This file is indexed.

/usr/include/trilinos/AnasaziSVQBOrthoManager.hpp is in libtrilinos-anasazi-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER


/*! \file AnasaziSVQBOrthoManager.hpp
  \brief Orthogonalization manager based on the SVQB technique described in 
  "A Block Orthogonalization Procedure With Constant Synchronization Requirements", A. Stathapoulos and K. Wu
*/

#ifndef ANASAZI_SVQB_ORTHOMANAGER_HPP
#define ANASAZI_SVQB_ORTHOMANAGER_HPP

/*!   \class Anasazi::SVQBOrthoManager
      \brief An implementation of the Anasazi::MatOrthoManager that performs orthogonalization
      using the SVQB iterative orthogonalization technique described by Stathapoulos and Wu. This orthogonalization routine,
      while not returning the upper triangular factors of the popular Gram-Schmidt method, has a communication 
      cost (measured in number of communication calls) that is independent of the number of columns in the basis.
      
      \author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
*/

#include "AnasaziConfigDefs.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "AnasaziMatOrthoManager.hpp"
#include "Teuchos_LAPACK.hpp"

namespace Anasazi {

  template<class ScalarType, class MV, class OP>
  class SVQBOrthoManager : public MatOrthoManager<ScalarType,MV,OP> {

  private:
    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<ScalarType>  SCT;
    typedef Teuchos::ScalarTraits<MagnitudeType>  SCTM;
    typedef MultiVecTraits<ScalarType,MV>      MVT;
    typedef OperatorTraits<ScalarType,MV,OP>   OPT;
    std::string dbgstr;


  public:

    //! @name Constructor/Destructor
    //@{ 
    //! Constructor specifying re-orthogonalization tolerance.
    SVQBOrthoManager( Teuchos::RCP<const OP> Op = Teuchos::null, bool debug = false );


    //! Destructor
    ~SVQBOrthoManager() {};
    //@}



    //! @name Methods implementing Anasazi::MatOrthoManager
    //@{ 


    /*! \brief Given a list of mutually orthogonal and internally orthonormal bases \c Q, this method
     * projects a multivector \c X onto the space orthogonal to the individual <tt>Q[i]</tt>, 
     * optionally returning the coefficients of \c X for the individual <tt>Q[i]</tt>. All of this is done with respect
     * to the inner product innerProd().
     *
     * After calling this routine, \c X will be orthogonal to each of the <tt>Q[i]</tt>.
     *
     @param X [in/out] The multivector to be modified.<br>
       On output, the columns of \c X will be orthogonal to each <tt>Q[i]</tt>, satisfying
       \f[
       X_{out} = X_{in} - \sum_i Q[i] \langle Q[i], X_{in} \rangle
       \f]

     @param MX [in/out] The image of \c X under the inner product operator \c Op. 
       If \f$ MX != 0\f$: On input, this is expected to be consistent with \c Op \cdot X. On output, this is updated consistent with updates to \c X.
       If \f$ MX == 0\f$ or \f$ Op == 0\f$: \c MX is not referenced.

     @param C [out] The coefficients of \c X in the bases <tt>Q[i]</tt>. If <tt>C[i]</tt> is a non-null pointer 
       and <tt>C[i]</tt> matches the dimensions of \c X and <tt>Q[i]</tt>, then the coefficients computed during the orthogonalization
       routine will be stored in the matrix <tt>C[i]</tt>, similar to calling
       \code
          innerProd( Q[i], X, C[i] );
       \endcode
       If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
       inconsistent with \c X and \c <tt>Q[i]</tt>, then a std::invalid_argument
       exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or
       <tt>C[i]</tt> is a null pointer, the caller will not have access to the
       computed coefficients.

