/usr/include/trilinos/Kokkos_UnorderedMap.hpp is in libtrilinos-kokkos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 | /*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
/// \file Kokkos_UnorderedMap.hpp
/// \brief Declaration and definition of Kokkos::UnorderedMap.
///
/// This header file declares and defines Kokkos::UnorderedMap and its
/// related nonmember functions.
#ifndef KOKKOS_UNORDERED_MAP_HPP
#define KOKKOS_UNORDERED_MAP_HPP
#include <Kokkos_Core.hpp>
#include <Kokkos_Functional.hpp>
#include <Kokkos_Bitset.hpp>
#include <impl/Kokkos_Traits.hpp>
#include <impl/Kokkos_UnorderedMap_impl.hpp>
#include <iostream>
#include <stdint.h>
#include <stdexcept>
namespace Kokkos {
enum { UnorderedMapInvalidIndex = ~0u };
/// \brief First element of the return value of UnorderedMap::insert().
///
/// Inserting an element into an UnorderedMap is not guaranteed to
/// succeed. There are three possible conditions:
/// <ol>
/// <li> <tt>INSERT_FAILED</tt>: The insert failed. This usually
/// means that the UnorderedMap ran out of space. </li>
/// <li> <tt>INSERT_SUCCESS</tt>: The insert succeeded, and the key
/// did <i>not</i> exist in the table before. </li>
/// <li> <tt>INSERT_EXISTING</tt>: The insert succeeded, and the key
/// <i>did</i> exist in the table before. The new value was
/// ignored and the old value was left in place. </li>
/// </ol>
class UnorderedMapInsertResult
{
private:
enum Status{
SUCCESS = 1u << 31
, EXISTING = 1u << 30
, FREED_EXISTING = 1u << 29
, LIST_LENGTH_MASK = ~(SUCCESS | EXISTING | FREED_EXISTING)
};
public:
/// Did the map successful insert the key/value pair
KOKKOS_FORCEINLINE_FUNCTION
bool success() const { return (m_status & SUCCESS); }
/// Was the key already present in the map
KOKKOS_FORCEINLINE_FUNCTION
bool existing() const { return (m_status & EXISTING); }
/// Did the map fail to insert the key due to insufficent capacity
KOKKOS_FORCEINLINE_FUNCTION
bool failed() const { return m_index == UnorderedMapInvalidIndex; }
/// Did the map lose a race condition to insert a dupulicate key/value pair
/// where an index was claimed that needed to be released
KOKKOS_FORCEINLINE_FUNCTION
bool freed_existing() const { return (m_status & FREED_EXISTING); }
/// How many iterations through the insert loop did it take before the
/// map returned
KOKKOS_FORCEINLINE_FUNCTION
uint32_t list_position() const { return (m_status & LIST_LENGTH_MASK); }
/// Index where the key can be found as long as the insert did not fail
KOKKOS_FORCEINLINE_FUNCTION
uint32_t index() const { return m_index; }
KOKKOS_FORCEINLINE_FUNCTION
UnorderedMapInsertResult()
: m_index(UnorderedMapInvalidIndex)
, m_status(0)
{}
KOKKOS_FORCEINLINE_FUNCTION
void increment_list_position()
{
m_status += (list_position() < LIST_LENGTH_MASK) ? 1u : 0u;
}
KOKKOS_FORCEINLINE_FUNCTION
void set_existing(uint32_t i, bool arg_freed_existing)
{
m_index = i;
m_status = EXISTING | (arg_freed_existing ? FREED_EXISTING : 0u) | list_position();
}
KOKKOS_FORCEINLINE_FUNCTION
void set_success(uint32_t i)
{
m_index = i;
m_status = SUCCESS | list_position();
}
private:
uint32_t m_index;
uint32_t m_status;
};
/// \class UnorderedMap
/// \brief Thread-safe, performance-portable lookup table.
///
/// This class provides a lookup table. In terms of functionality,
/// this class compares to std::unordered_map (new in C++11).
