This file is indexed.

/usr/include/trilinos/BelosPCPGIter.hpp is in libtrilinos-belos-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef BELOS_PCPG_ITER_HPP
#define BELOS_PCPG_ITER_HPP

/*! \file BelosPCPGIter.hpp
    \brief Belos concrete class to iterate Preconditioned Conjugate Projected Gradients
*/

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosMatOrthoManager.hpp"
#include "BelosOutputManager.hpp"
#include "BelosStatusTest.hpp"
#include "BelosOperatorTraits.hpp"
#include "BelosMultiVecTraits.hpp"

#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

/*!	
  \class Belos::PCPGIter
  
  \brief This class implements the PCPG iteration, where a
  single-std::vector Krylov subspace is constructed.  The documentation
  refers to blocks, but note that at this point, all blocks have unit
  dimension.
 
  \author David Day
*/

namespace Belos {
  
  //! @name PCPGIter Structures
  //@{
  
  /** \brief Structure to contain pointers to PCPGIter state variables.
   *
   * The structure is utilized by initialize() and getState().
   */
  template <class ScalarType, class MV>
  struct PCPGIterState {
    /*! \brief The current dimension of the reduction.
     *
     * This ought always to equal PCPGIter::getCurSubspaceDim()
     */
    /*! \brief Number of block columns in matrices C and U */
    int curDim;
    /*! \brief Number of block columns in matrices C and U before current iteration */
    int prevUdim;

    /*! \brief The current residual. */
    Teuchos::RCP<MV> R;

    /*! \brief The current preconditioned residual. */
    Teuchos::RCP<MV> Z;

    /*! \brief The current decent direction std::vector */
    Teuchos::RCP<MV> P;

    /*! \brief The matrix A applied to current decent direction std::vector */
    Teuchos::RCP<MV> AP;

    /*! \brief The recycled subspace */
    Teuchos::RCP<MV> U;

    /*! \brief C = AU, U spans recycled subspace */
    Teuchos::RCP<MV> C;

    /*! \brief The current Hessenberg matrix.
     *
     * The \c curDim by \c curDim D = diag(P'*AP) = U' * C
     */
    Teuchos::RCP<const Teuchos::SerialDenseMatrix<int,ScalarType> > D;

    PCPGIterState() : curDim(0), 
                      prevUdim(0), 
                      R(Teuchos::null), Z(Teuchos::null), 
                      P(Teuchos::null), AP(Teuchos::null),
                      U(Teuchos::null), C(Teuchos::null),
		      D(Teuchos::null)
    {}
  };
  
  //@}
  
  //! @name PCPGIter Exceptions
  //@{
  
  /** \brief PCPGIterInitFailure is thrown when the PCPGIter object is unable to
   * generate an initial iterate in the PCPGIter::initialize() routine.
   *
   * This std::exception is thrown from the PCPGIter::initialize() method, which is
   * called by the user or from the PCPGIter::iterate() method if isInitialized()
   * == \c false.
   *
   * In the case that this std::exception is thrown,
   * PCPGIter::isInitialized() will be \c false and the user will need to provide
   * a new initial iterate to the iteration.
   */
  class PCPGIterInitFailure : public BelosError {public:
    PCPGIterInitFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

  /** \brief PCPGIterateFailure is thrown when the PCPGIter object breaks down.
   * The std::exception is thrown from the PCPGIter::iterate() method, and
   * is due to a coefficient matrix that is not positive definite.
   */
  class PCPGIterateFailure : public BelosError {public:
    PCPGIterateFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};


  
  /** \brief PCPGIterOrthoFailure is thrown when the PCPGIter object is unable to
   * compute independent direction vectors in the PCPGIter::iterate() routine.
   *
   * This std::exception is thrown from the PCPGIter::iterate() method.
   *
   */
  class PCPGIterOrthoFailure : public BelosError {public:
    PCPGIterOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};
  
