This file is indexed.

/usr/include/trilinos/Kokkos_UnorderedMap.hpp is in libtrilinos-kokkos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
/*
//@HEADER
// ************************************************************************
// 
//                        Kokkos v. 2.0
//              Copyright (2014) Sandia Corporation
// 
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact  H. Carter Edwards (hcedwar@sandia.gov)
// 
// ************************************************************************
//@HEADER
*/

/// \file Kokkos_UnorderedMap.hpp
/// \brief Declaration and definition of Kokkos::UnorderedMap.
///
/// This header file declares and defines Kokkos::UnorderedMap and its
/// related nonmember functions.

#ifndef KOKKOS_UNORDERED_MAP_HPP
#define KOKKOS_UNORDERED_MAP_HPP

#include <Kokkos_Core.hpp>
#include <Kokkos_Functional.hpp>

#include <Kokkos_Bitset.hpp>

#include <impl/Kokkos_Traits.hpp>
#include <impl/Kokkos_UnorderedMap_impl.hpp>


#include <iostream>

#include <stdint.h>
#include <stdexcept>


namespace Kokkos {

enum { UnorderedMapInvalidIndex = ~0u };

/// \brief First element of the return value of UnorderedMap::insert().
///
/// Inserting an element into an UnorderedMap is not guaranteed to
/// succeed.  There are three possible conditions:
/// <ol>
/// <li> <tt>INSERT_FAILED</tt>: The insert failed.  This usually
///      means that the UnorderedMap ran out of space. </li>
/// <li> <tt>INSERT_SUCCESS</tt>: The insert succeeded, and the key
///      did <i>not</i> exist in the table before. </li>
/// <li> <tt>INSERT_EXISTING</tt>: The insert succeeded, and the key
///      <i>did</i> exist in the table before.  The new value was
///      ignored and the old value was left in place. </li>
/// </ol>

class UnorderedMapInsertResult
{
private:
  enum Status{
     SUCCESS = 1u << 31
   , EXISTING = 1u << 30
   , FREED_EXISTING = 1u << 29
   , LIST_LENGTH_MASK = ~(SUCCESS | EXISTING | FREED_EXISTING)
  };

public:
  /// Did the map successful insert the key/value pair
  KOKKOS_FORCEINLINE_FUNCTION
  bool success() const { return (m_status & SUCCESS); }

  /// Was the key already present in the map
  KOKKOS_FORCEINLINE_FUNCTION
  bool existing() const { return (m_status & EXISTING); }

  /// Did the map fail to insert the key due to insufficent capacity
  KOKKOS_FORCEINLINE_FUNCTION
  bool failed() const { return m_index == UnorderedMapInvalidIndex; }

  /// Did the map lose a race condition to insert a dupulicate key/value pair
  /// where an index was claimed that needed to be released
  KOKKOS_FORCEINLINE_FUNCTION
  bool freed_existing() const { return (m_status & FREED_EXISTING); }

  /// How many iterations through the insert loop did it take before the
  /// map returned
  KOKKOS_FORCEINLINE_FUNCTION
  uint32_t list_position() const { return (m_status & LIST_LENGTH_MASK); }

  /// Index where the key can be found as long as the insert did not fail
  KOKKOS_FORCEINLINE_FUNCTION
  uint32_t index() const { return m_index; }

  KOKKOS_FORCEINLINE_FUNCTION
  UnorderedMapInsertResult()
    : m_index(UnorderedMapInvalidIndex)
    , m_status(0)
  {}

  KOKKOS_FORCEINLINE_FUNCTION
  void increment_list_position()
  {
    m_status += (list_position() < LIST_LENGTH_MASK) ? 1u : 0u;
  }

  KOKKOS_FORCEINLINE_FUNCTION
  void set_existing(uint32_t i, bool arg_freed_existing)
  {
    m_index = i;
    m_status = EXISTING | (arg_freed_existing ? FREED_EXISTING : 0u) | list_position();
  }

  KOKKOS_FORCEINLINE_FUNCTION
  void set_success(uint32_t i)
  {
    m_index = i;
    m_status = SUCCESS | list_position();
  }

private:
  uint32_t m_index;
  uint32_t m_status;
};