/// "Unordered" means that keys are not stored in any particular
/// order, unlike (for example) std::map. "Thread-safe" means that
/// lookups, insertion, and deletion are safe to call by multiple
/// threads in parallel. "Performance-portable" means that parallel
/// performance of these operations is reasonable, on multiple
/// hardware platforms. Platforms on which performance has been
/// tested include conventional Intel x86 multicore processors, Intel
/// Xeon Phi ("MIC"), and NVIDIA GPUs.
///
/// Parallel performance portability entails design decisions that
/// might differ from one's expectation for a sequential interface.
/// This particularly affects insertion of single elements. In an
/// interface intended for sequential use, insertion might reallocate
/// memory if the original allocation did not suffice to hold the new
/// element. In this class, insertion does <i>not</i> reallocate
/// memory. This means that it might fail. insert() returns an enum
/// which indicates whether the insert failed. There are three
/// possible conditions:
/// <ol>
/// <li> <tt>INSERT_FAILED</tt>: The insert failed. This usually
/// means that the UnorderedMap ran out of space. </li>
/// <li> <tt>INSERT_SUCCESS</tt>: The insert succeeded, and the key
/// did <i>not</i> exist in the table before. </li>
/// <li> <tt>INSERT_EXISTING</tt>: The insert succeeded, and the key
/// <i>did</i> exist in the table before. The new value was
/// ignored and the old value was left in place. </li>
/// </ol>
///
/// \tparam Key Type of keys of the lookup table. If \c const, users
/// are not allowed to add or remove keys, though they are allowed
/// to change values. In that case, the implementation may make
/// optimizations specific to the <tt>Device</tt>. For example, if
/// <tt>Device</tt> is \c Cuda, it may use texture fetches to access
/// keys.
///
/// \tparam Value Type of values stored in the lookup table. You may use
/// \c void here, in which case the table will be a set of keys. If
/// \c const, users are not allowed to change entries.
/// In that case, the implementation may make
/// optimizations specific to the \c Device, such as using texture
/// fetches to access values.
///
/// \tparam Device The Kokkos Device type.
///
/// \tparam Hasher Definition of the hash function for instances of
/// <tt>Key</tt>. The default will calculate a bitwise hash.
///
/// \tparam EqualTo Definition of the equality function for instances of
/// <tt>Key</tt>. The default will do a bitwise equality comparison.
///
template < typename Key
, typename Value
, typename Device = Kokkos::DefaultExecutionSpace
, typename Hasher = pod_hash<typename Impl::remove_const<Key>::type>
, typename EqualTo = pod_equal_to<typename Impl::remove_const<Key>::type>
>
class UnorderedMap
{
private:
typedef typename ViewTraits<Key,Device,void,void>::host_mirror_space host_mirror_space ;
public:
//! \name Public types and constants
//@{
//key_types
typedef Key declared_key_type;
typedef typename Impl::remove_const<declared_key_type>::type key_type;
typedef typename Impl::add_const<key_type>::type const_key_type;
//value_types
typedef Value declared_value_type;
typedef typename Impl::remove_const<declared_value_type>::type value_type;
typedef typename Impl::add_const<value_type>::type const_value_type;
typedef Device execution_space;
typedef Hasher hasher_type;
typedef EqualTo equal_to_type;
typedef uint32_t size_type;
//map_types
typedef UnorderedMap<declared_key_type,declared_value_type,execution_space,hasher_type,equal_to_type> declared_map_type;
typedef UnorderedMap<key_type,value_type,execution_space,hasher_type,equal_to_type> insertable_map_type;
typedef UnorderedMap<const_key_type,value_type,execution_space,hasher_type,equal_to_type> modifiable_map_type;
typedef UnorderedMap<const_key_type,const_value_type,execution_space,hasher_type,equal_to_type> const_map_type;
