This file is indexed.

/usr/include/trilinos/Epetra_LAPACK.h is in libtrilinos-epetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/*
//@HEADER
// ************************************************************************
//
//               Epetra: Linear Algebra Services Package
//                 Copyright 2011 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
*/

#ifndef EPETRA_LAPACK_H
#define EPETRA_LAPACK_H

//! Epetra_LAPACK:  The Epetra LAPACK Wrapper Class.
/*! The Epetra_LAPACK class is a wrapper that encapsulates LAPACK
    (Linear Algebra Package).  LAPACK provides portable, high-
    performance implementations of linear, eigen, SVD, etc solvers.

    The standard LAPACK interface is Fortran-specific.  Unfortunately, the
    interface between C++ and Fortran is not standard across all computer
    platforms.  The Epetra_LAPACK class provides C++ wrappers for the LAPACK
    kernels in order to insulate the rest of Epetra from the details of C++ to Fortran
    translation.
    A Epetra_LAPACK object is essentially nothing, but allows access to the LAPACK wrapper
    functions.

    Epetra_LAPACK is a serial interface only.  This is appropriate since the standard
    LAPACK are only specified for serial execution (or shared memory parallel).
*/

#include "Epetra_ConfigDefs.h"
#include "Epetra_Object.h"

class EPETRA_LIB_DLL_EXPORT Epetra_LAPACK {

  public:
    //! @name Constructors/destructors
  //@{
  //! Epetra_LAPACK Constructor.
  /*! Builds an instance of a serial LAPACK object.
   */
  Epetra_LAPACK(void);


  //! Epetra_LAPACK Copy Constructor.
  /*! Makes an exact copy of an existing Epetra_LAPACK instance.
  */
  Epetra_LAPACK(const Epetra_LAPACK& LAPACK);

  //! Epetra_LAPACK Destructor.
  virtual ~Epetra_LAPACK(void);
  //@}


  //! @name Symmetric Positive Definite linear system routines
  //@{

  //! Epetra_LAPACK factorization for positive definite matrix (SPOTRF)
  void POTRF( const char UPLO, const int N, float * A, const int LDA, int * INFO) const;
  //! Epetra_LAPACK factorization for positive definite matrix (DPOTRF)
  void POTRF( const char UPLO, const int N, double * A, const int LDA, int * INFO) const;

  //! Epetra_LAPACK solve (after factorization) for positive definite matrix (SPOTRS)
  void POTRS( const char UPLO, const int N, const int NRHS, const float * A, const int LDA, float * X, const int LDX, int * INFO) const;
  //! Epetra_LAPACK solve (after factorization) for positive definite matrix (DPOTRS)
  void POTRS( const char UPLO, const int N, const int NRHS, const double * A, const int LDA, double * X, const int LDX, int * INFO) const;

  //! Epetra_LAPACK inversion  for positive definite matrix (SPOTRI)
  void POTRI( const char UPLO, const int N, float * A, const int LDA, int * INFO) const;
  //! Epetra_LAPACK inversion  for positive definite matrix (DPOTRI)
  void POTRI( const char UPLO, const int N, double * A, const int LDA, int * INFO) const;

  //! Epetra_LAPACK condition number estimator for positive definite matrix (SPOCON)
  void POCON( const char UPLO, const int N, const float * A, const int LDA, const float ANORM,
			  float * RCOND, float * WORK, int * IWORK, int * INFO) const;
  //! Epetra_LAPACK condition number estimator for positive definite matrix (DPOCON)
  void POCON( const char UPLO, const int N, const double * A, const int LDA, const double ANORM,
			  double * RCOND, double * WORK, int * IWORK, int * INFO) const;

  //! Epetra_LAPACK factor and solve for positive definite matrix (SPOSV)
  void POSV( const char UPLO, const int N, const int NRHS, float * A, const int LDA, float * X, const int LDX, int * INFO) const;
  //! Epetra_LAPACK factor and solve for positive definite matrix (DPOSV)
  void POSV( const char UPLO, const int N, const int NRHS, double * A, const int LDA, double * X, const int LDX, int * INFO) const;

  //! Epetra_LAPACK equilibration for positive definite matrix (SPOEQU)
  void POEQU(const int N, const float * A, const int LDA, float * S, float * SCOND, float * AMAX, int * INFO) const;
  //! Epetra_LAPACK equilibration for positive definite matrix (DPOEQU)
  void POEQU(const int N, const double * A, const int LDA, double * S, double * SCOND, double * AMAX, int * INFO) const;