/// \class UnorderedMap
/// \brief Thread-safe, performance-portable lookup table.
///
/// This class provides a lookup table.  In terms of functionality,
/// this class compares to std::unordered_map (new in C++11).
/// "Unordered" means that keys are not stored in any particular
/// order, unlike (for example) std::map.  "Thread-safe" means that
/// lookups, insertion, and deletion are safe to call by multiple
/// threads in parallel.  "Performance-portable" means that parallel
/// performance of these operations is reasonable, on multiple
/// hardware platforms.  Platforms on which performance has been
/// tested include conventional Intel x86 multicore processors, Intel
/// Xeon Phi ("MIC"), and NVIDIA GPUs.
///
/// Parallel performance portability entails design decisions that
/// might differ from one's expectation for a sequential interface.
/// This particularly affects insertion of single elements.  In an
/// interface intended for sequential use, insertion might reallocate
/// memory if the original allocation did not suffice to hold the new
/// element.  In this class, insertion does <i>not</i> reallocate
/// memory.  This means that it might fail.  insert() returns an enum
/// which indicates whether the insert failed.  There are three
/// possible conditions:
/// <ol>
/// <li> <tt>INSERT_FAILED</tt>: The insert failed.  This usually
///      means that the UnorderedMap ran out of space. </li>
/// <li> <tt>INSERT_SUCCESS</tt>: The insert succeeded, and the key
///      did <i>not</i> exist in the table before. </li>
/// <li> <tt>INSERT_EXISTING</tt>: The insert succeeded, and the key
///      <i>did</i> exist in the table before.  The new value was
///      ignored and the old value was left in place. </li>
/// </ol>
///
/// \tparam Key Type of keys of the lookup table.  If \c const, users
///   are not allowed to add or remove keys, though they are allowed
///   to change values.  In that case, the implementation may make
///   optimizations specific to the <tt>Device</tt>.  For example, if
///   <tt>Device</tt> is \c Cuda, it may use texture fetches to access
///   keys.
///
/// \tparam Value Type of values stored in the lookup table.  You may use
///   \c void here, in which case the table will be a set of keys.  If
///   \c const, users are not allowed to change entries.
///   In that case, the implementation may make
///   optimizations specific to the \c Device, such as using texture
///   fetches to access values.
///
/// \tparam Device The Kokkos Device type.
///
/// \tparam Hasher Definition of the hash function for instances of
///   <tt>Key</tt>.  The default will calculate a bitwise hash.
///
/// \tparam EqualTo Definition of the equality function for instances of
///   <tt>Key</tt>.  The default will do a bitwise equality comparison.
///
template <   typename Key
           , typename Value
           , typename Device = Kokkos::DefaultExecutionSpace
           , typename Hasher = pod_hash<typename Impl::remove_const<Key>::type>
           , typename EqualTo = pod_equal_to<typename Impl::remove_const<Key>::type>
        >
class UnorderedMap
{
private:
  typedef typename ViewTraits<Key,Device,void,void>::host_mirror_space host_mirror_space ;
public:
  //! \name Public types and constants
  //@{

  //key_types
  typedef Key declared_key_type;
  typedef typename Impl::remove_const<declared_key_type>::type key_type;
  typedef typename Impl::add_const<key_type>::type const_key_type;

  //value_types
  typedef Value declared_value_type;
  typedef typename Impl::remove_const<declared_value_type>::type value_type;
  typedef typename Impl::add_const<value_type>::type const_value_type;

  typedef Device execution_space;
  typedef Hasher hasher_type;
  typedef EqualTo  equal_to_type;
  typedef uint32_t size_type;

  //map_types
  typedef UnorderedMap<declared_key_type,declared_value_type,execution_space,hasher_type,equal_to_type> declared_map_type;
  typedef UnorderedMap<key_type,value_type,execution_space,hasher_type,equal_to_type>                   insertable_map_type;
  typedef UnorderedMap<const_key_type,value_type,execution_space,hasher_type,equal_to_type>             modifiable_map_type;
  typedef UnorderedMap<const_key_type,const_value_type,execution_space,hasher_type,equal_to_type>       const_map_type;

  static const bool is_set = Impl::is_same<void,value_type>::value;
  static const bool has_const_key = Impl::is_same<const_key_type,declared_key_type>::value;
  static const bool has_const_value = is_set || Impl::is_same<const_value_type,declared_value_type>::value;

  static const bool is_insertable_map = !has_const_key && (is_set || !has_const_value);
  static const bool is_modifiable_map = has_const_key && !has_const_value;
  static const bool is_const_map = has_const_key && has_const_value;


  typedef UnorderedMapInsertResult insert_result;

  typedef UnorderedMap<Key,Value,host_mirror_space,Hasher,EqualTo> HostMirror;

  typedef Impl::UnorderedMapHistogram<const_map_type> histogram_type;

