This file is indexed.

/usr/include/trilinos/AnasaziRTRBase.hpp is in libtrilinos-anasazi-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

/*! \file AnasaziRTRBase.hpp
  \brief Base class for Implicit Riemannian Trust-Region solvers
*/

#ifndef ANASAZI_RTRBASE_HPP
#define ANASAZI_RTRBASE_HPP

#include "AnasaziTypes.hpp"

#include "AnasaziEigensolver.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "Teuchos_ScalarTraits.hpp"

#include "AnasaziGenOrthoManager.hpp"
#include "AnasaziSolverUtils.hpp"

#include "Teuchos_LAPACK.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

/*!     \class Anasazi::RTRBase

        \brief This class is an abstract base class for Implicit Riemannian Trust-Region
        based eigensolvers. The class provides the interfaces shared by the %IRTR
        solvers (e.g., getState() and initialize()) as well as the shared
        implementations (e.g., inner products). 

        %IRTR eigensolvers are capable of solving symmetric/Hermitian
        %eigenvalue problems. These solvers may be used to compute
        either the leftmost (smallest real, "SR") or rightmost (largest real,
        "LR") eigenvalues.  For more information, see the publications at the
        <a href="https://people.scs.fsu.edu/~cbaker/RTRESGEV/">RTR eigensolvers
        page</a>.

        This class is abstract and objects cannot be instantiated. Instead,
        instantiate one of the concrete derived classes: IRTR and SIRTR, 
        the caching and non-caching implementations of this solver. The main difference between
        these solver is the memory allocated by the solvers in support of the %IRTR iteration.

        The reduction in memory usage is effected by eliminating the caching of
        operator applications. This also results in a reduction in vector
        arithmetic required to maintain these caches. The cost is an increase
        in the number of operator applications. For inexpensive operator
        applications, SIRTR should provide better performance over IRTR. As the
        operator applications becomes more expensive, the performance scale
        tips towards the IRTR solver. <b>Note</b>, the trajectory of both
        solvers is identical in exact arithmetic. However, the effects of
        round-off error in the cached results mean that some difference between
        the solvers may exist. This effect is seen when a large number of
        iterations are required to solve the trust-region subproblem in
        solveTRSubproblem(). <b>Also note</b>, the inclusion of auxiliary
        vectors increases the memory requirements of these solvers linearly
        with the number of auxiliary vectors. The required storage is listed in
        the following table:

        <center>
        <table>
        <tr><td align=center colspan=5>Number of vectors (bS == blockSize())</td></tr>
        <tr><td>Solver</td><td>Base requirement</td><td>Generalized/B != null</td><td>Preconditioned</td><td>Generalized and Preconditioned</td></tr>
        <tr><td>IRTR</td><td>10*bS</td><td>11*bS</td><td>12*bS</td><td>13*bS</td></tr>
        <tr><td>SIRTR</td><td>6*bS</td><td>7*bS</td><td>7*bS</td><td>8*bS</td></tr>
        </table>
        </center>

        \ingroup anasazi_solver_framework

        \author Chris Baker
*/

namespace Anasazi {

  //! @name RTRBase Structures
  //@{ 

  /** \brief Structure to contain pointers to RTR state variables.
   *
   * This struct is utilized by RTRBase::initialize() and RTRBase::getState().
   */
  template <class ScalarType, class MV>
  struct RTRState {
    //! The current eigenvectors.
    Teuchos::RCP<const MV> X; 
    //! The image of the current eigenvectors under A, or Teuchos::null is we implement a skinny solver.
    Teuchos::RCP<const MV> AX; 
    //! The image of the current eigenvectors under B, or Teuchos::null if B was not specified.
    Teuchos::RCP<const MV> BX;
    //! The current residual vectors.
    Teuchos::RCP<const MV> R;
    //! The current Ritz values.
    Teuchos::RCP<const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > T;
    /*! \brief The current rho value.
     *  This is only valid if the debugging level of verbosity is enabled.
     */ 
    typename Teuchos::ScalarTraits<ScalarType>::magnitudeType rho;
    RTRState() : X(Teuchos::null),AX(Teuchos::null),BX(Teuchos::null),
                 R(Teuchos::null),T(Teuchos::null),rho(0) {};
  };

