This file is indexed.

/usr/include/trilinos/BelosSolverFactory.hpp is in libtrilinos-belos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __Belos_SolverFactory_hpp
#define __Belos_SolverFactory_hpp

#include <BelosConfigDefs.hpp>
#include <BelosOutputManager.hpp>
#include <BelosSolverManager.hpp>

#include <BelosBlockCGSolMgr.hpp>
#include <BelosBlockGmresSolMgr.hpp>
#include <BelosGCRODRSolMgr.hpp>
#include <BelosPseudoBlockCGSolMgr.hpp>
#include <BelosPseudoBlockGmresSolMgr.hpp>
#include <BelosPseudoBlockStochasticCGSolMgr.hpp>
#include <BelosLSQRSolMgr.hpp>
#include <BelosMinresSolMgr.hpp>
#include <BelosGmresPolySolMgr.hpp>
#include <BelosPCPGSolMgr.hpp>
#include <BelosRCGSolMgr.hpp>
#include <BelosTFQMRSolMgr.hpp>
#include <BelosPseudoBlockTFQMRSolMgr.hpp>
#include <BelosFixedPointSolMgr.hpp>
#include <BelosBiCGStabSolMgr.hpp>

#include <Teuchos_Array.hpp>
#include <Teuchos_Describable.hpp>
#include <Teuchos_StandardCatchMacros.hpp>
#include <Teuchos_TypeNameTraits.hpp>

#include <algorithm>
#include <locale>
#include <map>
#include <sstream>
#include <stdexcept>
#include <vector>

namespace Belos {

namespace details {

/// \enum EBelosSolverType
/// \brief 1-to-1 enumeration of all supported SolverManager subclasses.
/// \author Mark Hoemmen
///
/// This enum is an implementation detail of \c SolverFactory.
/// Users of \c SolverFactory should not refer to this enum or
/// rely on the symbols or integer values therein.  We declare
/// it here for later use by \c SolverFactory.
///
/// Belos developers who have implemented a new solver (i.e., a new
/// subclass of \c SolverManager) and who want to make the solver
/// available through the \c SolverFactory should first add a new enum
/// symbol corresponding to their solver to the end of the list.  They
/// should then follow the instructions provided in the \c
/// SolverFactory documentation.
///
/// \c SolverFactory was written to be independent of the actual enum
/// values, so Belos developers are allowed to rearrange the symbols.
enum EBelosSolverType {
  SOLVER_TYPE_BLOCK_GMRES,
  SOLVER_TYPE_PSEUDO_BLOCK_GMRES,
  SOLVER_TYPE_BLOCK_CG,
  SOLVER_TYPE_PSEUDO_BLOCK_CG,
  SOLVER_TYPE_GCRODR,
  SOLVER_TYPE_RCG,
  SOLVER_TYPE_MINRES,
  SOLVER_TYPE_LSQR,
  SOLVER_TYPE_STOCHASTIC_CG,
  SOLVER_TYPE_TFQMR,
  SOLVER_TYPE_PSEUDO_BLOCK_TFQMR,
  SOLVER_TYPE_GMRES_POLY,
  SOLVER_TYPE_PCPG,
  SOLVER_TYPE_FIXED_POINT,
  SOLVER_TYPE_BICGSTAB
};