  //@}

private:
  enum { invalid_index = ~static_cast<size_type>(0) };

  typedef typename Impl::if_c< is_set, int, declared_value_type>::type impl_value_type;

  typedef typename Impl::if_c<   is_insertable_map
                               , View< key_type *, execution_space>
                               , View< const key_type *, execution_space, MemoryTraits<RandomAccess> >
                             >::type key_type_view;

  typedef typename Impl::if_c<   is_insertable_map || is_modifiable_map
                               , View< impl_value_type *, execution_space>
                               , View< const impl_value_type *, execution_space, MemoryTraits<RandomAccess> >
                             >::type value_type_view;

  typedef typename Impl::if_c<   is_insertable_map
                               , View< size_type *, execution_space>
                               , View< const size_type *, execution_space, MemoryTraits<RandomAccess> >
                             >::type size_type_view;

  typedef typename Impl::if_c<   is_insertable_map
                               , Bitset< execution_space >
                               , ConstBitset< execution_space>
                             >::type bitset_type;

  enum { modified_idx = 0, erasable_idx = 1, failed_insert_idx = 2 };
  enum { num_scalars = 3 };
  typedef View< int[num_scalars], LayoutLeft, execution_space> scalars_view;

public:
  //! \name Public member functions
  //@{

  UnorderedMap()
    : m_bounded_insert()
    , m_hasher()
    , m_equal_to()
    , m_size()
    , m_available_indexes()
    , m_hash_lists()
    , m_next_index()
    , m_keys()
    , m_values()
    , m_scalars()
  {}

  /// \brief Constructor
  ///
  /// \param capacity_hint [in] Initial guess of how many unique keys will be inserted into the map
  /// \param hash [in] Hasher function for \c Key instances.  The
  ///   default value usually suffices.
  UnorderedMap(  size_type capacity_hint, hasher_type hasher = hasher_type(), equal_to_type equal_to = equal_to_type() )
    : m_bounded_insert(true)
    , m_hasher(hasher)
    , m_equal_to(equal_to)
    , m_size()
    , m_available_indexes(calculate_capacity(capacity_hint))
    , m_hash_lists(ViewAllocateWithoutInitializing("UnorderedMap hash list"), Impl::find_hash_size(capacity()))
    , m_next_index(ViewAllocateWithoutInitializing("UnorderedMap next index"), capacity()+1) // +1 so that the *_at functions can always return a valid reference
    , m_keys("UnorderedMap keys",capacity()+1)
    , m_values("UnorderedMap values",(is_set? 1 : capacity()+1))
    , m_scalars("UnorderedMap scalars")
  {
    if (!is_insertable_map) {
      throw std::runtime_error("Cannot construct a non-insertable (i.e. const key_type) unordered_map");
    }

    Kokkos::deep_copy(m_hash_lists, invalid_index);
    Kokkos::deep_copy(m_next_index, invalid_index);
  }

  void reset_failed_insert_flag()
  {
    reset_flag(failed_insert_idx);
  }

  histogram_type get_histogram()
  {
    return histogram_type(*this);
  }

  //! Clear all entries in the table.
  void clear()
  {
    m_bounded_insert = true;

    if (capacity() == 0) return;

    m_available_indexes.clear();

    Kokkos::deep_copy(m_hash_lists, invalid_index);
    Kokkos::deep_copy(m_next_index, invalid_index);
    {
      const key_type tmp = key_type();
      Kokkos::deep_copy(m_keys,tmp);
    }
    if (is_set){
      const impl_value_type tmp = impl_value_type();
      Kokkos::deep_copy(m_values,tmp);
    }
    {
      Kokkos::deep_copy(m_scalars, 0);
    }
  }