  //@}

  //! @name RTR Exceptions
  //@{ 

  /** \brief RTRRitzFailure is thrown when the RTR solver is unable to
   *  continue a call to RTRBase::iterate() due to a failure of the algorithm.
   *
   *  This signals that the Rayleigh-Ritz analysis of <tt>X + Eta</tt>
   *  detected ill-conditioning of the projected mass matrix
   *  and the inability to generate a set of orthogonal eigenvectors for 
   *  the projected problem (if thrown from iterate()) or that the analysis of 
   *  the initial iterate failed in RTRBase::initialize().
   *
   *  After catching this exception, the user can recover the subspace via
   *  RTRBase::getState(). This information can be used to restart the solver.
   *
   */
  class RTRRitzFailure : public AnasaziError {public:
    RTRRitzFailure(const std::string& what_arg) : AnasaziError(what_arg)
    {}};

  /** \brief RTRInitFailure is thrown when the RTR solver is unable to
   * generate an initial iterate in the RTRBase::initialize() routine. 
   *
   * This exception is thrown from the RTRBase::initialize() method, which is
   * called by the user or from the RTRBase::iterate() method when isInitialized()
   * == \c false.
   *
   */
  class RTRInitFailure : public AnasaziError {public:
    RTRInitFailure(const std::string& what_arg) : AnasaziError(what_arg)
    {}};

  /** \brief RTROrthoFailure is thrown when an orthogonalization attempt 
   * fails.
   *
   * This is thrown in one of two scenarios. After preconditioning the residual,
   * the orthogonalization manager is asked to orthogonalize the preconditioned
   * residual (H) against the auxiliary vectors. If full orthogonalization
   * is enabled, H is also orthogonalized against X and P and normalized.
   *
   * The second scenario involves the generation of new X and P from the
   * basis [X H P]. When full orthogonalization is enabled, an attempt is
   * made to select coefficients for X and P so that they will be
   * mutually orthogonal and orthonormal.
   *
   * If either of these attempts fail, the solver throws an RTROrthoFailure
   * exception.
   */
  class RTROrthoFailure : public AnasaziError {public:
    RTROrthoFailure(const std::string& what_arg) : AnasaziError(what_arg)
    {}};


  //@}


  template <class ScalarType, class MV, class OP>
  class RTRBase : public Eigensolver<ScalarType,MV,OP> {
  public:

    //! @name Constructor/Destructor
    //@{ 

    /*! \brief %RTRBase constructor with eigenproblem, solver utilities, and parameter list of solver options.
     *
     * The RTRBase class is abstract and cannot be instantiated; this constructor is called by derived classes
     * IRTR and RTR.
     */
    RTRBase(const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem, 
            const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
            const Teuchos::RCP<OutputManager<ScalarType> > &printer,
            const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
            const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> > &ortho,
                  Teuchos::ParameterList &params,
            const std::string &solverLabel, bool skinnySolver
           );

    //! %RTRBase destructor
    virtual ~RTRBase() {};

    //@}

    //! @name Solver methods
    //@{

    /*! \brief This method performs %RTR iterations until the status test
     * indicates the need to stop or an error occurs (in which case, an
     * exception is thrown).
     *
     * iterate() will first determine whether the solver is initialized; if
     * not, it will call initialize() using default arguments.  After
     * initialization, the solver performs %RTR iterations until the status
     * test evaluates as ::Passed, at which point the method returns to the
     * caller.
     *
     * The %RTR iteration proceeds as follows:
     * -# the trust-region subproblem at \c X is solved for update \c Eta via a call to solveTRSubproblem()
     * -# the new iterate is the Ritz vectors with respect to <tt>X+Eta</tt>
     * -# the eigenproblem residuals are formed with respect to the new iterate
     *
     * The status test is queried at the beginning of the iteration.
     *
     * Possible exceptions thrown include std::logic_error, std::invalid_argument or
     * one of the RTR-specific exceptions.
     *
    */
    virtual void iterate() = 0;

    /*! \brief Initialize the solver to an iterate, optionally providing the
     * Ritz values and residual.
     *
     * The %RTR eigensolver contains a certain amount of state relating to
     * the current iterate.
     *
     * initialize() gives the user the opportunity to manually set these,
     * although this must be done with caution, abiding by the rules
     * given below. All notions of orthogonality and orthonormality are derived
     * from the inner product specified by the orthogonalization manager.
     *
     * \post 
     *   - isInitialized() == true (see post-conditions of isInitialize())
     *
     * The user has the option of specifying any component of the state using
     * initialize(). However, these arguments are assumed to match the
     * post-conditions specified under isInitialized(). Any component of the
     * state (i.e., AX) not given to initialize() will be generated.
     *
     * If the Ritz values relative to <tt>newstate.X</tt> are passed in <tt>newstate.T</tt>,
     * then <tt>newstate.X</tt> is assume to contain Ritz vectors, i.e., <tt>newstate.T</tt> 
     * must be B-orthonormal and it must partially diagonalize A.
     *
     */
    void initialize(RTRState<ScalarType,MV>& newstate);