  /** \brief PCPGIterLAPACKFailure is thrown when a nonzero return value is passed back
   * from an LAPACK routine.
   *
   * This std::exception is thrown from the PCPGIter::iterate() method.
   *
   */
  class PCPGIterLAPACKFailure : public BelosError {public:
    PCPGIterLAPACKFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};
  
  //@}
  
  
  template<class ScalarType, class MV, class OP>
  class PCPGIter : virtual public Iteration<ScalarType,MV,OP> {
    
  public:
    
    //
    // Convenience typedefs
    //
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename SCT::magnitudeType MagnitudeType;
    
    //! @name Constructors/Destructor
    //@{ 
    
    /*! \brief %PCPGIter constructor with linear problem, solver utilities, and parameter list of solver options.
     *
     * This constructor takes pointers required by the linear solver, in addition
     * to a parameter list of options for the linear solver. These options include the following:
     *   - "Restart Timers" = a \c bool specifying whether the timers should be restarted each time iterate() is called. Default: false
     *   - "Keep Diagonal" = a \c bool specifying whether the upper Hessenberg should be stored separately from the least squares system. Default: false
     */
    PCPGIter( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem, 
		const Teuchos::RCP<OutputManager<ScalarType> > &printer,
		const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
		const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
		Teuchos::ParameterList &params );
    
    //! Destructor.
    virtual ~PCPGIter() {};
    //@}
    
    
    //! @name Solver methods
    //@{ 
    
    /*! \brief PCPGIter iterates CG until the status test either requests a stop or detects an error.  
     * In the latter case, std::exception is thrown.
     *
     * iterate() will first determine whether or not the solver is inintialized; if not, iterate()
     * will call initialize() using default arguments. After initialization, the solver performs CG
     * iterations until the status test evaluates as ::Passed, at which point the method returns to
     * the caller. 
     *
     * The PCPG iteration proceeds as follows:
     * -# the operator problem->applyOp() is applied to the newest vector in the Krylov basis,
     * -# the result is (approximately) A-orthogonalized to the previous basis vectors,
     * -# the coupled two-term recurrence is iterated,
     * -# the search direction P is projected into a complement of the seed space U.
     *
     * The status test is queried at the beginning of the iteration.
     * Potential CG exceptions include IterationInit, Iterate and IterationLAPACKFailure
     *
     */
    void iterate();
    
    /*! \brief Initialize the solver to an iterate, providing a complete state.
     *
     * The %PCPGIter state consists of the %CGIter state, the stored search directions
     * and the seed space.  The constructor calls setSize() which calls setStateSize().
     *
     * initialize(IterState) also calls setStateSize(), passing the current seed space to Iterate.
     * initialize(IterState) sets the state to the specified IterState and then 
     * initialized_ := true.  Fundamental state changes cause initialized_ := false.
     *
     * \post 
     * <li>isInitialized() == \c true
     *
     * Optionally, the user may specify any component of the state using initialize().  
     * Any component of the state not given to initialize() will be generated.
     *
     * \note For any pointer in \c newstate which directly points to the multivectors in 
     * the solver, the data is not (supposed to be) copied.
     */
    void initialize(PCPGIterState<ScalarType,MV>& newstate);
    
    /*! \brief Initialize the solver with the initial vectors from the linear problem.
     *  An exception is thrown if initialzed is called and newstate.R is null.
     */
    void initialize()
    {
      PCPGIterState<ScalarType,MV> empty;
      initialize(empty);
    }
    
    /*! \brief Get the current state of the linear solver.
     *
     * The data is only valid if isInitialized() == \c true.
     *
     * \returns A PCPGIterState object containing const pointers to the current
     * solver state.
     */
    PCPGIterState<ScalarType,MV> getState() const {
      PCPGIterState<ScalarType,MV> state;
      state.Z = Z_;         // CG state
      state.P = P_;
      state.AP = AP_;
      state.R = R_;
      state.U = U_;         // seed state 
      state.C = C_; 
      state.D = D_;
      state.curDim = curDim_;
      state.prevUdim = prevUdim_;
      return state;
    }
    