  /// \brief Change the capacity of the the map
  ///
  /// If there are no failed inserts the current size of the map will
  /// be used as a lower bound for the input capacity.
  /// If the map is not empty and does not have failed inserts
  /// and the capacity changes then the current data is copied
  /// into the resized / rehashed map.
  ///
  /// This is <i>not</i> a device function; it may <i>not</i> be
  /// called in a parallel kernel.
  bool rehash(size_type requested_capacity = 0)
  {
    const bool bounded_insert = (capacity() == 0) || (size() == 0u);
    return rehash(requested_capacity, bounded_insert );
  }

  bool rehash(size_type requested_capacity, bool bounded_insert)
  {
    if(!is_insertable_map) return false;

    const size_type curr_size = size();
    requested_capacity = (requested_capacity < curr_size) ? curr_size : requested_capacity;

    insertable_map_type tmp(requested_capacity, m_hasher, m_equal_to);

    if (curr_size) {
      tmp.m_bounded_insert = false;
      Impl::UnorderedMapRehash<insertable_map_type> f(tmp,*this);
      f.apply();
    }
    tmp.m_bounded_insert = bounded_insert;

    *this = tmp;

    return true;
  }

  /// \brief The number of entries in the table.
  ///
  /// This method has undefined behavior when erasable() is true.
  ///
  /// Note that this is not a device function; it cannot be called in
  /// a parallel kernel.  The value is not stored as a variable; it
  /// must be computed.
  size_type size() const
  {
    if( capacity() == 0u ) return 0u;
    if (modified()) {
      m_size = m_available_indexes.count();
      reset_flag(modified_idx);
    }
    return m_size;
  }

  /// \brief The current number of failed insert() calls.
  ///
  /// This is <i>not</i> a device function; it may <i>not</i> be
  /// called in a parallel kernel.  The value is not stored as a
  /// variable; it must be computed.
  bool failed_insert() const
  {
    return get_flag(failed_insert_idx);
  }

  bool erasable() const
  {
    return is_insertable_map ? get_flag(erasable_idx) : false;
  }

  bool begin_erase()
  {
    bool result = !erasable();
    if (is_insertable_map && result) {
      execution_space::fence();
      set_flag(erasable_idx);
      execution_space::fence();
    }
    return result;
  }

  bool end_erase()
  {
    bool result = erasable();
    if (is_insertable_map && result) {
      execution_space::fence();
      Impl::UnorderedMapErase<declared_map_type> f(*this);
      f.apply();
      execution_space::fence();
      reset_flag(erasable_idx);
    }
    return result;
  }

  /// \brief The maximum number of entries that the table can hold.
  ///
  /// This <i>is</i> a device function; it may be called in a parallel
  /// kernel.
  KOKKOS_FORCEINLINE_FUNCTION
  size_type capacity() const
  { return m_available_indexes.size(); }

  /// \brief The number of hash table "buckets."
  ///
  /// This is different than the number of entries that the table can
  /// hold.  Each key hashes to an index in [0, hash_capacity() - 1].
  /// That index can hold zero or more entries.  This class decides
  /// what hash_capacity() should be, given the user's upper bound on
  /// the number of entries the table must be able to hold.
  ///
  /// This <i>is</i> a device function; it may be called in a parallel
  /// kernel.
  KOKKOS_INLINE_FUNCTION
  size_type hash_capacity() const
  { return m_hash_lists.dimension_0(); }

  //---------------------------------------------------------------------------
  //---------------------------------------------------------------------------


  /// This <i>is</i> a device function; it may be called in a parallel
  /// kernel.  As discussed in the class documentation, it need not
  /// succeed.  The return value tells you if it did.
  ///
  /// \param k [in] The key to attempt to insert.
  /// \param v [in] The corresponding value to attempt to insert.  If
  ///   using this class as a set (with Value = void), then you need not
  ///   provide this value.
  KOKKOS_INLINE_FUNCTION
  insert_result insert(key_type const& k, impl_value_type const&v = impl_value_type()) const
  {
    insert_result result;

    if ( !is_insertable_map || capacity() == 0u || m_scalars((int)erasable_idx) ) {
      return result;
    }

    if ( !m_scalars((int)modified_idx) ) {
      m_scalars((int)modified_idx) = true;
    }

    int volatile & failed_insert_ref = m_scalars((int)failed_insert_idx) ;

    const size_type hash_value = m_hasher(k);
    const size_type hash_list = hash_value % m_hash_lists.dimension_0();

    size_type * curr_ptr   = & m_hash_lists[ hash_list ];
    size_type new_index    = invalid_index ;