  //! Epetra_LAPACK solve driver for positive definite matrix (SPOSVX)
  void PORFS(const char UPLO, const int N, const int NRHS, const float * A, const int LDA, const float * AF, const int LDAF,
	     const float * B, const int LDB, float * X, const int LDX,
	     float * FERR, float * BERR, float * WORK, int * IWORK, int * INFO) const;
  //! Epetra_LAPACK solve driver for positive definite matrix (DPOSVX)
  void PORFS(const char UPLO, const int N, const int NRHS, const double * A, const int LDA, const double * AF, const int LDAF,
	     const double * B, const int LDB, double * X, const int LDX,
	     double * FERR, double * BERR, double * WORK, int * IWORK, int * INFO) const;

  //! Epetra_LAPACK solve driver for positive definite matrix (SPOSVX)
  void POSVX(const char FACT, const char UPLO, const int N, const int NRHS, float * A, const int LDA, float * AF, const int LDAF,
	     const char EQUED, float * S, float * B, const int LDB, float * X, const int LDX, float * RCOND,
	     float * FERR, float * BERR, float * WORK, int * IWORK, int * INFO) const;
  //! Epetra_LAPACK solve driver for positive definite matrix (DPOSVX)
  void POSVX(const char FACT, const char UPLO, const int N, const int NRHS, double * A, const int LDA, double * AF, const int LDAF,
	     const char EQUED, double * S, double * B, const int LDB, double * X, const int LDX, double * RCOND,
	     double * FERR, double * BERR, double * WORK, int * IWORK, int * INFO) const;
  //@}

  //! @name General linear system routines
  //@{

  //! Epetra_LAPACK simple driver to solve least-squares systems
  void GELS( const char TRANS, const int M, const int N, const int NRHS, double* A, const int LDA,
	  double* B, const int LDB, double* WORK, const int LWORK, int * INFO) const;
  //! Epetra_LAPACK factorization for general matrix (SGETRF)
  void GETRF( const int M, const int N, float * A, const int LDA, int * IPIV, int * INFO) const;
  //! Epetra_LAPACK factorization for general matrix (DGETRF)
  void GETRF( const int M, const int N, double * A, const int LDA, int * IPIV, int * INFO) const;

  //! Epetra_LAPACK QR factorization for general matrix (SGEQRF)
  void GEQRF( const int M, const int N,  float * A, const int LDA,  float * TAU,  float * WORK, const int lwork, int * INFO) const;
  //! Epetra_LAPACK factorization for general matrix (DGEQRF)
  void GEQRF( const int M, const int N, double * A, const int LDA, double * TAU, double * WORK, const int lwork, int * INFO) const;

  //! Epetra_LAPACK solve (after factorization) for general matrix (SGETRS)
  void GETRS( const char TRANS, const int N, const int NRHS, const float * A, const int LDA, const int * IPIV, float * X, const int LDX, int * INFO) const;
  //! Epetra_LAPACK solve (after factorization) for general matrix (DGETRS)
  void GETRS( const char TRANS, const int N, const int NRHS, const double * A, const int LDA, const int * IPIV, double * X, const int LDX, int * INFO) const;

  //! Epetra_LAPACK inversion  for general matrix (SGETRI)
  void GETRI( const int N, float * A, const int LDA, int * IPIV, float * WORK, const int * LWORK, int * INFO) const;
  //! Epetra_LAPACK inversion  for general matrix (DGETRI)
  void GETRI( const int N, double * A, const int LDA, int * IPIV, double * WORK, const int * LWORK, int * INFO) const;

  //! Epetra_LAPACK condition number estimator for general matrix (SGECON)
  void GECON( const char NORM, const int N, const float * A, const int LDA, const float ANORM,
			  float * RCOND, float * WORK, int * IWORK, int * INFO) const;
  //! Epetra_LAPACK condition number estimator for general matrix (DGECON)
  void GECON( const char NORM, const int N, const double * A, const int LDA, const double ANORM,
			  double * RCOND, double * WORK, int * IWORK, int * INFO) const;

  //! Epetra_LAPACK factor and solve for general matrix (SGESV)
  void GESV( const int N, const int NRHS, float * A, const int LDA, int * IPIV, float * X, const int LDX, int * INFO) const;
  //! Epetra_LAPACK factor and solve for general matrix (DGESV)
  void GESV( const int N, const int NRHS, double * A, const int LDA, int * IPIV, double * X, const int LDX, int * INFO) const;