    //@}
    
    
    //! @name Status methods
    //@{ 
    
    //! \brief Get the current iteration count.
    int getNumIters() const { return iter_; }
    
    //! \brief Reset the iteration count.
    void resetNumIters( int iter = 0 ) { iter_ = iter; }
    
    //! Get the norms of the residuals native to the solver.
    //! \return A std::vector of length blockSize containing the native residuals.
    Teuchos::RCP<const MV> getNativeResiduals( std::vector<MagnitudeType> *norms ) const { return R_; }

    //! Get the current update to the linear system solution?.
    /*! \note getCurrentUpdate returns a null pointer indicating that the linear problem
        contains the current solution.
    */
    Teuchos::RCP<MV> getCurrentUpdate() const { return Teuchos::null; }

    //! Get the current dimension of the whole seed subspace.
    int getCurSubspaceDim() const { 
      if (!initialized_) return 0;
      return curDim_;
    };

    //! Get the dimension of the search subspace used to solve the current solution to the linear problem.
    int getPrevSubspaceDim() const { 
      if (!initialized_) return 0;
      return prevUdim_;
    };
    
    //@}
    
    
    //! @name Accessor methods
    //@{ 
    
    //! Get a constant reference to the linear problem.
    const LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }
    
    //! Get the maximum number of blocks used by the iterative solver in solving this linear problem.
    int getBlockSize() const { return 1; }
    
    //! Get the maximum number of recycled blocks used by the iterative solver in solving this linear problem.
    int getNumRecycledBlocks() const { return savedBlocks_; }

    //! Get the blocksize to be used by the iterative solver in solving this linear problem.
    
    //! \brief Set the blocksize.
    void setBlockSize(int blockSize) {
      TEUCHOS_TEST_FOR_EXCEPTION(blockSize!=1,std::invalid_argument,
			 "Belos::PCPGIter::setBlockSize(): Cannot use a block size that is not one.");
    }

    //! \brief Set the maximum number of saved or recycled blocks used by the iterative solver
    void setSize( int savedBlocks );

    //! States whether the solver has been initialized or not.
    bool isInitialized() { return initialized_; }

    //! tell the Iterator to "reset" itself;  delete and rebuild the seed space.
    void resetState(); 
    
    //@}
    
  private:
    
    //
    // Internal methods
    //
    //! Method for initalizing the state storage needed by PCPG
    void setStateSize();
    
    //
    // Classes inputed through constructor that define the linear problem to be solved.
    //
    const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> >    lp_;
    const Teuchos::RCP<OutputManager<ScalarType> >          om_;
    const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >       stest_;
    const Teuchos::RCP<OrthoManager<ScalarType,MV> >        ortho_;

    //
    // Algorithmic parameters
    // savedBlocks_ is the number of blocks allocated for the reused subspace
    int savedBlocks_; 
    //
    // 
    // Current solver state
    //
    // initialized_ specifies that the basis vectors have been initialized and the iterate() routine
    // is capable of running; _initialize is controlled  by the initialize() member method
    // For the implications of the state of initialized_, please see documentation for initialize()
    bool initialized_;
    
    // stateStorageInitialized_ indicates that the state storage has be initialized to the current
    // savedBlocks_.  State storage initialization may be postponed if the linear problem was
    // generated without either the right-hand side or solution vectors.
    bool stateStorageInitialized_;

    // keepDiagonal_ specifies that the iteration must keep the diagonal matrix of pivots 
    bool keepDiagonal_;

    // initDiagonal_ specifies that the iteration will reinitialize the diagonal matrix by zeroing
    // out all entries before an iteration is started.
    bool initDiagonal_;
    