    // Force integer multiply to long
    size_type index_hint = static_cast<size_type>( (static_cast<double>(hash_list) * capacity()) / m_hash_lists.dimension_0());

    size_type find_attempts = 0;

    enum { bounded_find_attempts = 32u };
    const size_type max_attempts = (m_bounded_insert && (bounded_find_attempts < m_available_indexes.max_hint()) ) ?
                                    bounded_find_attempts :
                                    m_available_indexes.max_hint();

    bool not_done = true ;

#if defined( __MIC__ )
      #pragma noprefetch
#endif
    while ( not_done ) {

      // Continue searching the unordered list for this key,
      // list will only be appended during insert phase.
      // Need volatile_load as other threads may be appending.
      size_type curr = volatile_load(curr_ptr);

      KOKKOS_NONTEMPORAL_PREFETCH_LOAD(&m_keys[curr != invalid_index ? curr : 0]);
#if defined( __MIC__ )
      #pragma noprefetch
#endif
      while ( curr != invalid_index && ! m_equal_to( volatile_load(&m_keys[curr]), k) ) {
        result.increment_list_position();
        index_hint = curr;
        curr_ptr = &m_next_index[curr];
        curr = volatile_load(curr_ptr);
        KOKKOS_NONTEMPORAL_PREFETCH_LOAD(&m_keys[curr != invalid_index ? curr : 0]);
      }

      //------------------------------------------------------------
      // If key already present then return that index.
      if ( curr != invalid_index ) {

        const bool free_existing = new_index != invalid_index;
        if ( free_existing ) {
          // Previously claimed an unused entry that was not inserted.
          // Release this unused entry immediately.
          if (!m_available_indexes.reset(new_index) ) {
            printf("Unable to free existing\n");
          }

        }

        result.set_existing(curr, free_existing);
        not_done = false ;
      }
      //------------------------------------------------------------
      // Key is not currently in the map.
      // If the thread has claimed an entry try to insert now.
      else {

        //------------------------------------------------------------
        // If have not already claimed an unused entry then do so now.
        if (new_index == invalid_index) {

          bool found = false;
          // use the hash_list as the flag for the search direction
          Kokkos::tie(found, index_hint) = m_available_indexes.find_any_unset_near( index_hint, hash_list );

          // found and index and this thread set it
          if ( !found && ++find_attempts >= max_attempts ) {
            failed_insert_ref = true;
            not_done = false ;
          }
          else if (m_available_indexes.set(index_hint) ) {
            new_index = index_hint;
            // Set key and value
            KOKKOS_NONTEMPORAL_PREFETCH_STORE(&m_keys[new_index]);
            m_keys[new_index] = k ;

            if (!is_set) {
              KOKKOS_NONTEMPORAL_PREFETCH_STORE(&m_values[new_index]);
              m_values[new_index] = v ;
            }

            // Do not proceed until key and value are updated in global memory
            memory_fence();
          }
        }
        else if (failed_insert_ref) {
          not_done = false;
        }

        // Attempt to append claimed entry into the list.
        // Another thread may also be trying to append the same list so protect with atomic.
        if ( new_index != invalid_index &&
             curr ==  atomic_compare_exchange(curr_ptr, static_cast<size_type>(invalid_index), new_index) ) {
          // Succeeded in appending
          result.set_success(new_index);
          not_done = false ;
        }
      }
    } // while ( not_done )

    return result ;
  }

  KOKKOS_INLINE_FUNCTION
  bool erase(key_type const& k) const
  {
    bool result = false;

    if(is_insertable_map && 0u < capacity() && m_scalars((int)erasable_idx)) {

      if ( ! m_scalars((int)modified_idx) ) {
        m_scalars((int)modified_idx) = true;
      }

      size_type index = find(k);
      if (valid_at(index)) {
        m_available_indexes.reset(index);
        result = true;
      }
    }

    return result;
  }

  /// \brief Find the given key \c k, if it exists in the table.
  ///
  /// \return If the key exists in the table, the index of the
  ///   value corresponding to that key; otherwise, an invalid index.
  ///
  /// This <i>is</i> a device function; it may be called in a parallel
  /// kernel.
  KOKKOS_INLINE_FUNCTION
  size_type find( const key_type & k) const
  {
    size_type curr = 0u < capacity() ? m_hash_lists( m_hasher(k) % m_hash_lists.dimension_0() ) : invalid_index ;