     @param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against, satisfying 
     \f[
        \langle Q[i], Q[j] \rangle = I \quad\textrm{if}\quad i=j
     \f]
     and
     \f[
        \langle Q[i], Q[j] \rangle = 0 \quad\textrm{if}\quad i \neq j\ .
     \f]
    */
    void projectMat ( 
          MV &X, 
          Teuchos::Array<Teuchos::RCP<const MV> >  Q,
          Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
              = Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
          Teuchos::RCP<MV> MX                        = Teuchos::null,
          Teuchos::Array<Teuchos::RCP<const MV> > MQ = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
        ) const;


    /*! \brief This method takes a multivector \c X and attempts to compute an orthonormal basis for \f$colspan(X)\f$, with respect to innerProd().
     *
     * This method does not compute an upper triangular coefficient matrix \c B.
     *
     * This routine returns an integer \c rank stating the rank of the computed basis. If \c X does not have full rank and the normalize() routine does 
     * not attempt to augment the subspace, then \c rank may be smaller than the number of columns in \c X. In this case, only the first \c rank columns of 
     * output \c X and first \c rank rows of \c B will be valid.
     *  
     * The method attempts to find a basis with dimension equal to the number of columns in \c X. It does this by augmenting linearly dependent 
     * vectors in \c X with random directions. A finite number of these attempts will be made; therefore, it is possible that the dimension of the 
     * computed basis is less than the number of vectors in \c X.
     *
     @param X [in/out] The multivector to be modified.<br>
       On output, the first \c rank columns of \c X satisfy
       \f[
          \langle X[i], X[j] \rangle = \delta_{ij}\ .
       \f]
       Also, 
       \f[
          X_{in}(1:m,1:n) = X_{out}(1:m,1:rank) B(1:rank,1:n)
       \f]
       where \c m is the number of rows in \c X and \c n is the number of columns in \c X.

     @param MX [in/out] The image of \c X under the inner product operator \c Op. 
       If \f$ MX != 0\f$: On input, this is expected to be consistent with \c Op \cdot X. On output, this is updated consistent with updates to \c X.
       If \f$ MX == 0\f$ or \f$ Op == 0\f$: \c MX is not referenced.

     @param B [out] The coefficients of the original \c X with respect to the computed basis. If \c B is a non-null pointer and \c B matches the dimensions of \c B, then the
     coefficients computed during the orthogonalization routine will be stored in \c B, similar to calling 
       \code
          innerProd( Xout, Xin, B );
       \endcode
     If \c B points to a Teuchos::SerialDenseMatrix with size inconsistent with \c X, then a std::invalid_argument exception will be thrown. Otherwise, if \c B is null, the caller will not have
     access to the computed coefficients. This matrix is not necessarily triangular (as in a QR factorization); see the documentation of specific orthogonalization managers.<br>
     In general, \c B has no non-zero structure.

     @return Rank of the basis computed by this method, less than or equal to the number of columns in \c X. This specifies how many columns in the returned \c X and rows in the returned \c B are valid.
    */
    int normalizeMat ( 
          MV &X, 
          Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null,
          Teuchos::RCP<MV> MX                                         = Teuchos::null
        ) const;


    /*! \brief Given a set of bases <tt>Q[i]</tt> and a multivector \c X, this method computes an orthonormal basis for \f$colspan(X) - \sum_i colspan(Q[i])\f$.
     *
     *  This routine returns an integer \c rank stating the rank of the computed basis. If the subspace \f$colspan(X) - \sum_i colspan(Q[i])\f$ does not 
     *  have dimension as large as the number of columns of \c X and the orthogonalization manager doe not attempt to augment the subspace, then \c rank 
     *  may be smaller than the number of columns of \c X. In this case, only the first \c rank columns of output \c X and first \c rank rows of \c B will 
     *  be valid.
     *
     * The method attempts to find a basis with dimension the same as the number of columns in \c X. It does this by augmenting linearly dependent 
     * vectors with random directions. A finite number of these attempts will be made; therefore, it is possible that the dimension of the 
     * computed basis is less than the number of vectors in \c X.
     *
     @param X [in/out] The multivector to be modified.<br>
       On output, the first \c rank columns of \c X satisfy
       \f[
            \langle X[i], X[j] \rangle = \delta_{ij} \quad \textrm{and} \quad \langle X, Q[i] \rangle = 0\ .
       \f]
       Also, 
       \f[
          X_{in}(1:m,1:n) = X_{out}(1:m,1:rank) B(1:rank,1:n) + \sum_i Q[i] C[i]
       \f]
       where \c m is the number of rows in \c X and \c n is the number of columns in \c X.

