------------
class ThreadsExecTeamMember {
private:
enum { TEAM_REDUCE_SIZE = 512 };
typedef Kokkos::Threads execution_space ;
typedef execution_space::scratch_memory_space space ;
ThreadsExec * const m_exec ;
ThreadsExec * const * m_team_base ; ///< Base for team fan-in
space m_team_shared ;
int m_team_shared_size ;
int m_team_size ;
int m_team_rank ;
int m_team_rank_rev ;
int m_league_size ;
int m_league_end ;
int m_league_rank ;
inline
void set_team_shared()
{ new( & m_team_shared ) space( ((char *) (*m_team_base)->scratch_memory()) + TEAM_REDUCE_SIZE , m_team_shared_size ); }
public:
// Fan-in and wait until the matching fan-out is called.
// The root thread which does not wait will return true.
// All other threads will return false during the fan-out.
KOKKOS_INLINE_FUNCTION bool team_fan_in() const
{
int n , j ;
// Wait for fan-in threads
for ( n = 1 ; ( ! ( m_team_rank_rev & n ) ) && ( ( j = m_team_rank_rev + n ) < m_team_size ) ; n <<= 1 ) {
Impl::spinwait( m_team_base[j]->state() , ThreadsExec::Active );
}
// If not root then wait for release
if ( m_team_rank_rev ) {
m_exec->state() = ThreadsExec::Rendezvous ;
Impl::spinwait( m_exec->state() , ThreadsExec::Rendezvous );
}
return ! m_team_rank_rev ;
}
KOKKOS_INLINE_FUNCTION void team_fan_out() const
{
int n , j ;
for ( n = 1 ; ( ! ( m_team_rank_rev & n ) ) && ( ( j = m_team_rank_rev + n ) < m_team_size ) ; n <<= 1 ) {
m_team_base[j]->state() = ThreadsExec::Active ;
}
}
public:
KOKKOS_INLINE_FUNCTION static int team_reduce_size() { return TEAM_REDUCE_SIZE ; }
KOKKOS_INLINE_FUNCTION
const execution_space::scratch_memory_space & team_shmem() const
{ return m_team_shared ; }
KOKKOS_INLINE_FUNCTION int league_rank() const { return m_league_rank ; }
KOKKOS_INLINE_FUNCTION int league_size() const { return m_league_size ; }
KOKKOS_INLINE_FUNCTION int team_rank() const { return m_team_rank ; }
KOKKOS_INLINE_FUNCTION int team_size() const { return m_team_size ; }
KOKKOS_INLINE_FUNCTION void team_barrier() const
{
team_fan_in();
team_fan_out();
}
template<class ValueType>
KOKKOS_INLINE_FUNCTION
void team_broadcast(ValueType& value, const int& thread_id) const
{
#if ! defined( KOKKOS_ACTIVE_EXECUTION_MEMORY_SPACE_HOST )
{ }
#else
// Make sure there is enough scratch space:
typedef typename if_c< sizeof(ValueType) < TEAM_REDUCE_SIZE
, ValueType , void >::type type ;
if ( m_team_base ) {
type * const local_value = ((type*) m_team_base[0]->scratch_memory());
if(team_rank() == thread_id) *local_value = value;
memory_fence();
team_barrier();
value = *local_value;
}
#endif
}
template< typename Type >
KOKKOS_INLINE_FUNCTION Type team_reduce( const Type & value ) const
#if ! defined( KOKKOS_ACTIVE_EXECUTION_MEMORY_SPACE_HOST )
{ return Type(); }
#else
{
// Make sure there is enough scratch space:
typedef typename if_c< sizeof(Type) < TEAM_REDUCE_SIZE , Type , void >::type type ;
if ( 0 == m_exec ) return value ;
*((volatile type*) m_exec->scratch_memory() ) = value ;
memory_fence();
type & accum = *((type *) m_team_base[0]->scratch_memory() );
if ( team_fan_in() ) {
for ( int i = 1 ; i < m_team_size ; ++i ) {
accum += *((type *) m_team_base[i]->scratch_memory() );
}
memory_fence();
}
team_fan_out();
return accum ;
}
#endif
#ifdef KOKKOS_HAVE_CXX11
template< class ValueType, class JoinOp >
KOKKOS_INLINE_FUNCTION ValueType
team_reduce( const ValueType & value
, const JoinOp & op_in ) const