static const bool is_set = Impl::is_same<void,value_type>::value;
static const bool has_const_key = Impl::is_same<const_key_type,declared_key_type>::value;
static const bool has_const_value = is_set || Impl::is_same<const_value_type,declared_value_type>::value;
static const bool is_insertable_map = !has_const_key && (is_set || !has_const_value);
static const bool is_modifiable_map = has_const_key && !has_const_value;
static const bool is_const_map = has_const_key && has_const_value;
typedef UnorderedMapInsertResult insert_result;
typedef UnorderedMap<Key,Value,host_mirror_space,Hasher,EqualTo> HostMirror;
typedef Impl::UnorderedMapHistogram<const_map_type> histogram_type;
//@}
private:
enum { invalid_index = ~static_cast<size_type>(0) };
typedef typename Impl::if_c< is_set, int, declared_value_type>::type impl_value_type;
typedef typename Impl::if_c< is_insertable_map
, View< key_type *, execution_space>
, View< const key_type *, execution_space, MemoryTraits<RandomAccess> >
>::type key_type_view;
typedef typename Impl::if_c< is_insertable_map || is_modifiable_map
, View< impl_value_type *, execution_space>
, View< const impl_value_type *, execution_space, MemoryTraits<RandomAccess> >
>::type value_type_view;
typedef typename Impl::if_c< is_insertable_map
, View< size_type *, execution_space>
, View< const size_type *, execution_space, MemoryTraits<RandomAccess> >
>::type size_type_view;
typedef typename Impl::if_c< is_insertable_map
, Bitset< execution_space >
, ConstBitset< execution_space>
>::type bitset_type;
enum { modified_idx = 0, erasable_idx = 1, failed_insert_idx = 2 };
enum { num_scalars = 3 };
typedef View< int[num_scalars], LayoutLeft, execution_space> scalars_view;
public:
//! \name Public member functions
//@{
UnorderedMap()
: m_bounded_insert()
, m_hasher()
, m_equal_to()
, m_size()
, m_available_indexes()
, m_hash_lists()
, m_next_index()
, m_keys()
, m_values()
, m_scalars()
{}
/// \brief Constructor
///
/// \param capacity_hint [in] Initial guess of how many unique keys will be inserted into the map
/// \param hash [in] Hasher function for \c Key instances. The
/// default value usually suffices.
UnorderedMap( size_type capacity_hint, hasher_type hasher = hasher_type(), equal_to_type equal_to = equal_to_type() )
: m_bounded_insert(true)
, m_hasher(hasher)
, m_equal_to(equal_to)
, m_size()
, m_available_indexes(calculate_capacity(capacity_hint))
, m_hash_lists(ViewAllocateWithoutInitializing("UnorderedMap hash list"), Impl::find_hash_size(capacity()))
, m_next_index(ViewAllocateWithoutInitializing("UnorderedMap next index"), capacity()+1) // +1 so that the *_at functions can always return a valid reference
, m_keys("UnorderedMap keys",capacity()+1)
, m_values("UnorderedMap values",(is_set? 1 : capacity()+1))
, m_scalars("UnorderedMap scalars")
{
if (!is_insertable_map) {
throw std::runtime_error("Cannot construct a non-insertable (i.e. const key_type) unordered_map");
}
Kokkos::deep_copy(m_hash_lists, invalid_index);
Kokkos::deep_copy(m_next_index, invalid_index);
}
void reset_failed_insert_flag()
{
reset_flag(failed_insert_idx);
}
histogram_type get_histogram()
{
return histogram_type(*this);
}
//! Clear all entries in the table.
void clear()
{
m_bounded_insert = true;
if (capacity() == 0) return;
m_available_indexes.clear();
Kokkos::deep_copy(m_hash_lists, invalid_index);
Kokkos::deep_copy(m_next_index, invalid_index);
{
const key_type tmp = key_type();
Kokkos::deep_copy(m_keys,tmp);
}
if (is_set){
const impl_value_type tmp = impl_value_type();
Kokkos::deep_copy(m_values,tmp);
}
{
Kokkos::deep_copy(m_scalars, 0);
}
}
/// \brief Change the capacity of the the map
///
/// If there are no failed inserts the current size of the map will
/// be used as a lower bound for the input capacity.
/// If the map is not empty and does not have failed inserts
/// and the capacity changes then the current data is copied
/// into the resized / rehashed map.