     @param MX [in/out] The image of \c X under the inner product operator \c Op. 
       If \f$ MX != 0\f$: On input, this is expected to be consistent with \c Op \cdot X. On output, this is updated consistent with updates to \c X.
       If \f$ MX == 0\f$ or \f$ Op == 0\f$: \c MX is not referenced.

     @param C [out] The coefficients of \c X in the <tt>Q[i]</tt>. If <tt>C[i]</tt> is a non-null pointer 
       and <tt>C[i]</tt> matches the dimensions of \c X and <tt>Q[i]</tt>, then the coefficients computed during the orthogonalization
       routine will be stored in the matrix <tt>C[i]</tt>, similar to calling
       \code
          innerProd( Q[i], X, C[i] );
       \endcode
       If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
       inconsistent with \c X and \c <tt>Q[i]</tt>, then a std::invalid_argument
       exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or
       <tt>C[i]</tt> is a null pointer, the caller will not have access to the
       computed coefficients.

     @param B [out] The coefficients of the original \c X with respect to the computed basis. If \c B is a non-null pointer and \c B matches the dimensions of \c B, then the
     coefficients computed during the orthogonalization routine will be stored in \c B, similar to calling 
       \code
          innerProd( Xout, Xin, B );
       \endcode
     If \c B points to a Teuchos::SerialDenseMatrix with size inconsistent with \c X, then a std::invalid_argument exception will be thrown. Otherwise, if \c B is null, the caller will not have
     access to the computed coefficients. This matrix is not necessarily triangular (as in a QR factorization); see the documentation of specific orthogonalization managers.<br>
     In general, \c B has no non-zero structure.

     @param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against, satisfying 
     \f[
        \langle Q[i], Q[j] \rangle = I \quad\textrm{if}\quad i=j
     \f]
     and
     \f[
        \langle Q[i], Q[j] \rangle = 0 \quad\textrm{if}\quad i \neq j\ .
     \f]

     @return Rank of the basis computed by this method, less than or equal to the number of columns in \c X. This specifies how many columns in the returned \c X and rows in the returned \c B are valid.

    */
    int projectAndNormalizeMat ( 
          MV &X, 
          Teuchos::Array<Teuchos::RCP<const MV> >  Q,
          Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
              = Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
          Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null, 
          Teuchos::RCP<MV>                                         MX = Teuchos::null,
          Teuchos::Array<Teuchos::RCP<const MV> >                  MQ = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
        ) const;

    //@}

    //! @name Error methods
    //@{ 

    /*! \brief This method computes the error in orthonormality of a multivector, measured
     * as the Frobenius norm of the difference <tt>innerProd(X,Y) - I</tt>.
     *  The method has the option of exploiting a caller-provided \c MX.
     */
    typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
    orthonormErrorMat(const MV &X, Teuchos::RCP<const MV> MX = Teuchos::null) const;

    /*! \brief This method computes the error in orthogonality of two multivectors, measured
     * as the Frobenius norm of <tt>innerProd(X,Y)</tt>.
     *  The method has the option of exploiting a caller-provided \c MX.
     */
    typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
    orthogErrorMat(
          const MV &X, 
          const MV &Y,
          Teuchos::RCP<const MV> MX = Teuchos::null, 
          Teuchos::RCP<const MV> MY = Teuchos::null
        ) const;

    //@}

  private:
    
    MagnitudeType eps_;
    bool debug_;
  
    // ! Routine to find an orthogonal/orthonormal basis
    int findBasis(MV &X, Teuchos::RCP<MV> MX, 
                   Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C, 
                   Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B, 
                   Teuchos::Array<Teuchos::RCP<const MV> > Q,
                   bool normalize_in ) const;
  };


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor
  template<class ScalarType, class MV, class OP>
  SVQBOrthoManager<ScalarType,MV,OP>::SVQBOrthoManager( Teuchos::RCP<const OP> Op, bool debug) 
    : MatOrthoManager<ScalarType,MV,OP>(Op), dbgstr("                    *** "), debug_(debug) {
    