} // namespace details

/// \class SolverFactory
/// \brief Factory for all solvers which Belos supports.
/// \author Mark Hoemmen
///
/// New Belos users should start by creating an instance of this
/// class, and using it to create the solver they want.
///
/// Belos implements several different iterative solvers.  The usual
/// way in which users interact with these solvers is through
/// appropriately named subclasses of \c SolverManager.  This factory
/// class tells users which solvers are supported.  It can initialize
/// and return any supported subclass of \c SolverManager, given a
/// short name of the subclass (such as "GMRES" or "CG").
///
/// Users ask for the solver they want by a string name, and supply an
/// optional (but recommended) list of parameters
/// (Teuchos::ParameterList) for the solver.  The solver may fill in
/// the parameter list with all the valid parameters and their default
/// values, which users may later inspect and modify.  Valid solver
/// names include both "canonical names" (each maps one-to-one to a
/// specific SolverManager subclass) and "aliases."  Some aliases are
/// short nicknames for canonical names, like "GMRES" for "Pseudoblock
/// GMRES".  Other aliases refer to a canonical solver name, but also
/// modify the user's parameter list.  For example, "Flexible GMRES"
/// is an alias for "Block GMRES", and also sets the "Flexible Gmres"
/// parameter to true in the input parameter list.
///
/// This class' template parameters are the same as those of
/// Belos::SolverManager.  Scalar is the scalar type (of entries in
/// the multivector), MV is the multivector type, and OP is the
/// operator type.  For example: Scalar=double, MV=Epetra_MultiVector,
/// and OP=Epetra_Operator will access the Epetra specialization of
/// the Belos solvers.
///
/// Here is a simple example of how to use SolverFactory to create a
/// GMRES solver for your linear system.  Your code needs to include
/// BelosSolverFactory.hpp and whatever linear algebra library header
/// files you would normally use.  Suppose that Scalar, MV, and OP
/// have been previously typedef'd to the scalar resp. multivector
/// resp. operator type in your application.
/// \code
/// using Teuchos::ParameterList;
/// using Teuchos::parameterList;
/// using Teuchos::RCP;
/// using Teuchos::rcp; // Save some typing
///
/// // The ellipses represent the code you would normally use to create
/// // the sparse matrix, preconditioner, right-hand side, and initial
/// // guess for the linear system AX=B you want to solve.
/// RCP<OP> A = ...; // The sparse matrix / operator A
/// RCP<OP> M = ...; // The (right) preconditioner M
/// RCP<MV> B = ...; // Right-hand side of AX=B
/// RCP<MV> X = ...; // Initial guess for the solution
///
/// Belos::SolverFactory<Scalar, MV, OP> factory;
/// // Make an empty new parameter list.
/// RCP<ParameterList> solverParams = parameterList();
///
/// // Set some GMRES parameters.
/// //
/// // "Num Blocks" = Maximum number of Krylov vectors to store.  This
/// // is also the restart length.  "Block" here refers to the ability
/// // of this particular solver (and many other Belos solvers) to solve
/// // multiple linear systems at a time, even though we are only solving
/// // one linear system in this example.
/// solverParams->set ("Num Blocks", 40);
/// solverParams->set ("Maximum Iterations", 400);
/// solverParams->set ("Convergence Tolerance", 1.0e-8);
///
/// // Create the GMRES solver.
/// RCP<Belos::SolverManager<Scalar, MV, OP> > solver =
///   factory.create ("GMRES", solverParams);
///
/// // Create a LinearProblem struct with the problem to solve.
/// // A, X, B, and M are passed by (smart) pointer, not copied.
/// RCP<Belos::LinearProblem<Scalar, MV, OP> > problem =
///   rcp (new Belos::LinearProblem<Scalar, MV, OP> (A, X, B));
/// problem->setRightPrec (M);
///
/// // Tell the solver what problem you want to solve.
/// solver->setProblem (problem);
///
/// // Attempt to solve the linear system.  result == Belos::Converged
/// // means that it was solved to the desired tolerance.  This call
/// // overwrites X with the computed approximate solution.
/// Belos::ReturnType result = solver->solve();
///
/// // Ask the solver how many iterations the last solve() took.
/// const int numIters = solver->getNumIters();
/// \endcode
///
/// Belos developers who have implemented a new solver (i.e., a new
/// subclass of SolverManager) and who want to make the solver
/// available through the factory should do the following:
///
/// <ol>
/// <li> Add a new symbol corresponding to their solver to the
///      details::EBelosSolverType enum. </li>
/// <li> If necessary, specialize details::makeSolverManagerTmpl for
///      their SolverManager subclass.  In most cases, the default
///      implementation suffices. </li>
/// <li> Add a case for their enum symbol that instantiates their
///      solver to the long switch-case statement in
///      details::makeSolverManagerFromEnum. </li>
/// <li> In the SolverFactory constructor, define a canonical string
///      name for their solver and its mapping to the corresponding
///      enum value, following the examples and comments there.  (This
///      takes one line of code.) </li>
/// </ol>
///
template<class Scalar, class MV, class OP>
class SolverFactory : public Teuchos::Describable {
public:
  /// \brief The type of the solver returned by create().
  ///
  /// This is a specialization of SolverManager for the same scalar,
  /// multivector, and operator types as the template parameters of
  /// this factory.
  typedef SolverManager<Scalar, MV, OP> solver_base_type;