///
/// This is <i>not</i> a device function; it may <i>not</i> be
/// called in a parallel kernel.
bool rehash(size_type requested_capacity = 0)
{
const bool bounded_insert = (capacity() == 0) || (size() == 0u);
return rehash(requested_capacity, bounded_insert );
}
bool rehash(size_type requested_capacity, bool bounded_insert)
{
if(!is_insertable_map) return false;
const size_type curr_size = size();
requested_capacity = (requested_capacity < curr_size) ? curr_size : requested_capacity;
insertable_map_type tmp(requested_capacity, m_hasher, m_equal_to);
if (curr_size) {
tmp.m_bounded_insert = false;
Impl::UnorderedMapRehash<insertable_map_type> f(tmp,*this);
f.apply();
}
tmp.m_bounded_insert = bounded_insert;
*this = tmp;
return true;
}
/// \brief The number of entries in the table.
///
/// This method has undefined behavior when erasable() is true.
///
/// Note that this is not a device function; it cannot be called in
/// a parallel kernel. The value is not stored as a variable; it
/// must be computed.
size_type size() const
{
if( capacity() == 0u ) return 0u;
if (modified()) {
m_size = m_available_indexes.count();
reset_flag(modified_idx);
}
return m_size;
}
/// \brief The current number of failed insert() calls.
///
/// This is <i>not</i> a device function; it may <i>not</i> be
/// called in a parallel kernel. The value is not stored as a
/// variable; it must be computed.
bool failed_insert() const
{
return get_flag(failed_insert_idx);
}
bool erasable() const
{
return is_insertable_map ? get_flag(erasable_idx) : false;
}
bool begin_erase()
{
bool result = !erasable();
if (is_insertable_map && result) {
execution_space::fence();
set_flag(erasable_idx);
execution_space::fence();
}
return result;
}
bool end_erase()
{
bool result = erasable();
if (is_insertable_map && result) {
execution_space::fence();
Impl::UnorderedMapErase<declared_map_type> f(*this);
f.apply();
execution_space::fence();
reset_flag(erasable_idx);
}
return result;
}
/// \brief The maximum number of entries that the table can hold.
///
/// This <i>is</i> a device function; it may be called in a parallel
/// kernel.
KOKKOS_FORCEINLINE_FUNCTION
size_type capacity() const
{ return m_available_indexes.size(); }
/// \brief The number of hash table "buckets."
///
/// This is different than the number of entries that the table can
/// hold. Each key hashes to an index in [0, hash_capacity() - 1].
/// That index can hold zero or more entries. This class decides
/// what hash_capacity() should be, given the user's upper bound on
/// the number of entries the table must be able to hold.
///
/// This <i>is</i> a device function; it may be called in a parallel
/// kernel.
KOKKOS_INLINE_FUNCTION
size_type hash_capacity() const
{ return m_hash_lists.dimension_0(); }
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
/// This <i>is</i> a device function; it may be called in a parallel
/// kernel. As discussed in the class documentation, it need not
/// succeed. The return value tells you if it did.
///
/// \param k [in] The key to attempt to insert.
/// \param v [in] The corresponding value to attempt to insert. If
/// using this class as a set (with Value = void), then you need not
/// provide this value.
KOKKOS_INLINE_FUNCTION
insert_result insert(key_type const& k, impl_value_type const&v = impl_value_type()) const
{
insert_result result;
if ( !is_insertable_map || capacity() == 0u || m_scalars((int)erasable_idx) ) {
return result;
}
if ( !m_scalars((int)modified_idx) ) {
m_scalars((int)modified_idx) = true;
}
int volatile & failed_insert_ref = m_scalars((int)failed_insert_idx) ;
const size_type hash_value = m_hasher(k);
const size_type hash_list = hash_value % m_hash_lists.dimension_0();
size_type * curr_ptr = & m_hash_lists[ hash_list ];
size_type new_index = invalid_index ;
// Force integer multiply to long
size_type index_hint = static_cast<size_type>( (static_cast<double>(hash_list) * capacity()) / m_hash_lists.dimension_0());
size_type find_attempts = 0;
enum { bounded_find_attempts = 32u };
const size_type max_attempts = (m_bounded_insert && (bounded_find_attempts < m_available_indexes.max_hint()) ) ?
bounded_find_attempts :
m_available_indexes.max_hint();
bool not_done = true ;
#if defined( __MIC__ )
#pragma noprefetch
#endif
while ( not_done ) {
// Continue searching the unordered list for this key,
// list will only be appended during insert phase.