    Teuchos::LAPACK<int,MagnitudeType> lapack;
    eps_ = lapack.LAMCH('E');
    if (debug_) {
      std::cout << "eps_ == " << eps_ << std::endl;
    }
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Compute the distance from orthonormality
  template<class ScalarType, class MV, class OP>
  typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
  SVQBOrthoManager<ScalarType,MV,OP>::orthonormErrorMat(const MV &X, Teuchos::RCP<const MV> MX) const {
    const ScalarType ONE = SCT::one();
    int rank = MVT::GetNumberVecs(X);
    Teuchos::SerialDenseMatrix<int,ScalarType> xTx(rank,rank);
    MatOrthoManager<ScalarType,MV,OP>::innerProdMat(X,X,xTx,MX,MX);
    for (int i=0; i<rank; i++) {
      xTx(i,i) -= ONE;
    }
    return xTx.normFrobenius();
  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Compute the distance from orthogonality
  template<class ScalarType, class MV, class OP>
  typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
  SVQBOrthoManager<ScalarType,MV,OP>::orthogErrorMat(
          const MV &X, 
          const MV &Y,
          Teuchos::RCP<const MV> MX,
          Teuchos::RCP<const MV> MY
      ) const {
    int r1 = MVT::GetNumberVecs(X);
    int r2 = MVT::GetNumberVecs(Y);
    Teuchos::SerialDenseMatrix<int,ScalarType> xTx(r1,r2);
    MatOrthoManager<ScalarType,MV,OP>::innerProdMat(X,Y,xTx,MX,MY);
    return xTx.normFrobenius();
  }



  //////////////////////////////////////////////////////////////////////////////////////////////////
  template<class ScalarType, class MV, class OP>
  void SVQBOrthoManager<ScalarType, MV, OP>::projectMat(
          MV &X, 
          Teuchos::Array<Teuchos::RCP<const MV> >  Q,
          Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
          Teuchos::RCP<MV> MX,
          Teuchos::Array<Teuchos::RCP<const MV> > MQ) const {
    (void)MQ;
    findBasis(X,MX,C,Teuchos::null,Q,false);
  }



  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Find an Op-orthonormal basis for span(X), with rank numvectors(X)
  template<class ScalarType, class MV, class OP>
  int SVQBOrthoManager<ScalarType, MV, OP>::normalizeMat(
          MV &X, 
          Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
          Teuchos::RCP<MV> MX) const {
    Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C;
    Teuchos::Array<Teuchos::RCP<const MV> > Q;
    return findBasis(X,MX,C,B,Q,true);
  }



  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Find an Op-orthonormal basis for span(X) - span(W)
  template<class ScalarType, class MV, class OP>
  int SVQBOrthoManager<ScalarType, MV, OP>::projectAndNormalizeMat(
          MV &X, 
          Teuchos::Array<Teuchos::RCP<const MV> >  Q,
          Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
          Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
          Teuchos::RCP<MV> MX,
          Teuchos::Array<Teuchos::RCP<const MV> > MQ) const {
    (void)MQ;
    return findBasis(X,MX,C,B,Q,true);
  }




  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Find an Op-orthonormal basis for span(X), with the option of extending the subspace so that 
  // the rank is numvectors(X)
  // 
  // Tracking the coefficients (C[i] and B) for this code is complicated by the fact that the loop
  // structure looks like
  // do
  //    project
  //    do
  //       ortho
  //    end
  // end
  // However, the recurrence for the coefficients is not complicated:
  // B = I
  // C = 0
  // do 
  //    project yields newC
  //    C = C + newC*B
  //    do 
  //       ortho yields newR
  //       B = newR*B
  //    end
  // end
  // This holds for each individual C[i] (which correspond to the list of bases we are orthogonalizing
  // against).
  //
  template<class ScalarType, class MV, class OP>
  int SVQBOrthoManager<ScalarType, MV, OP>::findBasis(
                MV &X, Teuchos::RCP<MV> MX, 
                Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C, 
                Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
                Teuchos::Array<Teuchos::RCP<const MV> > Q,
                bool normalize_in) const {

    const ScalarType ONE  = SCT::one();
    const MagnitudeType MONE = SCTM::one();
    const MagnitudeType ZERO = SCTM::zero();

    int numGS = 0,
        numSVQB = 0,
        numRand = 0;

    // get sizes of X,MX
    int xc = MVT::GetNumberVecs(X);
    ptrdiff_t xr = MVT::GetGlobalLength( X );