#if ! defined( KOKKOS_ACTIVE_EXECUTION_MEMORY_SPACE_HOST )
{ return ValueType(); }
#else
{
typedef ValueType value_type;
const JoinLambdaAdapter<value_type,JoinOp> op(op_in);
#endif
#else // KOKKOS_HAVE_CXX11
template< class JoinOp >
KOKKOS_INLINE_FUNCTION typename JoinOp::value_type
team_reduce( const typename JoinOp::value_type & value
, const JoinOp & op ) const
#if ! defined( KOKKOS_ACTIVE_EXECUTION_MEMORY_SPACE_HOST )
{ return typename JoinOp::value_type(); }
#else
{
typedef typename JoinOp::value_type value_type;
#endif
#endif // KOKKOS_HAVE_CXX11
#if defined( KOKKOS_ACTIVE_EXECUTION_MEMORY_SPACE_HOST )
// Make sure there is enough scratch space:
typedef typename if_c< sizeof(value_type) < TEAM_REDUCE_SIZE
, value_type , void >::type type ;
if ( 0 == m_exec ) return value ;
type * const local_value = ((type*) m_exec->scratch_memory());
// Set this thread's contribution
*local_value = value ;
// Fence to make sure the base team member has access:
memory_fence();
if ( team_fan_in() ) {
// The last thread to synchronize returns true, all other threads wait for team_fan_out()
type * const team_value = ((type*) m_team_base[0]->scratch_memory());
// Join to the team value:
for ( int i = 1 ; i < m_team_size ; ++i ) {
op.join( *team_value , *((type*) m_team_base[i]->scratch_memory()) );
}
// Team base thread may "lap" member threads so copy out to their local value.
for ( int i = 1 ; i < m_team_size ; ++i ) {
*((type*) m_team_base[i]->scratch_memory()) = *team_value ;
}
// Fence to make sure all team members have access
memory_fence();
}
team_fan_out();
// Value was changed by the team base
return *((type volatile const *) local_value);
}
#endif
/** \brief Intra-team exclusive prefix sum with team_rank() ordering
* with intra-team non-deterministic ordering accumulation.
*
* The global inter-team accumulation value will, at the end of the
* league's parallel execution, be the scan's total.
* Parallel execution ordering of the league's teams is non-deterministic.
* As such the base value for each team's scan operation is similarly
* non-deterministic.
*/
template< typename ArgType >
KOKKOS_INLINE_FUNCTION ArgType team_scan( const ArgType & value , ArgType * const global_accum ) const
#if ! defined( KOKKOS_ACTIVE_EXECUTION_MEMORY_SPACE_HOST )
{ return ArgType(); }
#else
{
// Make sure there is enough scratch space:
typedef typename if_c< sizeof(ArgType) < TEAM_REDUCE_SIZE , ArgType , void >::type type ;
if ( 0 == m_exec ) return type(0);
volatile type * const work_value = ((type*) m_exec->scratch_memory());
*work_value = value ;
memory_fence();
if ( team_fan_in() ) {
// The last thread to synchronize returns true, all other threads wait for team_fan_out()
// m_team_base[0] == highest ranking team member
// m_team_base[ m_team_size - 1 ] == lowest ranking team member
//
// 1) copy from lower to higher rank, initialize lowest rank to zero
// 2) prefix sum from lowest to highest rank, skipping lowest rank
type accum = 0 ;
if ( global_accum ) {
for ( int i = m_team_size ; i-- ; ) {
type & val = *((type*) m_team_base[i]->scratch_memory());
accum += val ;
}
accum = atomic_fetch_add( global_accum , accum );
}
for ( int i = m_team_size ; i-- ; ) {
type & val = *((type*) m_team_base[i]->scratch_memory());
const type offset = accum ;
accum += val ;
val = offset ;
}
memory_fence();
}
team_fan_out();
return *work_value ;
}
#endif
/** \brief Intra-team exclusive prefix sum with team_rank() ordering.