  //! Epetra_LAPACK equilibration for general matrix (SGEEQU)
  void GEEQU(const int M, const int N, const float * A, const int LDA, float * R, float * C, float * ROWCND, float * COLCND, float * AMAX, int * INFO) const;
  //! Epetra_LAPACK equilibration for general matrix (DGEEQU)
  void GEEQU(const int M, const int N, const double * A, const int LDA, double * R, double * C, double * ROWCND, double * COLCND, double * AMAX, int * INFO) const;

  //! Epetra_LAPACK Refine solution (GERFS)
  void GERFS(const char TRANS, const int N, const int NRHS, const float * A, const int LDA, const float * AF, const int LDAF,
	     const int * IPIV, const float * B, const int LDB, float * X, const int LDX,
	     float * FERR, float * BERR, float * WORK, int * IWORK, int * INFO) const;
  //! Epetra_LAPACK Refine solution (GERFS)
  void GERFS(const char TRANS, const int N, const int NRHS, const double * A, const int LDA, const double * AF, const int LDAF,
	     const int * IPIV, const double * B, const int LDB, double * X, const int LDX,
	     double * FERR, double * BERR, double * WORK, int * IWORK, int * INFO) const;

  //! Epetra_LAPACK solve driver for general matrix (SGESVX)
  void GESVX(const char FACT, const char TRANS, const int N, const int NRHS, float * A, const int LDA, float * AF, const int LDAF, int * IPIV,
	     const char EQUED, float * R, float * C, float * B, const int LDB, float * X, const int LDX, float * RCOND,
	     float * FERR, float * BERR, float * WORK, int * IWORK, int * INFO) const;
  //! Epetra_LAPACK solve driver for general matrix (DGESVX)
  void GESVX(const char FACT, const char TRANS, const int N, const int NRHS, double * A, const int LDA, double * AF, const int LDAF, int * IPIV,
	     const char EQUED, double * R, double * C, double * B, const int LDB, double * X, const int LDX, double * RCOND,
	     double * FERR, double * BERR, double * WORK, int * IWORK, int * INFO) const;


  //! Epetra_LAPACK wrapper for reduction to Hessenberg form (SGEHRD)
  void GEHRD(const int N, const int ILO, const int IHI, float * A, const int LDA, float * TAU, float * WORK, const int LWORK, int * INFO) const;
  //! Epetra_LAPACK wrapper for reduction to Hessenberg form (DGEHRD)
  void GEHRD(const int N, const int ILO, const int IHI, double * A, const int LDA, double * TAU, double * WORK, const int LWORK, int * INFO) const;
  //@}

  //! @name Hessenberg routines
  //@{
  //! Epetra_LAPACK wrapper for computing the eigenvalues of a real upper Hessenberg matrix (SHSEQR)
  void HSEQR( const char JOB, const char COMPZ, const int N, const int ILO, const int IHI, float * H, const int LDH, float * WR, float * WI,
	      float * Z, const int LDZ, float * WORK, const int LWORK, int * INFO) const;
  //! Epetra_LAPACK wrapper for computing the eigenvalues of a real upper Hessenberg matrix (DHSEQR)
  void HSEQR( const char JOB, const char COMPZ, const int N, const int ILO, const int IHI, double * H, const int LDH, double * WR, double * WI,
	      double * Z, const int LDZ, double * WORK, const int LWORK, int * INFO) const;
  //@}

  //! @name Orthogonal matrix routines
  //@{
  //! Epetra_LAPACK wrapper for generating a m x n real matrix Q with orthonormal columns, defined as the product of k elementary reflectors. (SORGQR)
  void ORGQR( const int M, const int N, const int K, float * A, const int LDA, float * TAU, float * WORK, const int LWORK, int * INFO) const;
  //! Epetra_LAPACK wrapper for generating a m x n real matrix Q with orthonormal columns, defined as the product of k elementary reflectors. (DORGQR)
  void ORGQR( const int M, const int N, const int K, double * A, const int LDA, double * TAU, double * WORK, const int LWORK, int * INFO) const;

  //! Epetra_LAPACK wrapper for generating a real orthogonal matrix Q defined by elementary reflectors. (SORGHR)
  void ORGHR( const int N, const int ILO, const int IHI, float * A, const int LDA, float * TAU, float * WORK, const int LWORK, int * INFO) const;
  //! Epetra_LAPACK wrapper for generating a real orthogonal matrix Q defined by elementary reflectors. (DORGHR)
  void ORGHR( const int N, const int ILO, const int IHI, double * A, const int LDA, double * TAU, double * WORK, const int LWORK, int * INFO) const;