    // get sizes of Q[i]
    int nq = Q.length();
    ptrdiff_t qr = (nq == 0) ? 0 : MVT::GetGlobalLength(*Q[0]);
    ptrdiff_t qsize = 0;
    std::vector<int> qcs(nq);
    for (int i=0; i<nq; i++) {
      qcs[i] = MVT::GetNumberVecs(*Q[i]);
      qsize += qcs[i];
    }

    if (normalize_in == true && qsize + xc > xr) {
      // not well-posed
      TEUCHOS_TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                          "Anasazi::SVQBOrthoManager::findBasis(): Orthogonalization constraints not feasible" );
    }

    // try to short-circuit as early as possible
    if (normalize_in == false && (qsize == 0 || xc == 0)) {
      // nothing to do
      return 0;
    }
    else if (normalize_in == true && (xc == 0 || xr == 0)) {
      // normalize requires X not empty
      TEUCHOS_TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                          "Anasazi::SVQBOrthoManager::findBasis(): X must be non-empty" );
    }

    // check that Q matches X
    TEUCHOS_TEST_FOR_EXCEPTION( qsize != 0 && qr != xr , std::invalid_argument, 
                        "Anasazi::SVQBOrthoManager::findBasis(): Size of X not consistant with size of Q" );

    /* If we don't have enough C, expanding it creates null references
     * If we have too many, resizing just throws away the later ones
     * If we have exactly as many as we have Q, this call has no effect
     */
    C.resize(nq);
    Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > newC(nq);
    // check the size of the C[i] against the Q[i] and consistency between Q[i]
    for (int i=0; i<nq; i++) {
      // check size of Q[i]
      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength( *Q[i] ) != qr, std::invalid_argument, 
                          "Anasazi::SVQBOrthoManager::findBasis(): Size of Q not mutually consistant" );
      TEUCHOS_TEST_FOR_EXCEPTION( qr < qcs[i], std::invalid_argument, 
                          "Anasazi::SVQBOrthoManager::findBasis(): Q has less rows than columns" );
      // check size of C[i]
      if ( C[i] == Teuchos::null ) {
        C[i] = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(qcs[i],xc) );
      }
      else {
        TEUCHOS_TEST_FOR_EXCEPTION( C[i]->numRows() != qcs[i] || C[i]->numCols() != xc, std::invalid_argument, 
                            "Anasazi::SVQBOrthoManager::findBasis(): Size of Q not consistant with C" );
      }
      // clear C[i]
      C[i]->putScalar(ZERO);
      newC[i] = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(C[i]->numRows(),C[i]->numCols()) );
    }


    ////////////////////////////////////////////////////////
    // Allocate necessary storage
    // C were allocated above
    // Allocate MX and B (if necessary)
    // Set B = I
    if (normalize_in == true) {
      if ( B == Teuchos::null ) {
        B = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(xc,xc) );
      }
      TEUCHOS_TEST_FOR_EXCEPTION( B->numRows() != xc || B->numCols() != xc, std::invalid_argument, 
                          "Anasazi::SVQBOrthoManager::findBasis(): Size of B not consistant with X" );
      // set B to I
      B->putScalar(ZERO);
      for (int i=0; i<xc; i++) {
        (*B)(i,i) = MONE;
      }
    }
    /******************************************
     *  If _hasOp == false, DO NOT MODIFY MX  *
     ****************************************** 
     * if Op==null, MX == X (via pointer)
     * Otherwise, either the user passed in MX or we will allocate and compute it
     *
     * workX will be a multivector of the same size as X, used to perform X*S when normalizing
     */
    Teuchos::RCP<MV> workX;
    if (normalize_in) {
      workX = MVT::Clone(X,xc);
    }
    if (this->_hasOp) {
      if (MX == Teuchos::null) {
        // we need to allocate space for MX
        MX = MVT::Clone(X,xc);
        OPT::Apply(*(this->_Op),X,*MX);
        this->_OpCounter += MVT::GetNumberVecs(X);
      }
    }
    else {
      MX = Teuchos::rcpFromRef(X);
    }
    std::vector<ScalarType> normX(xc), invnormX(xc);
    Teuchos::SerialDenseMatrix<int,ScalarType> XtMX(xc,xc), workU(1,1);
    Teuchos::LAPACK<int,ScalarType> lapack;
    /**********************************************************************
     * allocate storage for eigenvectors,eigenvalues of X^T Op X, and for
     * the work space needed to compute this xc-by-xc eigendecomposition
     **********************************************************************/
    std::vector<ScalarType> work;
    std::vector<MagnitudeType> lambda, lambdahi, rwork;
    if (normalize_in) {
      // get size of work from ILAENV
      int lwork = lapack.ILAENV(1,"hetrd","VU",xc,-1,-1,-1);
      // lwork >= (nb+1)*n for complex
      // lwork >= (nb+2)*n for real
      TEUCHOS_TEST_FOR_EXCEPTION( lwork < 0, OrthoError, 
                          "Anasazi::SVQBOrthoManager::findBasis(): Error code from ILAENV" );