// Need volatile_load as other threads may be appending.
size_type curr = volatile_load(curr_ptr);
KOKKOS_NONTEMPORAL_PREFETCH_LOAD(&m_keys[curr != invalid_index ? curr : 0]);
#if defined( __MIC__ )
#pragma noprefetch
#endif
while ( curr != invalid_index && ! m_equal_to( volatile_load(&m_keys[curr]), k) ) {
result.increment_list_position();
index_hint = curr;
curr_ptr = &m_next_index[curr];
curr = volatile_load(curr_ptr);
KOKKOS_NONTEMPORAL_PREFETCH_LOAD(&m_keys[curr != invalid_index ? curr : 0]);
}
//------------------------------------------------------------
// If key already present then return that index.
if ( curr != invalid_index ) {
const bool free_existing = new_index != invalid_index;
if ( free_existing ) {
// Previously claimed an unused entry that was not inserted.
// Release this unused entry immediately.
if (!m_available_indexes.reset(new_index) ) {
printf("Unable to free existing\n");
}
}
result.set_existing(curr, free_existing);
not_done = false ;
}
//------------------------------------------------------------
// Key is not currently in the map.
// If the thread has claimed an entry try to insert now.
else {
//------------------------------------------------------------
// If have not already claimed an unused entry then do so now.
if (new_index == invalid_index) {
bool found = false;
// use the hash_list as the flag for the search direction
Kokkos::tie(found, index_hint) = m_available_indexes.find_any_unset_near( index_hint, hash_list );
// found and index and this thread set it
if ( !found && ++find_attempts >= max_attempts ) {
failed_insert_ref = true;
not_done = false ;
}
else if (m_available_indexes.set(index_hint) ) {
new_index = index_hint;
// Set key and value
KOKKOS_NONTEMPORAL_PREFETCH_STORE(&m_keys[new_index]);
m_keys[new_index] = k ;
if (!is_set) {
KOKKOS_NONTEMPORAL_PREFETCH_STORE(&m_values[new_index]);
m_values[new_index] = v ;
}
// Do not proceed until key and value are updated in global memory
memory_fence();
}
}
else if (failed_insert_ref) {
not_done = false;
}
// Attempt to append claimed entry into the list.
// Another thread may also be trying to append the same list so protect with atomic.
if ( new_index != invalid_index &&
curr == atomic_compare_exchange(curr_ptr, static_cast<size_type>(invalid_index), new_index) ) {
// Succeeded in appending
result.set_success(new_index);
not_done = false ;
}
}
} // while ( not_done )
return result ;
}
KOKKOS_INLINE_FUNCTION
bool erase(key_type const& k) const
{
bool result = false;
if(is_insertable_map && 0u < capacity() && m_scalars((int)erasable_idx)) {
if ( ! m_scalars((int)modified_idx) ) {
m_scalars((int)modified_idx) = true;
}
size_type index = find(k);
if (valid_at(index)) {
m_available_indexes.reset(index);
result = true;
}
}
return result;
}
/// \brief Find the given key \c k, if it exists in the table.
///
/// \return If the key exists in the table, the index of the
/// value corresponding to that key; otherwise, an invalid index.
///
/// This <i>is</i> a device function; it may be called in a parallel
/// kernel.