  //! Default constructor.
  SolverFactory ();

  /// \brief Create, configure, and return the specified solver.
  ///
  /// \param solverName [in] Name of the solver.
  ///
  /// \param solverParams [in/out] List of parameters with which to
  ///   configure the solver.  If null, we configure the solver with
  ///   default parameters.  If nonnull, the solver may modify the
  ///   list by filling in missing parameters with default values.
  ///   You can then inspect the resulting list to learn what
  ///   parameters the solver accepts.
  ///
  /// Some solvers may be accessed by multiple names ("aliases").
  /// Each solver has a canonical name, and zero or more aliases.
  /// Using some aliases (such as those that access Flexible GMRES
  /// capability in GMRES-type solvers) may make this method set
  /// certain parameters in your parameter list.
  ///
  /// The input parameter list is passed in as a Teuchos::RCP because
  /// the factory passes it to the solver, and Belos solvers want
  /// their input parameter list as a
  /// Teuchos::RCP<Teuchos::ParameterList>.  We allow a null parameter
  /// list only for convenience, and will use default parameter values
  /// in that case.
  Teuchos::RCP<solver_base_type>
  create (const std::string& solverName,
          const Teuchos::RCP<Teuchos::ParameterList>& solverParams);

  /// \brief Number of supported solvers.
  ///
  /// This may differ from the number of supported solver
  /// <i>names</i>, since we may accept multiple names ("aliases") for
  /// some solvers.
  int numSupportedSolvers () const;

  /// \brief List of supported solver names.
  ///
  /// The length of this list may differ from the number of supported
  /// solvers, since we may accept multiple names ("aliases") for some
  /// solvers.
  Teuchos::Array<std::string> supportedSolverNames () const;

  //! Whether the given solver name names a supported solver.
  bool isSupported (const std::string& solverName) const;

  //! @name Implementation of Teuchos::Describable interface
  //@{

  //! A string description of this object.
  std::string description() const;

  /// \brief Describe this object.
  ///
  /// At higher verbosity levels, this method will print out the list
  /// of names of supported solvers.  You can also get this list
  /// directly by using the supportedSolverNames() method.
  void describe (Teuchos::FancyOStream& out,
                 const Teuchos::EVerbosityLevel verbLevel = Teuchos::Describable::verbLevel_default) const;
  //@}

private:
  /// \brief Map from solver name alias to canonical solver name.
  ///
  /// The keys of this map do not necessarily include canonical solver
  /// names.  If a candidate name isn't a key in this map, then it
  /// must be a canonical name in order to be valid.  There doesn't
  /// need to be an alias for each solver.
  ///
  /// \note To Belos developers: If you want to add a new alias, first
  ///   add the mapping from alias to canonical solver name in the
  ///   SolverFactory constructor.  Then, edit
  ///   reviseParameterListForAlias() to do any modifications of the
  ///   input ParameterList associated with that alias.
  std::map<std::string, std::string> aliasToCanonicalName_;