*
* The highest rank thread can compute the reduction total as
* reduction_total = dev.team_scan( value ) + value ;
*/
template< typename ArgType >
KOKKOS_INLINE_FUNCTION ArgType team_scan( const ArgType & value ) const
{ return this-> template team_scan<ArgType>( value , 0 ); }
//----------------------------------------
// Private for the driver
template< class Arg0 , class Arg1 >
ThreadsExecTeamMember( Impl::ThreadsExec * exec
, const TeamPolicy< Arg0 , Arg1 , Kokkos::Threads > & team
, const int shared_size )
: m_exec( exec )
, m_team_base(0)
, m_team_shared(0,0)
, m_team_shared_size( shared_size )
, m_team_size(0)
, m_team_rank(0)
, m_team_rank_rev(0)
, m_league_size(0)
, m_league_end(0)
, m_league_rank(0)
{
if ( team.league_size() ) {
// Execution is using device-team interface:
const int pool_rank_rev = m_exec->pool_size() - ( m_exec->pool_rank() + 1 );
const int team_rank_rev = pool_rank_rev % team.team_alloc();
// May be using fewer threads per team than a multiple of threads per core,
// some threads will idle.
if ( team_rank_rev < team.team_size() ) {
const size_t pool_league_size = m_exec->pool_size() / team.team_alloc() ;
const size_t pool_league_rank_rev = pool_rank_rev / team.team_alloc() ;
const size_t pool_league_rank = pool_league_size - ( pool_league_rank_rev + 1 );
m_team_base = m_exec->pool_base() + team.team_alloc() * pool_league_rank_rev ;
m_team_size = team.team_size() ;
m_team_rank = team.team_size() - ( team_rank_rev + 1 );
m_team_rank_rev = team_rank_rev ;
m_league_size = team.league_size();
m_league_rank = ( team.league_size() * pool_league_rank ) / pool_league_size ;
m_league_end = ( team.league_size() * (pool_league_rank+1) ) / pool_league_size ;
set_team_shared();
}
}
}
ThreadsExecTeamMember()
: m_exec(0)
, m_team_base(0)
, m_team_shared(0,0)
, m_team_shared_size(0)
, m_team_size(1)
, m_team_rank(0)
, m_team_rank_rev(0)
, m_league_size(1)
, m_league_end(0)
, m_league_rank(0)
{}
inline
ThreadsExec & threads_exec_team_base() const { return m_team_base ? **m_team_base : *m_exec ; }
bool valid() const
{ return m_league_rank < m_league_end ; }
void next()
{
if ( ++m_league_rank < m_league_end ) {
team_barrier();
set_team_shared();
}
}
void set_league_shmem( const int arg_league_rank
, const int arg_league_size
, const int arg_shmem_size
)
{
m_league_rank = arg_league_rank ;
m_league_size = arg_league_size ;
m_team_shared_size = arg_shmem_size ;
set_team_shared();
}
};
} /* namespace Impl */
} /* namespace Kokkos */
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
namespace Kokkos {
template< class Arg0 , class Arg1 >
class TeamPolicy< Arg0 , Arg1 , Kokkos::Threads >
{
private:
int m_league_size ;
int m_team_size ;
int m_team_alloc ;
inline
void init( const int league_size_request
, const int team_size_request )
{
const int pool_size = execution_space::thread_pool_size(0);
const int team_max = execution_space::thread_pool_size(1);
const int team_grain = execution_space::thread_pool_size(2);
m_league_size = league_size_request ;
m_team_size = team_size_request < team_max ?