KOKKOS_INLINE_FUNCTION
size_type find( const key_type & k) const
{
size_type curr = 0u < capacity() ? m_hash_lists( m_hasher(k) % m_hash_lists.dimension_0() ) : invalid_index ;
KOKKOS_NONTEMPORAL_PREFETCH_LOAD(&m_keys[curr != invalid_index ? curr : 0]);
while (curr != invalid_index && !m_equal_to( m_keys[curr], k) ) {
KOKKOS_NONTEMPORAL_PREFETCH_LOAD(&m_keys[curr != invalid_index ? curr : 0]);
curr = m_next_index[curr];
}
return curr;
}
/// \brief Does the key exist in the map
///
/// This <i>is</i> a device function; it may be called in a parallel
/// kernel.
KOKKOS_INLINE_FUNCTION
bool exists( const key_type & k) const
{
return valid_at(find(k));
}
/// \brief Get the value with \c i as its direct index.
///
/// \param i [in] Index directly into the array of entries.
///
/// This <i>is</i> a device function; it may be called in a parallel
/// kernel.
///
/// 'const value_type' via Cuda texture fetch must return by value.
KOKKOS_FORCEINLINE_FUNCTION
typename Impl::if_c< (is_set || has_const_value), impl_value_type, impl_value_type &>::type
value_at(size_type i) const
{
return m_values[ is_set ? 0 : (i < capacity() ? i : capacity()) ];
}
/// \brief Get the key with \c i as its direct index.
///
/// \param i [in] Index directly into the array of entries.
///
/// This <i>is</i> a device function; it may be called in a parallel
/// kernel.
KOKKOS_FORCEINLINE_FUNCTION
key_type key_at(size_type i) const
{
return m_keys[ i < capacity() ? i : capacity() ];
}
KOKKOS_FORCEINLINE_FUNCTION
bool valid_at(size_type i) const
{
return m_available_indexes.test(i);
}
template <typename SKey, typename SValue>
UnorderedMap( UnorderedMap<SKey,SValue,Device,Hasher,EqualTo> const& src,
typename Impl::enable_if< Impl::UnorderedMapCanAssign<declared_key_type,declared_value_type,SKey,SValue>::value,int>::type = 0
)
: m_bounded_insert(src.m_bounded_insert)
, m_hasher(src.m_hasher)
, m_equal_to(src.m_equal_to)
, m_size(src.m_size)
, m_available_indexes(src.m_available_indexes)
, m_hash_lists(src.m_hash_lists)
, m_next_index(src.m_next_index)
, m_keys(src.m_keys)
, m_values(src.m_values)
, m_scalars(src.m_scalars)
{}
template <typename SKey, typename SValue>
typename Impl::enable_if< Impl::UnorderedMapCanAssign<declared_key_type,declared_value_type,SKey,SValue>::value
,declared_map_type & >::type
operator=( UnorderedMap<SKey,SValue,Device,Hasher,EqualTo> const& src)
{
m_bounded_insert = src.m_bounded_insert;
m_hasher = src.m_hasher;
m_equal_to = src.m_equal_to;
m_size = src.m_size;
m_available_indexes = src.m_available_indexes;
m_hash_lists = src.m_hash_lists;
m_next_index = src.m_next_index;
m_keys = src.m_keys;
m_values = src.m_values;
m_scalars = src.m_scalars;
return *this;
}
template <typename SKey, typename SValue, typename SDevice>
typename Impl::enable_if< Impl::is_same< typename Impl::remove_const<SKey>::type, key_type>::value &&
Impl::is_same< typename Impl::remove_const<SValue>::type, value_type>::value
>::type
create_copy_view( UnorderedMap<SKey, SValue, SDevice, Hasher,EqualTo> const& src)
{
if (m_hash_lists.ptr_on_device() != src.m_hash_lists.ptr_on_device()) {
insertable_map_type tmp;
tmp.m_bounded_insert = src.m_bounded_insert;
tmp.m_hasher = src.m_hasher;
tmp.m_equal_to = src.m_equal_to;
tmp.m_size = src.size();
tmp.m_available_indexes = bitset_type( src.capacity() );
tmp.m_hash_lists = size_type_view( ViewAllocateWithoutInitializing("UnorderedMap hash list"), src.m_hash_lists.dimension_0() );