    // Current subspace dimension
    int curDim_;

    // Dimension of seed space used to solve current linear system
    int prevUdim_;
    
    // Number of iterations performed
    int iter_;
    // 
    // State Storage    ... of course this part is different for CG
    //
    // Residual
    Teuchos::RCP<MV> R_;
    //
    // Preconditioned residual
    Teuchos::RCP<MV> Z_;
    //
    // Direction std::vector
    Teuchos::RCP<MV> P_;
    //
    // Operator applied to direction std::vector
    Teuchos::RCP<MV> AP_;
    //
    // Recycled subspace vectors.
    Teuchos::RCP<MV> U_;
    // 
    // C = A * U,  linear system is Ax=b 
    Teuchos::RCP<MV> C_;
    //
    // Projected matrices
    // D_ : Diagonal matrix of pivots D = P'AP 
    Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > D_;
  };
  
  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor.
  template<class ScalarType, class MV, class OP>
  PCPGIter<ScalarType,MV,OP>::PCPGIter(const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem, 
					   const Teuchos::RCP<OutputManager<ScalarType> > &printer,
					   const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
					   const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
					   Teuchos::ParameterList &params ):
    lp_(problem),
    om_(printer),
    stest_(tester),
    ortho_(ortho),
    savedBlocks_(0),
    initialized_(false),
    stateStorageInitialized_(false),
    keepDiagonal_(false), 
    initDiagonal_(false),
    curDim_(0),
    prevUdim_(0),
    iter_(0)
  {
    // Get the maximum number of blocks allowed for this Krylov subspace

    TEUCHOS_TEST_FOR_EXCEPTION(!params.isParameter("Saved Blocks"), std::invalid_argument,
                       "Belos::PCPGIter::constructor: mandatory parameter \"Saved Blocks\" is not specified.");
    int rb = Teuchos::getParameter<int>(params, "Saved Blocks");

    // Find out whether we are saving the Diagonal matrix.
    keepDiagonal_ = params.get("Keep Diagonal", false);

    // Find out whether we are initializing the Diagonal matrix.
    initDiagonal_ = params.get("Initialize Diagonal", false);

    // Set the number of blocks and allocate data
    setSize( rb );
  }
  
  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Set the block size and adjust as necessary
  template <class ScalarType, class MV, class OP>
  void PCPGIter<ScalarType,MV,OP>::setSize( int savedBlocks )
  {
    // allocate space only; perform no computation
    // Any change in size invalidates the state of the solver as implemented here.

    TEUCHOS_TEST_FOR_EXCEPTION(savedBlocks <= 0, std::invalid_argument, "Belos::PCPGIter::setSize() was passed a non-positive argument for \"Num Saved Blocks\".");

    if ( savedBlocks_ != savedBlocks) {
      stateStorageInitialized_ = false;
      savedBlocks_ = savedBlocks;
      initialized_ = false;
      curDim_ = 0;
      prevUdim_ = 0;
      setStateSize(); // Use the current savedBlocks_ to initialize the state storage.    
    }
  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Enable the reuse of a single solver object for completely different linear systems
  template <class ScalarType, class MV, class OP>
  void PCPGIter<ScalarType,MV,OP>::resetState()
  {
      stateStorageInitialized_ = false;
      initialized_ = false;
      curDim_ = 0;
      prevUdim_ = 0;
      setStateSize();
  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Setup the state storage.  Called by either initialize or, if savedBlocks_ changes, setSize.
  template <class ScalarType, class MV, class OP>
  void PCPGIter<ScalarType,MV,OP>::setStateSize ()
  {
    if (!stateStorageInitialized_) {

      // Check if there is any multivector to clone from.
      Teuchos::RCP<const MV> lhsMV = lp_->getLHS();
      Teuchos::RCP<const MV> rhsMV = lp_->getRHS();
      if (lhsMV == Teuchos::null && rhsMV == Teuchos::null) {
	return;  // postpone exception 
      }
      else {
	