team_size_request : team_max ;
// Round team size up to a multiple of 'team_gain'
const int team_size_grain = team_grain * ( ( m_team_size + team_grain - 1 ) / team_grain );
const int team_count = pool_size / team_size_grain ;
// Constraint : pool_size = m_team_alloc * team_count
m_team_alloc = pool_size / team_count ;
}
public:
//! Tag this class as a kokkos execution policy
typedef TeamPolicy execution_policy ;
typedef Kokkos::Threads execution_space ;
typedef typename
Impl::if_c< ! Impl::is_same< Kokkos::Threads , Arg0 >::value , Arg0 , Arg1 >::type
work_tag ;
//----------------------------------------
template< class FunctorType >
inline static
int team_size_max( const FunctorType & )
{ return execution_space::thread_pool_size(1); }
template< class FunctorType >
static int team_size_recommended( const FunctorType & )
{ return execution_space::thread_pool_size(2); }
template< class FunctorType >
inline static
int team_size_recommended( const FunctorType &, const int& )
{ return execution_space::thread_pool_size(2); }
//----------------------------------------
inline int team_size() const { return m_team_size ; }
inline int team_alloc() const { return m_team_alloc ; }
inline int league_size() const { return m_league_size ; }
/** \brief Specify league size, request team size */
TeamPolicy( execution_space &
, int league_size_request
, int team_size_request
, int vector_length_request = 1 )
: m_league_size(0)
, m_team_size(0)
, m_team_alloc(0)
{ init(league_size_request,team_size_request); (void) vector_length_request; }
/** \brief Specify league size, request team size */
TeamPolicy( execution_space &
, int league_size_request
, const Kokkos::AUTO_t & /* team_size_request */
, int /* vector_length_request */ = 1 )
: m_league_size(0)
, m_team_size(0)
, m_team_alloc(0)
{ init(league_size_request,execution_space::thread_pool_size(2)); }
TeamPolicy( int league_size_request
, int team_size_request
, int /* vector_length_request */ = 1 )
: m_league_size(0)
, m_team_size(0)
, m_team_alloc(0)
{ init(league_size_request,team_size_request); }
TeamPolicy( int league_size_request
, const Kokkos::AUTO_t & /* team_size_request */
, int /* vector_length_request */ = 1 )
: m_league_size(0)
, m_team_size(0)
, m_team_alloc(0)
{ init(league_size_request,execution_space::thread_pool_size(2)); }
typedef Impl::ThreadsExecTeamMember member_type ;
friend class Impl::ThreadsExecTeamMember ;
};
} /* namespace Kokkos */
namespace Kokkos {
template<typename iType>
KOKKOS_INLINE_FUNCTION
Impl::TeamThreadRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember>
TeamThreadRange(const Impl::ThreadsExecTeamMember& thread, const iType& count)
{
return Impl::TeamThreadRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember>(thread,count);
}
template<typename iType>
KOKKOS_INLINE_FUNCTION
Impl::TeamThreadRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember>
TeamThreadRange( const Impl::ThreadsExecTeamMember& thread
, const iType & begin
, const iType & end
)
{
return Impl::TeamThreadRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember>(thread,begin,end);
}
template<typename iType>
KOKKOS_INLINE_FUNCTION
Impl::ThreadVectorRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember >
ThreadVectorRange(const Impl::ThreadsExecTeamMember& thread, const iType& count) {
return Impl::ThreadVectorRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember >(thread,count);
}
KOKKOS_INLINE_FUNCTION
Impl::ThreadSingleStruct<Impl::ThreadsExecTeamMember> PerTeam(const Impl::ThreadsExecTeamMember& thread) {
return Impl::ThreadSingleStruct<Impl::ThreadsExecTeamMember>(thread);
}
KOKKOS_INLINE_FUNCTION
Impl::VectorSingleStruct<Impl::ThreadsExecTeamMember> PerThread(const Impl::ThreadsExecTeamMember& thread) {
return Impl::VectorSingleStruct<Impl::ThreadsExecTeamMember>(thread);
}
} // namespace Kokkos
namespace Kokkos {
/** \brief Inter-thread parallel_for. Executes lambda(iType i) for each i=0..N-1.