      lwork = (lwork+2)*xc;
      work.resize(lwork);
      // size of rwork is max(1,3*xc-2)
      lwork = (3*xc-2 > 1) ? 3*xc - 2 : 1;
      rwork.resize(lwork);
      // size of lambda is xc
      lambda.resize(xc);
      lambdahi.resize(xc);
      workU.reshape(xc,xc);
    }

    // test sizes of X,MX
    int mxc = (this->_hasOp) ? MVT::GetNumberVecs( *MX ) : xc;
    ptrdiff_t mxr = (this->_hasOp) ? MVT::GetGlobalLength( *MX )  : xr;
    TEUCHOS_TEST_FOR_EXCEPTION( xc != mxc || xr != mxr, std::invalid_argument, 
                        "Anasazi::SVQBOrthoManager::findBasis(): Size of X not consistant with MX" );

    // sentinel to continue the outer loop (perform another projection step)
    bool doGramSchmidt = true;          
    // variable for testing orthonorm/orthog 
    MagnitudeType tolerance = MONE/SCTM::squareroot(eps_);

    // outer loop
    while (doGramSchmidt) {

      ////////////////////////////////////////////////////////////////////////////////////
      // perform projection
      if (qsize > 0) {

        numGS++;

        // Compute the norms of the vectors
        {
          std::vector<MagnitudeType> normX_mag(xc);
          MatOrthoManager<ScalarType,MV,OP>::normMat(X,normX_mag,MX);
          for (int i=0; i<xc; ++i) {
            normX[i] = normX_mag[i];
            invnormX[i] = (normX_mag[i] == ZERO) ? ZERO : MONE/normX_mag[i]; 
          }
        }
        // normalize the vectors
        MVT::MvScale(X,invnormX);
        if (this->_hasOp) {
          MVT::MvScale(*MX,invnormX);
        }
        // check that vectors are normalized now
        if (debug_) {
          std::vector<MagnitudeType> nrm2(xc);
          std::cout << dbgstr << "max post-scale norm: (with/without MX) : ";
          MagnitudeType maxpsnw = ZERO, maxpsnwo = ZERO;
          MatOrthoManager<ScalarType,MV,OP>::normMat(X,nrm2,MX);
          for (int i=0; i<xc; i++) {
            maxpsnw = (nrm2[i] > maxpsnw ? nrm2[i] : maxpsnw);
          }
          this->norm(X,nrm2);
          for (int i=0; i<xc; i++) {
            maxpsnwo = (nrm2[i] > maxpsnwo ? nrm2[i] : maxpsnwo);
          }
          std::cout << "(" << maxpsnw << "," << maxpsnwo << ")" << std::endl;
        }
        // project the vectors onto the Qi
        for (int i=0; i<nq; i++) {
          MatOrthoManager<ScalarType,MV,OP>::innerProdMat(*Q[i],X,*newC[i],Teuchos::null,MX);
        }
        // remove the components in Qi from X
        for (int i=0; i<nq; i++) {
          MVT::MvTimesMatAddMv(-ONE,*Q[i],*newC[i],ONE,X);
        }
        // un-scale the vectors 
        MVT::MvScale(X,normX);
        // Recompute the vectors in MX
        if (this->_hasOp) {
          OPT::Apply(*(this->_Op),X,*MX);
          this->_OpCounter += MVT::GetNumberVecs(X);
        }