tmp.m_next_index = size_type_view( ViewAllocateWithoutInitializing("UnorderedMap next index"), src.m_next_index.dimension_0() );
tmp.m_keys = key_type_view( ViewAllocateWithoutInitializing("UnorderedMap keys"), src.m_keys.dimension_0() );
tmp.m_values = value_type_view( ViewAllocateWithoutInitializing("UnorderedMap values"), src.m_values.dimension_0() );
tmp.m_scalars = scalars_view("UnorderedMap scalars");
Kokkos::deep_copy(tmp.m_available_indexes, src.m_available_indexes);
typedef Kokkos::Impl::DeepCopy< typename execution_space::memory_space, typename SDevice::memory_space > raw_deep_copy;
raw_deep_copy(tmp.m_hash_lists.ptr_on_device(), src.m_hash_lists.ptr_on_device(), sizeof(size_type)*src.m_hash_lists.dimension_0());
raw_deep_copy(tmp.m_next_index.ptr_on_device(), src.m_next_index.ptr_on_device(), sizeof(size_type)*src.m_next_index.dimension_0());
raw_deep_copy(tmp.m_keys.ptr_on_device(), src.m_keys.ptr_on_device(), sizeof(key_type)*src.m_keys.dimension_0());
if (!is_set) {
raw_deep_copy(tmp.m_values.ptr_on_device(), src.m_values.ptr_on_device(), sizeof(impl_value_type)*src.m_values.dimension_0());
}
raw_deep_copy(tmp.m_scalars.ptr_on_device(), src.m_scalars.ptr_on_device(), sizeof(int)*num_scalars );
*this = tmp;
}
}
//@}
private: // private member functions
bool modified() const
{
return get_flag(modified_idx);
}
void set_flag(int flag) const
{
typedef Kokkos::Impl::DeepCopy< typename execution_space::memory_space, Kokkos::HostSpace > raw_deep_copy;
const int true_ = true;
raw_deep_copy(m_scalars.ptr_on_device() + flag, &true_, sizeof(int));
}
void reset_flag(int flag) const
{
typedef Kokkos::Impl::DeepCopy< typename execution_space::memory_space, Kokkos::HostSpace > raw_deep_copy;
const int false_ = false;
raw_deep_copy(m_scalars.ptr_on_device() + flag, &false_, sizeof(int));
}
bool get_flag(int flag) const
{
typedef Kokkos::Impl::DeepCopy< Kokkos::HostSpace, typename execution_space::memory_space > raw_deep_copy;
int result = false;
raw_deep_copy(&result, m_scalars.ptr_on_device() + flag, sizeof(int));
return result;
}
static uint32_t calculate_capacity(uint32_t capacity_hint)
{
// increase by 16% and round to nears multiple of 128
return capacity_hint ? ((static_cast<uint32_t>(7ull*capacity_hint/6u) + 127u)/128u)*128u : 128u;
}
private: // private members
bool m_bounded_insert;
hasher_type m_hasher;
equal_to_type m_equal_to;
mutable size_type m_size;
bitset_type m_available_indexes;
size_type_view m_hash_lists;
size_type_view m_next_index;
key_type_view m_keys;
value_type_view m_values;
scalars_view m_scalars;
template <typename KKey, typename VValue, typename DDevice, typename HHash, typename EEqualTo>
friend class UnorderedMap;
template <typename UMap>
friend struct Impl::UnorderedMapErase;
template <typename UMap>
friend struct Impl::UnorderedMapHistogram;
template <typename UMap>
friend struct Impl::UnorderedMapPrint;
};
// Specialization of deep_copy for two UnorderedMap objects.
template < typename DKey, typename DT, typename DDevice
, typename SKey, typename ST, typename SDevice
, typename Hasher, typename EqualTo >
inline void deep_copy( UnorderedMap<DKey, DT, DDevice, Hasher, EqualTo> & dst
, const UnorderedMap<SKey, ST, SDevice, Hasher, EqualTo> & src )
{
dst.create_copy_view(src);
}
} // namespace Kokkos
#endif //KOKKOS_UNORDERED_MAP_HPP
|