  //! Epetra_LAPACK wrapper for applying an orthogonal matrix in-place (SORMHR)
  void ORMHR( const char SIDE, const char TRANS, const int M, const int N, const int ILO, const int IHI, const float * A, const int LDA,
	      const float * TAU, float * C,
	      const int LDC, float * WORK, const int LWORK, int * INFO) const;
  //! Epetra_LAPACK wrapper for applying an orthogonal matrix in-place (DORMHR)
  void ORMHR( const char SIDE, const char TRANS, const int M, const int N, const int ILO, const int IHI, const double * A, const int LDA,
	      const double * TAU, double * C,
	      const int LDC, double * WORK, const int LWORK, int * INFO) const;
  //! Epetra_LAPACK for forming the triangular factor of a product of elementary Householder reflectors (SLARFT).
  void LARFT( const char DIRECT, const char STOREV, const int N, const int K, double * V, const int LDV, double * TAU, double * T, const int LDT) const;
  //! Epetra_LAPACK for forming the triangular factor of a product of elementary Householder reflectors (DLARFT).
  void LARFT( const char DIRECT, const char STOREV, const int N, const int K, float * V, const int LDV, float * TAU, float * T, const int LDT) const;
  //@}

  //! @name Triangular matrix routines
  //@{

  //! Epetra_LAPACK wrapper for computing eigenvectors of a quasi-triangular/triagnular matrix (STREVC)
  /*! \warning HOWMNY = 'S" is not supported.
   */
  void TREVC( const char SIDE, const char HOWMNY, int * SELECT, const int N, const float * T, const int LDT, float *VL, const int LDVL,
	      float * VR, const int LDVR, const int MM, int * M, float * WORK, int * INFO) const;
  //! Epetra_LAPACK wrapper for computing eigenvectors of a quasi-triangular/triagnular matrix (DTREVC)
  /*! \warning HOWMNY = 'S" is not supported.
   */
  void TREVC( const char SIDE, const char HOWMNY, int * SELECT, const int N, const double * T, const int LDT, double *VL, const int LDVL,
	      double * VR, const int LDVR, const int MM, int  *M, double * WORK, int * INFO) const;

  //! Epetra_LAPACK wrapper for reordering the real-Schur/Schur factorization of a matrix (STREXC)
  void TREXC( const char COMPQ, const int N, float * T, const int LDT, float * Q, const int LDQ, int IFST, int ILST,
	      float * WORK, int * INFO) const;
  //! Epetra_LAPACK wrapper for reordering the real-Schur/Schur factorization of a matrix (DTREXC)
  void TREXC( const char COMPQ, const int N, double * T, const int LDT, double * Q, const int LDQ, int IFST, int ILST,
	      double * WORK, int * INFO) const;
  //@}

  //! @name Singular Value Decomposition matrix routines
  //@{

  //! Epetra_LAPACK wrapper for computing the singular value decomposition (SGESVD)
  void GESVD( const char JOBU, const char JOBVT, const int M, const int N, float * A, const int LDA, float * S, float * U,
	      const int LDU, float * VT, const int LDVT, float * WORK, const int * LWORK, int * INFO) const;
  //! Epetra_LAPACK wrapper for computing the singular value decomposition (DGESVD)
  void GESVD( const char JOBU, const char JOBVT, const int M, const int N, double * A, const int LDA, double * S, double * U,
	      const int LDU, double * VT, const int LDVT, double * WORK, const int * LWORK, int * INFO) const;

  //! Epetra_LAPACK wrapper to compute the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B
  void GGSVD(const char JOBU, const char JOBV, const char JOBQ, const int M, const int N, const int P, int * K, int * L,  double* A,  const int LDA,  double* B,  const int LDB,
                          double* ALPHA,  double* BETA,  double* U,  const int LDU, double* V, const int LDV, double* Q, const int LDQ, double* WORK, int* IWORK,
                          int* INFO) const;
  //! Epetra_LAPACK wrapper to compute the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B
  void GGSVD(const char JOBU, const char JOBV, const char JOBQ, const int M, const int N, const int P, int * K, int * L,  float* A,  const int LDA,  float* B,  const int LDB,
                          float* ALPHA,  float* BETA,  float* U,  const int LDU, float* V, const int LDV, float* Q, const int LDQ, float* WORK, int* IWORK,
                          int* INFO) const;
   //@}