*
* The range i=0..N-1 is mapped to all threads of the the calling thread team.
* This functionality requires C++11 support.*/
template<typename iType, class Lambda>
KOKKOS_INLINE_FUNCTION
void parallel_for(const Impl::TeamThreadRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember>& loop_boundaries, const Lambda& lambda) {
for( iType i = loop_boundaries.start; i < loop_boundaries.end; i+=loop_boundaries.increment)
lambda(i);
}
/** \brief Inter-thread vector parallel_reduce. Executes lambda(iType i, ValueType & val) for each i=0..N-1.
*
* The range i=0..N-1 is mapped to all threads of the the calling thread team and a summation of
* val is performed and put into result. This functionality requires C++11 support.*/
template< typename iType, class Lambda, typename ValueType >
KOKKOS_INLINE_FUNCTION
void parallel_reduce(const Impl::TeamThreadRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember>& loop_boundaries,
const Lambda & lambda, ValueType& result) {
result = ValueType();
for( iType i = loop_boundaries.start; i < loop_boundaries.end; i+=loop_boundaries.increment) {
ValueType tmp = ValueType();
lambda(i,tmp);
result+=tmp;
}
result = loop_boundaries.thread.team_reduce(result,Impl::JoinAdd<ValueType>());
}
#if defined( KOKKOS_HAVE_CXX11 )
/** \brief Intra-thread vector parallel_reduce. Executes lambda(iType i, ValueType & val) for each i=0..N-1.
*
* The range i=0..N-1 is mapped to all vector lanes of the the calling thread and a reduction of
* val is performed using JoinType(ValueType& val, const ValueType& update) and put into init_result.
* The input value of init_result is used as initializer for temporary variables of ValueType. Therefore
* the input value should be the neutral element with respect to the join operation (e.g. '0 for +-' or
* '1 for *'). This functionality requires C++11 support.*/
template< typename iType, class Lambda, typename ValueType, class JoinType >
KOKKOS_INLINE_FUNCTION
void parallel_reduce(const Impl::TeamThreadRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember>& loop_boundaries,
const Lambda & lambda, const JoinType& join, ValueType& init_result) {
ValueType result = init_result;
for( iType i = loop_boundaries.start; i < loop_boundaries.end; i+=loop_boundaries.increment) {
ValueType tmp = ValueType();
lambda(i,tmp);
join(result,tmp);
}
init_result = loop_boundaries.thread.team_reduce(result,Impl::JoinLambdaAdapter<ValueType,JoinType>(join));
}
#endif /* #if defined( KOKKOS_HAVE_CXX11 ) */
} //namespace Kokkos
namespace Kokkos {
/** \brief Intra-thread vector parallel_for. Executes lambda(iType i) for each i=0..N-1.
*
* The range i=0..N-1 is mapped to all vector lanes of the the calling thread.
* This functionality requires C++11 support.*/
template<typename iType, class Lambda>
KOKKOS_INLINE_FUNCTION
void parallel_for(const Impl::ThreadVectorRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember >&
loop_boundaries, const Lambda& lambda) {
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
for( iType i = loop_boundaries.start; i < loop_boundaries.end; i+=loop_boundaries.increment)
lambda(i);
}
/** \brief Intra-thread vector parallel_reduce. Executes lambda(iType i, ValueType & val) for each i=0..N-1.
