/usr/include/trilinos/AnasaziTraceMin.hpp is in libtrilinos-anasazi-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file AnasaziTraceMin.hpp
\brief Implementation of the trace minimization eigensolver
*/
#ifndef ANASAZI_TRACEMIN_HPP
#define ANASAZI_TRACEMIN_HPP
#include "AnasaziTypes.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziTraceMinBase.hpp"
#include "Epetra_Operator.h"
#include "AnasaziEigensolver.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "AnasaziMatOrthoManager.hpp"
#include "AnasaziSolverUtils.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseSolver.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"
// TODO: TraceMin performs some unnecessary computations upon restarting. Fix it!
namespace Anasazi {
namespace Experimental {
/*! \class TraceMin
\brief This class implements a TraceMIN iteration, a preconditioned iteration
for solving linear symmetric positive definite eigenproblems.
%TraceMin works by solving a constrained minimization problem
\f[ \textrm{min trace}\left(Y^TKY\right) \textrm{ such that } Y^TMY = I\f]
The Y which satisfies this problem is the set of eigenvectors corresponding to
the eigenvalues of smallest magnitude. While %TraceMin is capable of finding any
eigenpairs of \f$KX = MX \Sigma\f$ (where K is symmetric and M symmetric positive
definite), it converges to the eigenvalues of smallest magnitude of whatever it is
given. If a different set of eigenpairs is desired (such as the absolute smallest
or the ones closest to a given shift), please perform a spectral transformation
before passing the Eigenproblem to the solver.
A %TraceMin iteration consists of the following operations:
-# Solve the saddle point problem
\f[\left[\begin{array}{lr} K & MX \\ X^TM & 0\end{array}\right]
\left[\begin{array}{l} V \\ \tilde{L}\end{array}\right] =
\left[\begin{array}{l} 0 \\ I\end{array}\right]\f]
-# Form a section out of the current subspace V such that \f$X^TKX = \Sigma\f$ and
\f$X^TMX = I\f$, where \f$\Sigma\f$ is diagonal. \f$\left(\Sigma,X\right)\f$ is
an approximation of the eigenpairs of smallest magnitude.
-# Compute the new residual and check for convergence.
The saddle point problem need not be solved to a low relative residual and can be
solved either by directly forming the Schur complement or by using a projected
Krylov subspace method to solve
\f[ \left(PKP\right) \Delta = PMX \textrm{ with } P=I-BX\left(X^TB^2X\right)^{-1}X^TB\f]
Then V is constructed as \f$V=X-\Delta\f$. If a preconditioner H is used with the
projected Krylov method, it is applied as
\f[F=\left[I-H^{-1}BX\left(X^TBH^{-1}BX\right)^{-1}X^TB\right]H^{-1}\f]
and we solve \f$FK\Delta = FMX\f$.
(See A Parallel Implementation of the Trace Minimization Eigensolver by Eloy Romero
and Jose E. Roman.)
The convergence rate of %TraceMin is based on the distribution of eigenvalues. If
the eigenvalues are clustered far away from the origin, we have a slow rate of
convergence. We can improve our convergence rate by taking advantage of Ritz
shifts. Instead of solving \f$Kx=\lambda Mx\f$, we solve
\f$\left(K-\sigma M\right) x = \left(\lambda - \sigma\right)Mx\f$.
This method is described in <em>A Trace Minimization Algorithm for
the Generalized Eigenvalue Problem</em>, Ahmed H. Sameh, John A.
Wisniewski, SIAM Journal on Numerical Analysis, 19(6), pp. 1243-1259
(1982)
\ingroup anasazi_solver_framework
\author Alicia Klinvex
*/
template <class ScalarType, class MV, class OP>
class TraceMin : public TraceMinBase<ScalarType,MV,OP> {
public:
//! @name Constructor/Destructor
//@{
/*! \brief %TraceMin constructor with eigenproblem, solver utilities, and
* parameter list of solver options.
*
* This constructor takes pointers required by the eigensolver, in addition
* to a parameter list of options for the eigensolver. These options include
* the following:
* - \c "Block Size" - an \c int specifying the subspace dimension used
* by the algorithm. This can also be specified using the setBlockSize()
* method.
* - \c "Maximum Iterations" - an \c int specifying the maximum number of
* %TraceMin iterations.
* - \c "Saddle Solver Type" - a \c string specifying the algorithm to use
* in solving the saddle point problem: "Schur Complement" or "Projected
* Krylov". Default: "Projected Krylov"
* - \c "Schur Complement": We explicitly form the Schur complement and
* use it to solve the linear system. This option may be faster, but
* it is less numerically stable and does not ensure orthogonality
* between the current iterate and the update.
* - \c "Projected Krylov": Use a projected iterative method to solve
* the linear system. If %TraceMin was not given a preconditioner, it
* will use MINRES. Otherwise, it will use GMRES.
* - \c "Shift Type" - a \c string specifying how to choose Ritz shifts:
* "No Shift", "Locked Shift", "Trace Leveled Shift", or "Original Shift".