   //! @name Eigenvalue/Eigenvector routines
  //@{
  //! Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
  void GEEV(const char JOBVL, const char JOBVR, const int N, double* A, const int LDA, double* WR, double* WI,
			double* VL, const int LDVL, double* VR, const int LDVR, double* WORK, const int LWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
  void GEEV(const char JOBVL, const char JOBVR, const int N, float* A, const int LDA, float* WR, float* WI,
			float* VL, const int LDVL, float* VR, const int LDVR, float* WORK, const int LWORK, int* INFO) const;

  //! Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
  void SPEV(const char JOBZ, const char UPLO, const int N, double* AP, double* W, double* Z, int LDZ, double* WORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
  void SPEV(const char JOBZ, const char UPLO, const int N, float* AP, float* W, float* Z, int LDZ, float* WORK, int* INFO) const;

  //! Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
  void SPGV(const int ITYPE, const char JOBZ, const char UPLO, const int N, double* AP, double* BP, double* W, double* Z, const int LDZ, double* WORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
  void SPGV(const int ITYPE, const char JOBZ, const char UPLO, const int N, float* AP, float* BP, float* W, float* Z, const int LDZ, float* WORK, int* INFO) const;

  //! Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
  void SYEV(const char JOBZ, const char UPLO, const int N, double* A, const int LDA, double* W, double* WORK, const int LWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
  void SYEV(const char JOBZ, const char UPLO, const int N, float* A, const int LDA, float* W, float* WORK, const int LWORK, int* INFO) const;

  //! Epetra_LAPACK wrapper to compute  all  eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
  void SYEVD(const char JOBZ, const char UPLO,  const int N,  double* A,  const int LDA,  double* W,
	     double* WORK,  const int LWORK,  int* IWORK, const int LIWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute  all  eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
  void SYEVD(const char JOBZ, const char UPLO,  const int N,  float* A,  const int LDA,  float* W,
	     float* WORK,  const int LWORK,  int* IWORK, const int LIWORK, int* INFO) const;

  //! Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
  void SYEVX(const char JOBZ, const char RANGE, const char UPLO,  const int N,  double* A,  const int LDA,
	     const double* VL,  const double* VU,  const int* IL,  const int* IU,
	     const double ABSTOL,  int * M,  double* W,  double* Z,  const int LDZ, double* WORK,
	     const int LWORK, int* IWORK, int* IFAIL,
	     int* INFO) const;
  //! Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
  void SYEVX(const char JOBZ, const char RANGE, const char UPLO,  const int N,  float* A,  const int LDA,
	     const float* VL,  const float* VU,  const int* IL,  const int* IU,
	     const float ABSTOL,  int * M,  float* W,  float* Z,  const int LDZ, float* WORK,
	     const int LWORK, int* IWORK, int* IFAIL,
	     int* INFO) const;

  //! Epetra_LAPACK wrapper to compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
  void SYGV(const int ITYPE, const char JOBZ, const char UPLO, const int N, double* A, const int LDA, double* B,
	    const int LDB, double* W, double* WORK, const int LWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
  void SYGV(const int ITYPE, const char JOBZ, const char UPLO, const int N, float* A, const int LDA, float* B,
	    const int LDB, float* W, float* WORK, const int LWORK, int* INFO) const;

  //! Epetra_LAPACK wrapper to compute selected eigenvalues, and optionally, eigenvectors of a  real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
  void SYGVX(const int ITYPE, const char JOBZ, const char RANGE, const char UPLO, const int N,
	     double* A, const int LDA, double* B, const int LDB, const double* VL, const double* VU,
	     const int* IL, const int* IU, const double ABSTOL, int* M, double* W, double* Z,
	     const int LDZ,  double* WORK,  const int LWORK,  int* IWORK,
	     int* IFAIL, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute selected eigenvalues, and optionally, eigenvectors of a  real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
  void SYGVX(const int ITYPE, const char JOBZ, const char RANGE, const char UPLO, const int N,
	     float* A, const int LDA, float* B, const int LDB, const float* VL, const float* VU,
	     const int* IL, const int* IU, const float ABSTOL, int* M, float* W, float* Z,
	     const int LDZ,  float* WORK,  const int LWORK,  int* IWORK,
	     int* IFAIL, int* INFO) const;