*
* The range i=0..N-1 is mapped to all vector lanes of the the calling thread and a summation of
* val is performed and put into result. This functionality requires C++11 support.*/
template< typename iType, class Lambda, typename ValueType >
KOKKOS_INLINE_FUNCTION
void parallel_reduce(const Impl::ThreadVectorRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember >&
loop_boundaries, const Lambda & lambda, ValueType& result) {
result = ValueType();
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
for( iType i = loop_boundaries.start; i < loop_boundaries.end; i+=loop_boundaries.increment) {
ValueType tmp = ValueType();
lambda(i,tmp);
result+=tmp;
}
}
/** \brief Intra-thread vector parallel_reduce. Executes lambda(iType i, ValueType & val) for each i=0..N-1.
*
* The range i=0..N-1 is mapped to all vector lanes of the the calling thread and a reduction of
* val is performed using JoinType(ValueType& val, const ValueType& update) and put into init_result.
* The input value of init_result is used as initializer for temporary variables of ValueType. Therefore
* the input value should be the neutral element with respect to the join operation (e.g. '0 for +-' or
* '1 for *'). This functionality requires C++11 support.*/
template< typename iType, class Lambda, typename ValueType, class JoinType >
KOKKOS_INLINE_FUNCTION
void parallel_reduce(const Impl::ThreadVectorRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember >&
loop_boundaries, const Lambda & lambda, const JoinType& join, ValueType& init_result) {
ValueType result = init_result;
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
for( iType i = loop_boundaries.start; i < loop_boundaries.end; i+=loop_boundaries.increment) {
ValueType tmp = ValueType();
lambda(i,tmp);
join(result,tmp);
}
init_result = result;
}
/** \brief Intra-thread vector parallel exclusive prefix sum. Executes lambda(iType i, ValueType & val, bool final)
* for each i=0..N-1.
*
* The range i=0..N-1 is mapped to all vector lanes in the thread and a scan operation is performed.
* Depending on the target execution space the operator might be called twice: once with final=false
* and once with final=true. When final==true val contains the prefix sum value. The contribution of this
* "i" needs to be added to val no matter whether final==true or not. In a serial execution
* (i.e. team_size==1) the operator is only called once with final==true. Scan_val will be set
* to the final sum value over all vector lanes.
* This functionality requires C++11 support.*/
template< typename iType, class FunctorType >
KOKKOS_INLINE_FUNCTION
void parallel_scan(const Impl::ThreadVectorRangeBoundariesStruct<iType,Impl::ThreadsExecTeamMember >&
loop_boundaries, const FunctorType & lambda) {
typedef Kokkos::Impl::FunctorValueTraits< FunctorType , void > ValueTraits ;
typedef typename ValueTraits::value_type value_type ;
value_type scan_val = value_type();
#ifdef KOKKOS_HAVE_PRAGMA_IVDEP
#pragma ivdep
#endif
for( iType i = loop_boundaries.start; i < loop_boundaries.end; i+=loop_boundaries.increment) {
lambda(i,scan_val,true);
}
}
} // namespace Kokkos
namespace Kokkos {
template<class FunctorType>
KOKKOS_INLINE_FUNCTION
void single(const Impl::VectorSingleStruct<Impl::ThreadsExecTeamMember>& single_struct, const FunctorType& lambda) {
lambda();
}
template<class FunctorType>
KOKKOS_INLINE_FUNCTION
void single(const Impl::ThreadSingleStruct<Impl::ThreadsExecTeamMember>& single_struct, const FunctorType& lambda) {
if(single_struct.team_member.team_rank()==0) lambda();
}
template<class FunctorType, class ValueType>
KOKKOS_INLINE_FUNCTION
void single(const Impl::VectorSingleStruct<Impl::ThreadsExecTeamMember>& single_struct, const FunctorType& lambda, ValueType& val) {
lambda(val);
}
template<class FunctorType, class ValueType>
KOKKOS_INLINE_FUNCTION
void single(const Impl::ThreadSingleStruct<Impl::ThreadsExecTeamMember>& single_struct, const FunctorType& lambda, ValueType& val) {
if(single_struct.team_member.team_rank()==0) {
lambda(val);
}
single_struct.team_member.team_broadcast(val,0);
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
#endif /* #define KOKKOS_THREADSTEAM_HPP */
|