	//////////////////////////////////
	// blockSize*recycledBlocks dependent
        int newsd = savedBlocks_ ; //int newsd = blockSize_* savedBlocks_ ;
	//
	// Initialize the CG state storage
        // If the subspace is not initialized, generate it using the LHS or RHS from lp_.
	// Generate CG state only if it does not exist, otherwise resize it.
        if (Z_ == Teuchos::null) {
          Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );
          Z_ = MVT::Clone( *tmp, 1 );
        }
        if (P_ == Teuchos::null) {
          Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );
          P_ = MVT::Clone( *tmp, 1 );
        }
        if (AP_ == Teuchos::null) {
          Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );
          AP_ = MVT::Clone( *tmp, 1 );
        }

	if (C_ == Teuchos::null) {        

	  // Get the multivector that is not null. 
	  Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );
	  TEUCHOS_TEST_FOR_EXCEPTION(tmp == Teuchos::null,std::invalid_argument,
			     "Belos::PCPGIter::setStateSize(): linear problem does not specify multivectors to clone from.");
	  TEUCHOS_TEST_FOR_EXCEPTION( 0 != prevUdim_,std::invalid_argument,
			     "Belos::PCPGIter::setStateSize(): prevUdim not zero and C is null.");
	  C_ = MVT::Clone( *tmp, savedBlocks_ );
	}
	else {
	  // Generate C_ by cloning itself ONLY if more space is needed.
	  if (MVT::GetNumberVecs(*C_) < savedBlocks_ ) {
	    Teuchos::RCP<const MV> tmp = C_;
	    C_ = MVT::Clone( *tmp, savedBlocks_ );
	  }
	}
	if (U_ == Teuchos::null) {        
	  Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );
	  TEUCHOS_TEST_FOR_EXCEPTION( 0 != prevUdim_,std::invalid_argument,
			     "Belos::PCPGIter::setStateSize(): prevUdim not zero and U is null.");
	  U_ = MVT::Clone( *tmp, savedBlocks_ );
	}
	else {
	  // Generate U_ by cloning itself ONLY if more space is needed.
	  if (MVT::GetNumberVecs(*U_) < savedBlocks_ ) {
	    Teuchos::RCP<const MV> tmp = U_;
	    U_ = MVT::Clone( *tmp, savedBlocks_ );
	  }
	}
        if (keepDiagonal_) {
          if (D_ == Teuchos::null) {
            D_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>() );
          }
          if (initDiagonal_) {
            D_->shape( newsd, newsd );
          }
          else {
            if (D_->numRows() < newsd || D_->numCols() < newsd) {
              D_->shapeUninitialized( newsd, newsd );
            }
          }
        }
	// State storage has now been initialized.
	stateStorageInitialized_ = true;
      } // if there is a vector to clone from
    } // if !stateStorageInitialized_ 
  } // end of setStateSize

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Initialize the iteration object
  template <class ScalarType, class MV, class OP>
  void PCPGIter<ScalarType,MV,OP>::initialize(PCPGIterState<ScalarType,MV>& newstate)
  {

    TEUCHOS_TEST_FOR_EXCEPTION(!stateStorageInitialized_,std::invalid_argument,
		       "Belos::PCPGIter::initialize(): Cannot initialize state storage!");
    
    // Requirements: R_ and consistent multivectors widths and lengths
    //
    std::string errstr("Belos::PCPGIter::initialize(): Specified multivectors must have a consistent length and width.");

    if (newstate.R != Teuchos::null){ 

      R_ = newstate.R; // SolverManager::R_ == newstate.R == Iterator::R_
      if (newstate.U == Teuchos::null){ 
        prevUdim_ = 0;
        newstate.U = U_;
        newstate.C = C_;
      }
      else {
        prevUdim_ =  newstate.curDim;
        if (newstate.C == Teuchos::null){  // Stub for new feature
          std::vector<int> index(prevUdim_);
          for (int i=0; i< prevUdim_; ++i)  
            index[i] = i; 
          Teuchos::RCP<const MV> Ukeff = MVT::CloneView( *newstate.U, index );
          newstate.C = MVT::Clone( *newstate.U, prevUdim_ ); 
          Teuchos::RCP<MV> Ckeff = MVT::CloneViewNonConst( *newstate.C, index );    
          lp_->apply( *Ukeff, *Ckeff );
        }
        curDim_ = prevUdim_ ;
      }