  /// \brief Map from canonical solver name to solver enum value.
  ///
  /// Access the keys to get the list of canonical solver names.
  ///
  /// \note To Belos developers: If you add a new solver, start with
  ///   the documentation of details::EBelosSolverType for
  ///   instructions.  Each new solver needs a canonical name (a
  ///   string), which is a key into this map.  The map from canonical
  ///   name to enum value is set up in the \c SolverFactory
  ///   constructor.  The details::makeSolverManagerFromEnum()
  ///   function in turn takes the enum value and parameter list, and
  ///   returns an instance of the appropriate subclass of
  ///   SolverManager.
  std::map<std::string, details::EBelosSolverType> canonicalNameToEnum_;

  /// \brief Modify the input ParameterList appropriately for the given alias.
  ///
  /// Some aliases include modifications or special checking of the
  /// input ParameterList.  All alias-related ParameterList revision
  /// happens in this method.
  void
  reviseParameterListForAlias (const std::string& aliasName,
                               Teuchos::ParameterList& solverParams);

  //! List of canonical solver names.
  Teuchos::Array<std::string> canonicalSolverNames () const;

  //! List of supported aliases (to canonical solver names).
  Teuchos::Array<std::string> solverNameAliases () const;

  //! Print the given array of strings, in YAML format, to \c out.
  static void
  printStringArray (std::ostream& out,
                    const Teuchos::ArrayView<const std::string>& array)
  {
    typedef Teuchos::ArrayView<std::string>::const_iterator iter_type;

    out << "[";
    for (iter_type iter = array.begin(); iter != array.end(); ++iter) {
      out << "\"" << *iter << "\"";
      if (iter + 1 != array.end()) {
        out << ", ";
      }
    }
    out << "]";
  }
};


namespace details {

/// \fn makeSolverManagerTmpl
/// \brief Return a new instance of the desired SolverManager subclass.
///
/// This template function is meant to be used only by \c
/// makeSolverManagerFromEnum.  We separate it out from \c
/// makeSolverManagerFromEnum in order to avoid duplicated code for
/// instantiating different \c SolverManager subclasses with the same
/// syntax (but different template parameters).
///
/// \tparam SolverManagerBaseType A specialization of SolverManager.
///
/// \tparam SolverManagerType The specific SolverManager subclass to
///   create.  It should take the same three template parameters
///   (Scalar, MV, OP) as SolverManagerBaseType.
///
/// \param params [in/out] List of parameters with which to configure
///   the solver.  If null, we configure the solver with default
///   parameters.
template<class SolverManagerBaseType, class SolverManagerType>
Teuchos::RCP<SolverManagerBaseType>
makeSolverManagerTmpl (const Teuchos::RCP<Teuchos::ParameterList>& params);

/// \fn makeSolverManagerFromEnum
/// \brief Return a new instance of the desired SolverManager subclass.
/// \author Mark Hoemmen
///
/// The \c SolverFactory class may use this template function
/// in order to instantiate an instance of the desired subclass of \c
/// SolverManager.
///
/// \tparam Scalar The first template parameter of \c SolverManager.
/// \tparam MV The second template parameter of \c SolverManager.
/// \tparam OP The third template parameter of \c SolverManager.
///
/// \param solverType [in] Enum value representing the specific
///   SolverManager subclass to instantiate.
///
/// \param params [in/out] List of parameters with which to configure
///   the solver.  If null, we configure the solver with default
///   parameters.
template<class Scalar, class MV, class OP>
Teuchos::RCP<SolverManager<Scalar, MV, OP> >
makeSolverManagerFromEnum (const EBelosSolverType solverType,
                           const Teuchos::RCP<Teuchos::ParameterList>& params)
{
  typedef SolverManager<Scalar, MV, OP> base_type;