        //          
        // Compute largest column norm of 
        //            (  C[0]   )  
        //        C = (  ....   )
        //            ( C[nq-1] )
        MagnitudeType maxNorm = ZERO;
        for  (int j=0; j<xc; j++) {
          MagnitudeType sum = ZERO;
          for (int k=0; k<nq; k++) {
            for (int i=0; i<qcs[k]; i++) {
              sum += SCT::magnitude((*newC[k])(i,j))*SCT::magnitude((*newC[k])(i,j));
            }
          }
          maxNorm = (sum > maxNorm) ? sum : maxNorm;
        }
              
        // do we perform another GS?
        if (maxNorm < 0.36) {
          doGramSchmidt = false;
        }

        // unscale newC to reflect the scaling of X
        for (int k=0; k<nq; k++) {
          for (int j=0; j<xc; j++) {
            for (int i=0; i<qcs[k]; i++) {
              (*newC[k])(i,j) *= normX[j];
            }
          }
        }
        // accumulate into C
        if (normalize_in) {
          // we are normalizing
          int info;
          for (int i=0; i<nq; i++) {
            info = C[i]->multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,ONE,*newC[i],*B,ONE);
            TEUCHOS_TEST_FOR_EXCEPTION(info != 0, std::logic_error, "Anasazi::SVQBOrthoManager::findBasis(): Input error to SerialDenseMatrix::multiply.");
          }
        }
        else {
          // not normalizing
          for (int i=0; i<nq; i++) {
            (*C[i]) += *newC[i];
          }
        }
      }
      else { // qsize == 0... don't perform projection
        // don't do any more outer loops; all we need is to call the normalize code below
        doGramSchmidt = false;
      }


      ////////////////////////////////////////////////////////////////////////////////////
      // perform normalization
      if (normalize_in) {

        MagnitudeType condT = tolerance;
        
        while (condT >= tolerance) {

          numSVQB++;

          // compute X^T Op X
          MatOrthoManager<ScalarType,MV,OP>::innerProdMat(X,X,XtMX,MX,MX);

          // compute scaling matrix for XtMX: D^{.5} and D^{-.5} (D-half  and  D-half-inv)
          std::vector<MagnitudeType> Dh(xc), Dhi(xc);
          for (int i=0; i<xc; i++) {
            Dh[i]  = SCT::magnitude(SCT::squareroot(XtMX(i,i)));
            Dhi[i] = (Dh[i] == ZERO ? ZERO : MONE/Dh[i]);
          }
          // scale XtMX :   S = D^{-.5} * XtMX * D^{-.5}
          for (int i=0; i<xc; i++) {
            for (int j=0; j<xc; j++) {
              XtMX(i,j) *= Dhi[i]*Dhi[j];
            }
          }

          // compute the eigenvalue decomposition of S=U*Lambda*U^T (using upper part)
          int info;
          lapack.HEEV('V', 'U', xc, XtMX.values(), XtMX.stride(), &lambda[0], &work[0], work.size(), &rwork[0], &info);
          std::stringstream os;
          os << "Anasazi::SVQBOrthoManager::findBasis(): Error code " << info << " from HEEV";
          TEUCHOS_TEST_FOR_EXCEPTION( info != 0, OrthoError, 
                              os.str() );
          if (debug_) {
            std::cout << dbgstr << "eigenvalues of XtMX: (";
            for (int i=0; i<xc-1; i++) {
              std::cout << lambda[i] << ",";
            }
            std::cout << lambda[xc-1] << ")" << std::endl;
          }

          // remember, HEEV orders the eigenvalues from smallest to largest
          // examine condition number of Lambda, compute Lambda^{-.5}
          MagnitudeType maxLambda = lambda[xc-1],
                        minLambda = lambda[0];
          int iZeroMax = -1;
          for (int i=0; i<xc; i++) {
            if (lambda[i] <= 10*eps_*maxLambda) {      // finish: this was eps_*eps_*maxLambda
              iZeroMax = i;
              lambda[i]  = ZERO;
              lambdahi[i] = ZERO;
            }
            /*
            else if (lambda[i] < eps_*maxLambda) {
              lambda[i]  = SCTM::squareroot(eps_*maxLambda);
              lambdahi[i] = MONE/lambda[i];
            }
            */
            else {
              lambda[i] = SCTM::squareroot(lambda[i]);
              lambdahi[i] = MONE/lambda[i];
            }
          }