  //! Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix T
  void SYEVR(const char JOBZ, const char RANGE, const char UPLO,  const int N,  double* A,  const int LDA,  const double* VL,  const double* VU,  const int *IL,  const int *IU,
                          const double ABSTOL,  int* M,  double* W,  double* Z, const int LDZ, int* ISUPPZ, double* WORK, const int LWORK, int* IWORK,
                          const int LIWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix T
  void SYEVR(const char JOBZ, const char RANGE, const char UPLO,  const int N,  float* A,  const int LDA,
	     const float* VL,  const float* VU,  const int *IL,  const int *IU,
	     const float ABSTOL,  int* M,  float* W,  float* Z, const int LDZ, int* ISUPPZ,
	     float* WORK, const int LWORK, int* IWORK,
	     const int LIWORK, int* INFO) const;

  //! Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
  void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int N, double* A, const int LDA, double* WR, double* WI,  double* VL,
	     const int LDVL,  double* VR,  const int LDVR,  int* ILO,  int* IHI,  double* SCALE, double* ABNRM, double* RCONDE,
	     double* RCONDV, double* WORK, const int LWORK, int* IWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
  void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int N, float* A, const int LDA, float* WR, float* WI,  float* VL,
	     const int LDVL,  float* VR,  const int LDVR,  int* ILO,  int* IHI,  float* SCALE, float* ABNRM, float* RCONDE,
	     float* RCONDV, float* WORK, const int LWORK, int* IWORK, int* INFO) const;

  //! Epetra_LAPACK wrapper to compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors
  void GESDD(const char JOBZ, const int M, const int N, double* A, const int LDA,  double* S,  double* U,  const int LDU,  double* VT,  const int LDVT,  double* WORK,
	     const int LWORK, int* IWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to
  void GESDD(const char JOBZ, const int M, const int N, float* A, const int LDA,  float* S,  float* U,  const int LDU,  float* VT,  const int LDVT,  float* WORK,
	     const int LWORK, int* IWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

  void GGEV(const char JOBVL,  const char JOBVR,  const int N,  double* A,  const int LDA,  double* B, const int LDB, double* ALPHAR, double* ALPHAI,
	    double* BETA, double* VL, const int LDVL, double* VR, const int LDVR, double* WORK, const int LWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to compute for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
  void GGEV(const char JOBVL,  const char JOBVR,  const int N,  float* A,  const int LDA,  float* B, const int LDB, float* ALPHAR, float* ALPHAI,
	    float* BETA, float* VL, const int LDVL, float* VR, const int LDVR, float* WORK, const int LWORK, int* INFO) const;

    //@}

    //! @name Linear Least Squares
  //@{
  //! Epetra_LAPACK wrapper to solve the linear equality-constrained least squares (LSE) problem
  void GGLSE(const int M, const int N, const int P, double* A, const int LDA, double* B, const int LDB,
	     double* C, double* D, double* X, double* WORK, const int LWORK, int* INFO) const;
  //! Epetra_LAPACK wrapper to solve the linear equality-constrained least squares (LSE) problem
  void GGLSE(const int M, const int N, const int P, float* A, const int LDA, float* B, const int LDB,
	     float* C, float* D, float* X, float* WORK, const int LWORK, int* INFO) const;
    //@}

    //! @name Machine characteristics routines
  //@{
  //! Epetra_LAPACK wrapper for DLAMCH routine.  On out, T holds machine double precision floating point characteristics.  This information is returned by the Lapack routine.
  void LAMCH ( const char CMACH, float & T) const;
  //! Epetra_LAPACK wrapper for SLAMCH routine.  On out, T holds machine single precision floating point characteristics.  This information is returned by the Lapack routine.
  void LAMCH ( const char CMACH, double & T) const;
  //@}

    //@}

    //! @name Triangular solve
  //@{
  //! Epetra_LAPACK wrapper for TRTRS routine.
  void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int N, const int NRHS, const float *A,
                         const int LDA, float *B, const int LDB, int *INFO) const;
  //! Epetra_LAPACK wrapper for TRTRS routine.
  void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int N, const int NRHS, const double *A,
                         const int LDA, double *B, const int LDB, int *INFO) const;
};

// Epetra_LAPACK constructor
inline Epetra_LAPACK::Epetra_LAPACK(void){}
// Epetra_LAPACK constructor
inline Epetra_LAPACK::Epetra_LAPACK(const Epetra_LAPACK& LAPACK){(void)LAPACK;}
// Epetra_LAPACK destructor
inline Epetra_LAPACK::~Epetra_LAPACK(){}

#endif /* EPETRA_LAPACK_H */