      // Initialize the state storage if not already allocated in the constructor
      if (!stateStorageInitialized_) 
        setStateSize();

      //TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.V) != MVT::GetGlobalLength(*V_), std::invalid_argument, errstr );
      //TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.V) < 1, std::invalid_argument, errstr );

      newstate.prevUdim =  prevUdim_; // big change in functionality from GCRODR 
      newstate.curDim =  curDim_; 

      //TEUCHOS_TEST_FOR_EXCEPTION(newstate.z->numRows() < curDim_ || newstate.z->numCols() < 1, std::invalid_argument, errstr);

      std::vector<int> zero_index(1);
      zero_index[0] = 0;
      if ( lp_->getLeftPrec() != Teuchos::null ) { // Compute the initial search direction 
        lp_->applyLeftPrec( *R_, *Z_ );
        MVT::SetBlock( *Z_,  zero_index , *P_ );  // P(:,zero_index) := Z
      } else {                                      
        Z_ = R_;
        MVT::SetBlock( *R_, zero_index, *P_ );
      }

      std::vector<int> nextind(1);
      nextind[0] = curDim_;

      MVT::SetBlock( *P_,  nextind, *newstate.U ); // U(:,curDim_ ) := P_

      ++curDim_;
      newstate.curDim = curDim_; 

      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.U) != savedBlocks_ ,
                          std::invalid_argument, errstr );
      if (newstate.U != U_) { // Why this is needed?
	U_ = newstate.U;
      }

      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.C) != savedBlocks_ ,
                          std::invalid_argument, errstr );
      if (newstate.C != C_) {
	C_ = newstate.C;
      }
    }
    else {

      TEUCHOS_TEST_FOR_EXCEPTION(newstate.R == Teuchos::null,std::invalid_argument,
                         "Belos::PCPGIter::initialize(): PCPGStateIterState does not have initial kernel R_0.");
    }

    // the solver is initialized
    initialized_ = true;
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Iterate until the status test informs us we should stop.
  template <class ScalarType, class MV, class OP>
  void PCPGIter<ScalarType,MV,OP>::iterate()
  {
    //
    // Allocate/initialize data structures
    //
    if (initialized_ == false) {
      initialize();
    }
    const bool debug = false;

    // Allocate memory for scalars.
    Teuchos::SerialDenseMatrix<int,ScalarType> alpha( 1, 1 );
    Teuchos::SerialDenseMatrix<int,ScalarType> pAp( 1, 1 );
    Teuchos::SerialDenseMatrix<int,ScalarType> beta( 1, 1 );
    Teuchos::SerialDenseMatrix<int,ScalarType> rHz( 1, 1 ), rHz_old( 1, 1 );

    if( iter_ != 0 )
      std::cout << " Iterate Warning: begin from nonzero iter_ ?" << std::endl;  //DMD

    // GenOrtho Project Stubs
    std::vector<int> prevInd;
    Teuchos::RCP<const MV> Uprev;
    Teuchos::RCP<const MV> Cprev;
    Teuchos::SerialDenseMatrix<int,ScalarType> CZ;

    if( prevUdim_ ){
      prevInd.resize( prevUdim_ );
      for( int i=0; i<prevUdim_ ; i++) prevInd[i] = i;
      CZ.reshape( prevUdim_ , 1 );
      Uprev = MVT::CloneView(*U_, prevInd);
      Cprev = MVT::CloneView(*C_, prevInd);
    }