          // compute X * D^{-.5} * U * Lambda^{-.5} and new Op*X
          //
          // copy X into workX
          std::vector<int> ind(xc);
          for (int i=0; i<xc; i++) {ind[i] = i;}
          MVT::SetBlock(X,ind,*workX);
          //
          // compute D^{-.5}*U*Lambda^{-.5} into workU
          workU.assign(XtMX);
          for (int j=0; j<xc; j++) {
            for (int i=0; i<xc; i++) {
              workU(i,j) *= Dhi[i]*lambdahi[j];
            }
          }
          // compute workX * workU into X
          MVT::MvTimesMatAddMv(ONE,*workX,workU,ZERO,X);
          //
          // note, it seems important to apply Op exactly for large condition numbers.
          // for small condition numbers, we can update MX "implicitly"
          // this trick reduces the number of applications of Op
          if (this->_hasOp) {
            if (maxLambda >= tolerance * minLambda) {
              // explicit update of MX
              OPT::Apply(*(this->_Op),X,*MX);
              this->_OpCounter += MVT::GetNumberVecs(X);
            }
            else {
              // implicit update of MX
              // copy MX into workX
              MVT::SetBlock(*MX,ind,*workX);
              //
              // compute workX * workU into MX
              MVT::MvTimesMatAddMv(ONE,*workX,workU,ZERO,*MX);
            }
          }

          // accumulate new B into previous B
          // B = Lh * U^H * Dh * B
          for (int j=0; j<xc; j++) {
            for (int i=0; i<xc; i++) {
              workU(i,j) = Dh[i] * (*B)(i,j);
            }
          }
          info = B->multiply(Teuchos::CONJ_TRANS,Teuchos::NO_TRANS,ONE,XtMX,workU,ZERO);
          TEUCHOS_TEST_FOR_EXCEPTION(info != 0, std::logic_error, "Anasazi::SVQBOrthoManager::findBasis(): Input error to SerialDenseMatrix::multiply.");
          for (int j=0; j<xc ;j++) {
            for (int i=0; i<xc; i++) {
              (*B)(i,j) *= lambda[i];
            }
          }

          // check iZeroMax (rank indicator)
          if (iZeroMax >= 0) {
            if (debug_) {
              std::cout << dbgstr << "augmenting multivec with " << iZeroMax+1 << " random directions" << std::endl;
            }

            numRand++;
            // put random info in the first iZeroMax+1 vectors of X,MX
            std::vector<int> ind2(iZeroMax+1);
            for (int i=0; i<iZeroMax+1; i++) {
              ind2[i] = i;
            }
            Teuchos::RCP<MV> Xnull,MXnull;
            Xnull = MVT::CloneViewNonConst(X,ind2);
            MVT::MvRandom(*Xnull);
            if (this->_hasOp) {
              MXnull = MVT::CloneViewNonConst(*MX,ind2);
              OPT::Apply(*(this->_Op),*Xnull,*MXnull);
              this->_OpCounter += MVT::GetNumberVecs(*Xnull);
              MXnull = Teuchos::null;
            }
            Xnull = Teuchos::null;
            condT = tolerance;
            doGramSchmidt = true;
            break; // break from while(condT > tolerance)
          }

          condT = SCTM::magnitude(maxLambda / minLambda);
          if (debug_) {
            std::cout << dbgstr << "condT: " << condT << ", tolerance = " << tolerance << std::endl;
          }
      
          // if multiple passes of SVQB are necessary, then pass through outer GS loop again    
          if ((doGramSchmidt == false) && (condT > SCTM::squareroot(tolerance))) {
            doGramSchmidt = true;
          }

        } // end while (condT >= tolerance)
      }
      // end if(normalize_in)
       
    } // end while (doGramSchmidt)

    if (debug_) {
      std::cout << dbgstr << "(numGS,numSVQB,numRand)                : " 
           << "(" << numGS 
           << "," << numSVQB 
           << "," << numRand 
           << ")" << std::endl;
    }
    return xc;
  }


} // namespace Anasazi

#endif // ANASAZI_SVQB_ORTHOMANAGER_HPP