  switch (solverType) {
  case SOLVER_TYPE_BLOCK_GMRES: {
    typedef BlockGmresSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
    break;
  }
  case SOLVER_TYPE_PSEUDO_BLOCK_GMRES: {
    typedef PseudoBlockGmresSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
    break;
  }
  case SOLVER_TYPE_BLOCK_CG: {
    typedef BlockCGSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
    break;
  }
  case SOLVER_TYPE_PSEUDO_BLOCK_CG: {
    typedef PseudoBlockCGSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
    break;
  }
  case SOLVER_TYPE_GCRODR: {
    typedef GCRODRSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
    break;
  }
  case SOLVER_TYPE_RCG: {
    typedef RCGSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
    break;
  }
  case SOLVER_TYPE_MINRES: {
    typedef MinresSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
    break;
  }
  case SOLVER_TYPE_LSQR: {
    typedef LSQRSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
    break;
  }
  case SOLVER_TYPE_STOCHASTIC_CG: {
    typedef PseudoBlockStochasticCGSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
  }
  case SOLVER_TYPE_TFQMR: {
    typedef TFQMRSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
  }
  case SOLVER_TYPE_PSEUDO_BLOCK_TFQMR: {
    typedef PseudoBlockTFQMRSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
  }
  case SOLVER_TYPE_GMRES_POLY: {
    typedef GmresPolySolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
  }
  case SOLVER_TYPE_PCPG: {
    typedef PCPGSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
  }
  case SOLVER_TYPE_FIXED_POINT: {
    typedef FixedPointSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
  }
  case SOLVER_TYPE_BICGSTAB: {
    typedef BiCGStabSolMgr<Scalar, MV, OP> impl_type;
    return makeSolverManagerTmpl<base_type, impl_type> (params);
  }
  default: // Fall through; let the code below handle it.
    TEUCHOS_TEST_FOR_EXCEPTION(
      true, std::logic_error, "Belos::SolverFactory: Invalid EBelosSolverType "
      "enum value " << solverType << ".  Please report this bug to the Belos "
      "developers.");
  }

  // Compiler guard.  This may result in a warning on some compilers
  // for an unreachable statement, but it will prevent a warning on
  // other compilers for a "missing return statement at end of
  // non-void function."
  return Teuchos::null;
}

template<class SolverManagerBaseType, class SolverManagerType>
Teuchos::RCP<SolverManagerBaseType>
makeSolverManagerTmpl (const Teuchos::RCP<Teuchos::ParameterList>& params)
{
  using Teuchos::ParameterList;
  using Teuchos::parameterList;
  using Teuchos::RCP;

  RCP<SolverManagerType> solver = rcp (new SolverManagerType);

  // Some solvers may not like to get a null ParameterList.  If params
  // is null, replace it with an empty parameter list.  The solver
  // will fill in default parameters for that case.  Use the name of
  // the solver's default parameters to name the new empty list.
  RCP<ParameterList> pl;
  if (params.is_null()) {
    pl = parameterList (solver->getValidParameters ()->name ());
  } else {
    pl = params;
  }
  TEUCHOS_TEST_FOR_EXCEPTION(
    pl.is_null(), std::logic_error,
    "Belos::SolverFactory: ParameterList to pass to solver is null.  This "
    "should never happen.  Please report this bug to the Belos developers.");
  solver->setParameters (pl);
  return solver;
}