    // Get the current solution std::vector.
    Teuchos::RCP<MV> cur_soln_vec = lp_->getCurrLHSVec();

    // Check that the current solution std::vector only has one column.
    TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*cur_soln_vec) != 1, PCPGIterInitFailure,
                        "Belos::CGIter::iterate(): current linear system has more than one std::vector!" );

    //Check that the input is correctly set up 
    TEUCHOS_TEST_FOR_EXCEPTION( curDim_  != prevUdim_ + 1, PCPGIterInitFailure,
                        "Belos::CGIter::iterate(): mistake in initialization !" );


    const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
    const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();


    std::vector<int> curind(1);
    std::vector<ScalarType> rnorm(MVT::GetNumberVecs(*cur_soln_vec));
    if (prevUdim_ > 0){                 // A-orthonalize P=Z to Uprev
      Teuchos::RCP<MV> P; 
      curind[0] = curDim_ - 1;          // column = dimension - 1 
      P = MVT::CloneViewNonConst(*U_,curind); 
      MVT::MvTransMv( one, *Cprev, *P, CZ );
      MVT::MvTimesMatAddMv( -one, *Uprev, CZ, one, *P );       // P -= U*(C'Z)

      if( debug ){
        MVT::MvTransMv( one, *Cprev, *P, CZ );
        std::cout << " Input CZ post ortho " << std::endl;
        CZ.print( std::cout );
      }
      if( curDim_ == savedBlocks_ ){
        std::vector<int> zero_index(1);
        zero_index[0] = 0;
        MVT::SetBlock( *P, zero_index, *P_ );
      }
      P = Teuchos::null;
    }

    // Compute first <r,z> a.k.a. rHz
    MVT::MvTransMv( one, *R_, *Z_, rHz );

    ////////////////////////////////////////////////////////////////
    // iterate until the status test is satisfied
    //
    while (stest_->checkStatus(this) != Passed ) {
      Teuchos::RCP<const MV> P; 
      Teuchos::RCP<MV> AP;
      iter_++;                          // The next iteration begins.
      //std::vector<int> curind(1);
      curind[0] = curDim_ - 1;          // column = dimension - 1 
      if( debug ){
        MVT::MvNorm(*R_, rnorm);
        std::cout << iter_ << "  " << curDim_ <<  "   " << rnorm[0] << std::endl;
      }
      if( prevUdim_ + iter_ < savedBlocks_ ){
        P = MVT::CloneView(*U_,curind); 
        AP = MVT::CloneViewNonConst(*C_,curind); 
        lp_->applyOp( *P, *AP );
        MVT::MvTransMv( one, *P, *AP, pAp );
      }else{
        if( prevUdim_ + iter_ == savedBlocks_ ){
          AP = MVT::CloneViewNonConst(*C_,curind); 
          lp_->applyOp( *P_, *AP );
          MVT::MvTransMv( one, *P_, *AP, pAp );
        }else{
          lp_->applyOp( *P_, *AP_ );
          MVT::MvTransMv( one, *P_, *AP_, pAp );
        }
      }

      if( keepDiagonal_  && prevUdim_ + iter_ <= savedBlocks_ )
        (*D_)(iter_ -1 ,iter_ -1 ) = pAp(0,0);

      // positive pAp required 
      TEUCHOS_TEST_FOR_EXCEPTION( pAp(0,0) <= zero, PCPGIterateFailure,
                          "Belos::CGIter::iterate(): non-positive value for p^H*A*p encountered!" );

      // alpha := <R_,Z_> / <P,AP>
      alpha(0,0) = rHz(0,0) / pAp(0,0);

      // positive alpha required 
      TEUCHOS_TEST_FOR_EXCEPTION( alpha(0,0) <= zero, PCPGIterateFailure,
                          "Belos::CGIter::iterate(): non-positive value for alpha encountered!" );