* Default: "Trace Leveled Shift"
* - \c "No Shift": Do not perform Ritz shifts. This option produces
* guaranteed convergence but converges linearly. Not recommended.
* - \c "Locked Shift": Do not perform Ritz shifts until an eigenpair is
* locked. Then, shift based on the largest converged eigenvalue.
* This option is roughly as safe as "No Shift" but may be faster.
* - \c "Trace Leveled Shift": Do not perform Ritz shifts until the trace
* of \f$X^TKX\f$ (i.e. the quantity being minimized has stagnated.
* Then, shift based on the strategy proposed in <em>The trace
* minimization method for the symmetric generalized eigenvalue problem.</em>
* Highly recommended.
* - \c "Original Shift": The original shifting strategy proposed in
* "The trace minimization method for the symmetric generalized
* eigenvalue problem." Compute shifts based on the Ritz values,
* residuals, and clustering of the eigenvalues. May produce incorrect
* results for indefinite matrices or small subspace dimensions.
*/
TraceMin( const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms
);
private:
//
// Convenience typedefs
//
typedef SolverUtils<ScalarType,MV,OP> Utils;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename SCT::magnitudeType MagnitudeType;
const MagnitudeType ONE;
const MagnitudeType ZERO;
const MagnitudeType NANVAL;
// TraceMin specific methods
void addToBasis(const Teuchos::RCP<const MV> Delta);
void harmonicAddToBasis(const Teuchos::RCP<const MV> Delta);
};
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
//
// Implementations
//
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
// Constructor
template <class ScalarType, class MV, class OP>
TraceMin<ScalarType,MV,OP>::TraceMin(
const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
const Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > &ortho,
Teuchos::ParameterList ¶ms
) :
TraceMinBase<ScalarType,MV,OP>(problem,sorter,printer,tester,ortho,params),
ONE(Teuchos::ScalarTraits<MagnitudeType>::one()),
ZERO(Teuchos::ScalarTraits<MagnitudeType>::zero()),
NANVAL(Teuchos::ScalarTraits<MagnitudeType>::nan())
{
}
template <class ScalarType, class MV, class OP>
void TraceMin<ScalarType,MV,OP>::addToBasis(const Teuchos::RCP<const MV> Delta)
{
MVT::MvAddMv(ONE,*this->X_,-ONE,*Delta,*this->V_);
if(this->hasM_)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *this->timerMOp_ );
#endif
this->count_ApplyM_+= this->blockSize_;
OPT::Apply(*this->MOp_,*this->V_,*this->MV_);
}
int rank;
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
if(this->numAuxVecs_ > 0)
{
rank = this->orthman_->projectAndNormalizeMat(*this->V_,this->auxVecs_,
Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)),
Teuchos::null,this->MV_,this->MauxVecs_);
}
else
{
rank = this->orthman_->normalizeMat(*this->V_,Teuchos::null,this->MV_);
}
}
// FIXME (mfh 07 Oct 2014) This variable is currently unused, but
// it would make sense to use it to check whether the block is
// rank deficient.
(void) rank;
if(this->Op_ != Teuchos::null)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *this->timerOp_ );
#endif
this->count_ApplyOp_+= this->blockSize_;
OPT::Apply(*this->Op_,*this->V_,*this->KV_);
}
}
template <class ScalarType, class MV, class OP>
void TraceMin<ScalarType,MV,OP>::harmonicAddToBasis(const Teuchos::RCP<const MV> Delta)
{
// V = X - Delta
MVT::MvAddMv(ONE,*this->X_,-ONE,*Delta,*this->V_);
// Project out auxVecs
if(this->numAuxVecs_ > 0)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
this->orthman_->projectMat(*this->V_,this->auxVecs_);
}
// Compute KV
if(this->Op_ != Teuchos::null)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *this->timerOp_ );
#endif
this->count_ApplyOp_+= this->blockSize_;
OPT::Apply(*this->Op_,*this->V_,*this->KV_);
}
// Normalize lclKV
RCP< Teuchos::SerialDenseMatrix<int,ScalarType> > gamma = rcp(new Teuchos::SerialDenseMatrix<int,ScalarType>(this->blockSize_,this->blockSize_));
int rank = this->orthman_->normalizeMat(*this->KV_,gamma);
// FIXME (mfh 18 Feb 2015) It would make sense to check the rank.
(void) rank;
// lclV = lclV/gamma
Teuchos::SerialDenseSolver<int,ScalarType> SDsolver;
SDsolver.setMatrix(gamma);
SDsolver.invert();
RCP<MV> tempMV = MVT::CloneCopy(*this->V_);
MVT::MvTimesMatAddMv(ONE,*tempMV,*gamma,ZERO,*this->V_);
// Compute MV
if(this->hasM_)
{
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
Teuchos::TimeMonitor lcltimer( *this->timerMOp_ );
#endif
this->count_ApplyM_+= this->blockSize_;
OPT::Apply(*this->MOp_,*this->V_,*this->MV_);
}
}
}} // End of namespace Anasazi
#endif
// End of file AnasaziTraceMin.hpp
|