    KOKKOS_NONTEMPORAL_PREFETCH_LOAD(&m_keys[curr != invalid_index ? curr : 0]);
    while (curr != invalid_index && !m_equal_to( m_keys[curr], k) ) {
      KOKKOS_NONTEMPORAL_PREFETCH_LOAD(&m_keys[curr != invalid_index ? curr : 0]);
      curr = m_next_index[curr];
    }

    return curr;
  }

  /// \brief Does the key exist in the map
  ///
  /// This <i>is</i> a device function; it may be called in a parallel
  /// kernel.
  KOKKOS_INLINE_FUNCTION
  bool exists( const key_type & k) const
  {
    return valid_at(find(k));
  }


  /// \brief Get the value with \c i as its direct index.
  ///
  /// \param i [in] Index directly into the array of entries.
  ///
  /// This <i>is</i> a device function; it may be called in a parallel
  /// kernel.
  ///
  /// 'const value_type' via Cuda texture fetch must return by value.
  KOKKOS_FORCEINLINE_FUNCTION
  typename Impl::if_c< (is_set || has_const_value), impl_value_type, impl_value_type &>::type
  value_at(size_type i) const
  {
    return m_values[ is_set ? 0 : (i < capacity() ? i : capacity()) ];
  }

  /// \brief Get the key with \c i as its direct index.
  ///
  /// \param i [in] Index directly into the array of entries.
  ///
  /// This <i>is</i> a device function; it may be called in a parallel
  /// kernel.
  KOKKOS_FORCEINLINE_FUNCTION
  key_type key_at(size_type i) const
  {
    return m_keys[ i < capacity() ? i : capacity() ];
  }

  KOKKOS_FORCEINLINE_FUNCTION
  bool valid_at(size_type i) const
  {
    return m_available_indexes.test(i);
  }

  template <typename SKey, typename SValue>
  UnorderedMap( UnorderedMap<SKey,SValue,Device,Hasher,EqualTo> const& src,
                typename Impl::enable_if< Impl::UnorderedMapCanAssign<declared_key_type,declared_value_type,SKey,SValue>::value,int>::type = 0
              )
    : m_bounded_insert(src.m_bounded_insert)
    , m_hasher(src.m_hasher)
    , m_equal_to(src.m_equal_to)
    , m_size(src.m_size)
    , m_available_indexes(src.m_available_indexes)
    , m_hash_lists(src.m_hash_lists)
    , m_next_index(src.m_next_index)
    , m_keys(src.m_keys)
    , m_values(src.m_values)
    , m_scalars(src.m_scalars)
  {}


  template <typename SKey, typename SValue>
  typename Impl::enable_if< Impl::UnorderedMapCanAssign<declared_key_type,declared_value_type,SKey,SValue>::value
                           ,declared_map_type & >::type
  operator=( UnorderedMap<SKey,SValue,Device,Hasher,EqualTo> const& src)
  {
    m_bounded_insert = src.m_bounded_insert;
    m_hasher = src.m_hasher;
    m_equal_to = src.m_equal_to;
    m_size = src.m_size;
    m_available_indexes = src.m_available_indexes;
    m_hash_lists = src.m_hash_lists;
    m_next_index = src.m_next_index;
    m_keys = src.m_keys;
    m_values = src.m_values;
    m_scalars = src.m_scalars;
    return *this;
  }

  template <typename SKey, typename SValue, typename SDevice>
  typename Impl::enable_if< Impl::is_same< typename Impl::remove_const<SKey>::type, key_type>::value &&
                            Impl::is_same< typename Impl::remove_const<SValue>::type, value_type>::value
                          >::type
  create_copy_view( UnorderedMap<SKey, SValue, SDevice, Hasher,EqualTo> const& src)
  {
    if (m_hash_lists.ptr_on_device() != src.m_hash_lists.ptr_on_device()) {

      insertable_map_type tmp;

      tmp.m_bounded_insert = src.m_bounded_insert;
      tmp.m_hasher = src.m_hasher;
      tmp.m_equal_to = src.m_equal_to;
      tmp.m_size = src.size();
      tmp.m_available_indexes = bitset_type( src.capacity() );
      tmp.m_hash_lists        = size_type_view( ViewAllocateWithoutInitializing("UnorderedMap hash list"), src.m_hash_lists.dimension_0() );
      tmp.m_next_index        = size_type_view( ViewAllocateWithoutInitializing("UnorderedMap next index"), src.m_next_index.dimension_0() );
      tmp.m_keys              = key_type_view( ViewAllocateWithoutInitializing("UnorderedMap keys"), src.m_keys.dimension_0() );
      tmp.m_values            = value_type_view( ViewAllocateWithoutInitializing("UnorderedMap values"), src.m_values.dimension_0() );
      tmp.m_scalars           = scalars_view("UnorderedMap scalars");