      // solution update  x += alpha * P
      if( curDim_ < savedBlocks_ ){
         MVT::MvAddMv( one, *cur_soln_vec, alpha(0,0), *P, *cur_soln_vec );
      }else{
         MVT::MvAddMv( one, *cur_soln_vec, alpha(0,0), *P_, *cur_soln_vec );
      }
      //lp_->updateSolution(); ... does nothing.
      //
      // The denominator of beta is saved before residual is updated [ old <R_, Z_> ].
      //
      rHz_old(0,0) = rHz(0,0);
      //
      // residual update R_ := R_ - alpha * AP
      //
      if( prevUdim_ + iter_ <= savedBlocks_ ){
         MVT::MvAddMv( one, *R_, -alpha(0,0), *AP, *R_ );
         AP = Teuchos::null;
      }else{
         MVT::MvAddMv( one, *R_, -alpha(0,0), *AP_, *R_ );
      }
      //
      // update beta := [ new <R_, Z_> ] / [ old <R_, Z_> ] and the search direction p.
      //
      if ( lp_->getLeftPrec() != Teuchos::null ) {
        lp_->applyLeftPrec( *R_, *Z_ );
      } else {
        Z_ = R_;
      }
      //
      MVT::MvTransMv( one, *R_, *Z_, rHz );
      //
      beta(0,0) = rHz(0,0) / rHz_old(0,0);
      //
      if( curDim_ < savedBlocks_ ){
         curDim_++;                                                         // update basis dim
         curind[0] = curDim_ - 1;
         Teuchos::RCP<MV> Pnext = MVT::CloneViewNonConst(*U_,curind);
         MVT::MvAddMv( one, *Z_, beta(0,0), *P, *Pnext );
         if( prevUdim_ ){ // Deflate seed space 
             MVT::MvTransMv( one, *Cprev, *Z_, CZ );
             MVT::MvTimesMatAddMv( -one, *Uprev, CZ, one, *Pnext ); // Pnext -= U*(C'Z)
             if( debug ){
               std::cout << " Check CZ " << std::endl;
               MVT::MvTransMv( one, *Cprev, *Pnext, CZ );
               CZ.print( std::cout );
             }
         }
         P = Teuchos::null;
         if( curDim_ == savedBlocks_ ){
           std::vector<int> zero_index(1);
           zero_index[0] = 0;
           MVT::SetBlock( *Pnext, zero_index, *P_ );
         }
         Pnext = Teuchos::null;
      }else{
         MVT::MvAddMv( one, *Z_, beta(0,0), *P_, *P_ );
         if( prevUdim_ ){ // Deflate seed space
             MVT::MvTransMv( one, *Cprev, *Z_, CZ );
             MVT::MvTimesMatAddMv( -one, *Uprev, CZ, one, *P_ );       // P_ -= U*(C'Z)

             if( debug ){
               std::cout << " Check CZ " << std::endl;
               MVT::MvTransMv( one, *Cprev, *P_, CZ );
               CZ.print( std::cout );
             }
         }
      }
      // CGB: 5/26/2010
      // this RCP<const MV> P was previously a variable outside the loop. however, it didn't appear to be see any use between
      // loop iterations. therefore, I moved it inside to avoid scoping errors with previously used variables named P.
      // to ensure that this wasn't a bug, I verify below that we have set P == null, i.e., that we are not going to use it again
      // same for AP
      TEUCHOS_TEST_FOR_EXCEPTION( AP != Teuchos::null || P != Teuchos::null, std::logic_error, "Loop recurrence violated. Please contact Belos team.");
    } // end coupled two-term recursion
    if( prevUdim_ + iter_ < savedBlocks_ ) --curDim_; // discard negligible search direction
  }

} // end Belos namespace

#endif /* BELOS_PCPG_ITER_HPP */