} // namespace details


template<class Scalar, class MV, class OP>
SolverFactory<Scalar, MV, OP>::SolverFactory()
{
  aliasToCanonicalName_["GMRES"] = "PSEUDOBLOCK GMRES";
  // NOTE (mfh 29 Nov 2011) Accessing the flexible capability requires
  // setting a parameter in the solver's parameter list.  This affects
  // the SolverFactory's interface, since using the "Flexible GMRES"
  // alias requires modifying the user's parameter list if necessary.
  // This is a good idea because users may not know about the
  // parameter, or may have forgotten.
  //
  // NOTE (mfh 12 Aug 2015) The keys and values need to be all uppercase.
  aliasToCanonicalName_["BLOCK GMRES"] = "BLOCK GMRES";
  aliasToCanonicalName_["FLEXIBLE GMRES"] = "BLOCK GMRES";
  aliasToCanonicalName_["CG"] = "PSEUDOBLOCK CG";
  aliasToCanonicalName_["PSEUDOBLOCKCG"] = "PSEUDOBLOCK CG";
  aliasToCanonicalName_["STOCHASTIC CG"] = "PSEUDOBLOCK STOCHASTIC CG";
  aliasToCanonicalName_["RECYCLING CG"] = "RCG";
  aliasToCanonicalName_["RECYCLING GMRES"] = "GCRODR";
  // For compatibility with Stratimikos' Belos adapter.
  aliasToCanonicalName_["PSEUDO BLOCK GMRES"] = "PSEUDOBLOCK GMRES";
  aliasToCanonicalName_["PSEUDOBLOCKGMRES"] = "PSEUDOBLOCK GMRES";
  aliasToCanonicalName_["PSEUDO BLOCK CG"] = "PSEUDOBLOCK CG";
  aliasToCanonicalName_["PSEUDOBLOCKCG"] = "PSEUDOBLOCK CG";
  aliasToCanonicalName_["TRANSPOSE-FREE QMR"] = "TFQMR";
  aliasToCanonicalName_["PSEUDO BLOCK TFQMR"] = "PSEUDOBLOCK TFQMR";
  aliasToCanonicalName_["PSEUDO BLOCK TRANSPOSE-FREE QMR"] = "PSEUDOBLOCK TFQMR";
  aliasToCanonicalName_["GMRESPOLY"] = "HYBRID BLOCK GMRES";
  aliasToCanonicalName_["SEED GMRES"] = "HYBRID BLOCK GMRES";
  aliasToCanonicalName_["CGPOLY"] = "PCPG";
  aliasToCanonicalName_["SEED CG"] = "PCPG";
  aliasToCanonicalName_["FIXED POINT"] = "FIXED POINT";
  aliasToCanonicalName_["BICGSTAB"] = "BICGSTAB";

  // Mapping from canonical solver name (a string) to its
  // corresponding enum value.  This mapping is one-to-one.
  //
  // NOTE (mfh 12 Aug 2015) The keys need to be all uppercase.
  canonicalNameToEnum_["BLOCK GMRES"] = details::SOLVER_TYPE_BLOCK_GMRES;
  canonicalNameToEnum_["PSEUDOBLOCK GMRES"] = details::SOLVER_TYPE_PSEUDO_BLOCK_GMRES;
  canonicalNameToEnum_["BLOCK CG"] = details::SOLVER_TYPE_BLOCK_CG;
  canonicalNameToEnum_["PSEUDOBLOCK CG"] = details::SOLVER_TYPE_PSEUDO_BLOCK_CG;
  canonicalNameToEnum_["PSEUDOBLOCK STOCHASTIC CG"] = details::SOLVER_TYPE_STOCHASTIC_CG;
  canonicalNameToEnum_["GCRODR"] = details::SOLVER_TYPE_GCRODR;
  canonicalNameToEnum_["RCG"] = details::SOLVER_TYPE_RCG;
  canonicalNameToEnum_["MINRES"] = details::SOLVER_TYPE_MINRES;
  canonicalNameToEnum_["LSQR"] = details::SOLVER_TYPE_LSQR;
  canonicalNameToEnum_["TFQMR"] = details::SOLVER_TYPE_TFQMR;
  canonicalNameToEnum_["PSEUDOBLOCK TFQMR"] = details::SOLVER_TYPE_PSEUDO_BLOCK_TFQMR;
  canonicalNameToEnum_["HYBRID BLOCK GMRES"] = details::SOLVER_TYPE_GMRES_POLY;
  canonicalNameToEnum_["PCPG"] = details::SOLVER_TYPE_PCPG;
  canonicalNameToEnum_["FIXED POINT"] = details::SOLVER_TYPE_FIXED_POINT;
  canonicalNameToEnum_["BICGSTAB"] = details::SOLVER_TYPE_BICGSTAB;
}