      Kokkos::deep_copy(tmp.m_available_indexes, src.m_available_indexes);

      typedef Kokkos::Impl::DeepCopy< typename execution_space::memory_space, typename SDevice::memory_space > raw_deep_copy;

      raw_deep_copy(tmp.m_hash_lists.ptr_on_device(), src.m_hash_lists.ptr_on_device(), sizeof(size_type)*src.m_hash_lists.dimension_0());
      raw_deep_copy(tmp.m_next_index.ptr_on_device(), src.m_next_index.ptr_on_device(), sizeof(size_type)*src.m_next_index.dimension_0());
      raw_deep_copy(tmp.m_keys.ptr_on_device(), src.m_keys.ptr_on_device(), sizeof(key_type)*src.m_keys.dimension_0());
      if (!is_set) {
        raw_deep_copy(tmp.m_values.ptr_on_device(), src.m_values.ptr_on_device(), sizeof(impl_value_type)*src.m_values.dimension_0());
      }
      raw_deep_copy(tmp.m_scalars.ptr_on_device(), src.m_scalars.ptr_on_device(), sizeof(int)*num_scalars );

      *this = tmp;
    }
  }

  //@}
private: // private member functions

  bool modified() const
  {
    return get_flag(modified_idx);
  }

  void set_flag(int flag) const
  {
    typedef Kokkos::Impl::DeepCopy< typename execution_space::memory_space, Kokkos::HostSpace > raw_deep_copy;
    const int true_ = true;
    raw_deep_copy(m_scalars.ptr_on_device() + flag, &true_, sizeof(int));
  }

  void reset_flag(int flag) const
  {
    typedef Kokkos::Impl::DeepCopy< typename execution_space::memory_space, Kokkos::HostSpace > raw_deep_copy;
    const int false_ = false;
    raw_deep_copy(m_scalars.ptr_on_device() + flag, &false_, sizeof(int));
  }

  bool get_flag(int flag) const
  {
    typedef Kokkos::Impl::DeepCopy< Kokkos::HostSpace, typename execution_space::memory_space > raw_deep_copy;
    int result = false;
    raw_deep_copy(&result, m_scalars.ptr_on_device() + flag, sizeof(int));
    return result;
  }

  static uint32_t calculate_capacity(uint32_t capacity_hint)
  {
    // increase by 16% and round to nears multiple of 128
    return capacity_hint ? ((static_cast<uint32_t>(7ull*capacity_hint/6u) + 127u)/128u)*128u : 128u;
  }

private: // private members
  bool              m_bounded_insert;
  hasher_type       m_hasher;
  equal_to_type     m_equal_to;
  mutable size_type m_size;
  bitset_type       m_available_indexes;
  size_type_view    m_hash_lists;
  size_type_view    m_next_index;
  key_type_view     m_keys;
  value_type_view   m_values;
  scalars_view      m_scalars;

  template <typename KKey, typename VValue, typename DDevice, typename HHash, typename EEqualTo>
  friend class UnorderedMap;

  template <typename UMap>
  friend struct Impl::UnorderedMapErase;

  template <typename UMap>
  friend struct Impl::UnorderedMapHistogram;

  template <typename UMap>
  friend struct Impl::UnorderedMapPrint;
};

// Specialization of deep_copy for two UnorderedMap objects.
template <  typename DKey, typename DT, typename DDevice
          , typename SKey, typename ST, typename SDevice
          , typename Hasher, typename EqualTo >
inline void deep_copy(         UnorderedMap<DKey, DT, DDevice, Hasher, EqualTo> & dst
                       , const UnorderedMap<SKey, ST, SDevice, Hasher, EqualTo> & src )
{
  dst.create_copy_view(src);
}


} // namespace Kokkos

#endif //KOKKOS_UNORDERED_MAP_HPP