template<class Scalar, class MV, class OP>
void
SolverFactory<Scalar, MV, OP>::
reviseParameterListForAlias (const std::string& aliasName,
                             Teuchos::ParameterList& solverParams)
{
  if (aliasName == "FLEXIBLE GMRES") {
    // "Gmres" uses title case in this solver's parameter list.  For
    // our alias, we prefer the all-capitals "GMRES" that the
    // algorithm's authors (Saad and Schultz) used.
    solverParams.set ("Flexible Gmres", true);
  }
}


template<class Scalar, class MV, class OP>
Teuchos::RCP<typename SolverFactory<Scalar, MV, OP>::solver_base_type>
SolverFactory<Scalar, MV, OP>::
create (const std::string& solverName,
        const Teuchos::RCP<Teuchos::ParameterList>& solverParams)
{
  const char prefix[] = "Belos::SolverFactory: ";

  // Upper-case version of the input solver name.
  std::string solverNameUC (solverName);
  {
    typedef std::string::value_type char_t;
    typedef std::ctype<char_t> facet_type;
    const facet_type& facet = std::use_facet<facet_type> (std::locale ());

    const std::string::size_type len = solverName.size ();
    for (std::string::size_type k = 0; k < len; ++k) {
      solverNameUC[k] = facet.toupper (solverName[k]);
    }
  }

  // Check whether the given name is an alias.
  std::map<std::string, std::string>::const_iterator aliasIter =
    aliasToCanonicalName_.find (solverNameUC);
  const bool isAnAlias = (aliasIter != aliasToCanonicalName_.end());
  const std::string candidateCanonicalName =
    isAnAlias ? aliasIter->second : solverNameUC;

  // Get the canonical name.
  std::map<std::string, details::EBelosSolverType>::const_iterator canonicalIter =
    canonicalNameToEnum_.find (candidateCanonicalName);
  const bool validCanonicalName = (canonicalIter != canonicalNameToEnum_.end());

  // Check whether we found a canonical name.  If we didn't and the
  // input name is a valid alias, that's a bug.  Otherwise, the input
  // name is invalid.
  TEUCHOS_TEST_FOR_EXCEPTION
    (! validCanonicalName && isAnAlias, std::logic_error,
     prefix << "Valid alias \"" << solverName << "\" has candidate canonical "
     "name \"" << candidateCanonicalName << "\", which is not a canonical "
     "solver name.  Please report this bug to the Belos developers.");
  TEUCHOS_TEST_FOR_EXCEPTION
    (! validCanonicalName && ! isAnAlias, std::invalid_argument,
     prefix << "Invalid solver name \"" << solverName << "\".");

  // If the input list is null, we create a new list and use that.
  // This is OK because the effect of a null parameter list input is
  // to use default parameter values.  Thus, we can always replace a
  // null list with an empty list.
  Teuchos::RCP<Teuchos::ParameterList> pl =
    solverParams.is_null() ? Teuchos::parameterList() : solverParams;

  // Possibly modify the input parameter list as needed.
  if (isAnAlias) {
    reviseParameterListForAlias (solverNameUC, *pl);
  }

  return details::makeSolverManagerFromEnum<Scalar, MV, OP> (canonicalIter->second, pl);
}


template<class Scalar, class MV, class OP>
std::string
SolverFactory<Scalar, MV, OP>::description() const
{
  using Teuchos::TypeNameTraits;

  std::ostringstream out;
  out << "\"Belos::SolverFactory\": {";
  if (this->getObjectLabel () != "") {
    out << "Label: " << this->getObjectLabel () << ", ";
  }
  out << "Scalar: " << TypeNameTraits<Scalar>::name ()
      << ", MV: " << TypeNameTraits<MV>::name ()
      << ", OP: " << TypeNameTraits<OP>::name ()
      << "}";
  return out.str ();
}


template<class Scalar, class MV, class OP>
void
SolverFactory<Scalar, MV, OP>::
describe (Teuchos::FancyOStream& out,
          const Teuchos::EVerbosityLevel verbLevel) const
{
  using Teuchos::TypeNameTraits;
  using std::endl;

  const Teuchos::EVerbosityLevel vl =
    (verbLevel == Teuchos::VERB_DEFAULT) ? Teuchos::VERB_LOW : verbLevel;

  if (vl == Teuchos::VERB_NONE) {
    return;
  }

  // By convention, describe() always begins with a tab.
  Teuchos::OSTab tab0 (out);
  // The description prints in YAML format.  The class name needs to
  // be protected with quotes, so that YAML doesn't get confused
  // between the colons in the class name and the colon separating
  // (key,value) pairs.
  out << "\"Belos::SolverFactory\":" << endl;
  if (this->getObjectLabel () != "") {
    out << "Label: " << this->getObjectLabel () << endl;
  }
  {
    out << "Template parameters:" << endl;
    Teuchos::OSTab tab1 (out);
    out << "Scalar: " << TypeNameTraits<Scalar>::name () << endl
        << "MV: " << TypeNameTraits<MV>::name () << endl
        << "OP: " << TypeNameTraits<OP>::name () << endl;
  }

  // At higher verbosity levels, print out the list of supported solvers.
  if (vl > Teuchos::VERB_LOW) {
    Teuchos::OSTab tab1 (out);
    out << "Number of solvers: " << numSupportedSolvers ()
        << endl;
    out << "Canonical solver names: ";
    printStringArray (out, canonicalSolverNames ());
    out << endl;

    out << "Aliases to canonical names: ";
    printStringArray (out, solverNameAliases ());
    out << endl;
  }
}

template<class Scalar, class MV, class OP>
int
SolverFactory<Scalar, MV, OP>::numSupportedSolvers () const
{
  return static_cast<int> (canonicalNameToEnum_.size());
}

template<class Scalar, class MV, class OP>
Teuchos::Array<std::string>
SolverFactory<Scalar, MV, OP>::canonicalSolverNames () const
{
  Teuchos::Array<std::string> canonicalNames;
  typedef std::map<std::string, details::EBelosSolverType>::const_iterator iter_type;
  for (iter_type iter = canonicalNameToEnum_.begin();
       iter != canonicalNameToEnum_.end(); ++iter) {
    canonicalNames.push_back (iter->first);
  }
  return canonicalNames;
}

template<class Scalar, class MV, class OP>
Teuchos::Array<std::string>
SolverFactory<Scalar, MV, OP>::solverNameAliases () const
{
  Teuchos::Array<std::string> names;
  {
    typedef std::map<std::string, std::string>::const_iterator iter_type;
    for (iter_type iter = aliasToCanonicalName_.begin();
         iter != aliasToCanonicalName_.end(); ++iter) {
      names.push_back (iter->first);
    }
  }
  return names;
}

template<class Scalar, class MV, class OP>
Teuchos::Array<std::string>
SolverFactory<Scalar, MV, OP>::supportedSolverNames () const
{
  Teuchos::Array<std::string> names;
  {
    typedef std::map<std::string, std::string>::const_iterator iter_type;
    for (iter_type iter = aliasToCanonicalName_.begin();
         iter != aliasToCanonicalName_.end(); ++iter) {
      names.push_back (iter->first);
    }
  }
  {
    typedef std::map<std::string, details::EBelosSolverType>::const_iterator iter_type;
    for (iter_type iter = canonicalNameToEnum_.begin();
         iter != canonicalNameToEnum_.end(); ++iter) {
      names.push_back (iter->first);
    }
  }
  return names;
}

} // namespace Belos

#endif // __Belos_SolverFactory_hpp