    /*! \brief Initialize the solver with the initial vectors from the eigenproblem
     *  or random data.
     */
    void initialize();

    /*! \brief Indicates whether the solver has been initialized or not.
     *
     * \return bool indicating the state of the solver.
     * \post
     * If isInitialized() == \c true:
     *   - X is orthogonal to auxiliary vectors and has orthonormal columns
     *   - AX == A*X
     *   - BX == B*X if B != Teuchos::null\n
     *     Otherwise, BX == Teuchos::null
     *   - getRitzValues() returns the sorted Ritz values with respect to X
     *   - getResidualVecs() returns the residual vectors with respect to X
     */
    bool isInitialized() const;

    /*! \brief Get the current state of the eigensolver.
     * 
     * The data is only valid if isInitialized() == \c true. 
     *
     * \returns An RTRState object containing const pointers to the current
     * solver state.
     */
    RTRState<ScalarType,MV> getState() const;

    //@}

    //! @name Status methods
    //@{

    //! \brief Get the current iteration count.
    int getNumIters() const;

    //! \brief Reset the iteration count.
    void resetNumIters();

    /*! \brief Get the Ritz vectors from the previous iteration.
      
        \return A multivector with getBlockSize() vectors containing 
        the sorted Ritz vectors corresponding to the most significant Ritz values.
        The i-th vector of the return corresponds to the i-th Ritz vector; there is no need to use
        getRitzIndex().
     */
    Teuchos::RCP<const MV> getRitzVectors();

    /*! \brief Get the Ritz values from the previous iteration.
     *
     *  \return A vector of length getCurSubspaceDim() containing the Ritz values from the
     *  previous projected eigensolve.
     */
    std::vector<Value<ScalarType> > getRitzValues();

    /*! \brief Get the index used for extracting Ritz vectors from getRitzVectors().
     *
     * Because BlockDavidson is a Hermitian solver, all Ritz values are real and all Ritz vectors can be represented in a 
     * single column of a multivector. Therefore, getRitzIndex() is not needed when using the output from getRitzVectors().
     *
     * \return An \c int vector of size getCurSubspaceDim() composed of zeros.
     */
    std::vector<int> getRitzIndex();

    /*! \brief Get the current residual norms
     *
     *  \return A vector of length getCurSubspaceDim() containing the norms of the
     *  residuals, with respect to the orthogonalization manager norm() method.
     */
    std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> getResNorms();


    /*! \brief Get the current residual 2-norms
     *
     *  \return A vector of length getCurSubspaceDim() containing the 2-norms of the
     *  residuals. 
     */
    std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> getRes2Norms();


    /*! \brief Get the 2-norms of the Ritz residuals.
     *
     *  \return A vector of length getCurSubspaceDim() containing the 2-norms of the Ritz residuals.
     */
    std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> getRitzRes2Norms();


    /*! \brief Get the dimension of the search subspace used to generate the current eigenvectors and eigenvalues.
     *
     *  %RTR employs a sequential subspace iteration, maintaining a fixed-rank basis, as opposed to an expanding subspace
     *  mechanism employed by Krylov-subspace solvers like BlockKrylovSchur and BlockDavidson.
     *  
     *  \return An integer specifying the rank of the subspace generated by the eigensolver. If isInitialized() == \c false, 
     *  the return is 0. Otherwise, the return will be getBlockSize().
     */
    int getCurSubspaceDim() const;

    /*! \brief Get the maximum dimension allocated for the search subspace. For %RTR, this always returns getBlockSize().
     */
    int getMaxSubspaceDim() const;

    //@}

    //!  @name Accessor routines from Eigensolver
    //@{

    //! Set a new StatusTest for the solver.
    void setStatusTest(Teuchos::RCP<StatusTest<ScalarType,MV,OP> > test);

    //! Get the current StatusTest used by the solver.
    Teuchos::RCP<StatusTest<ScalarType,MV,OP> > getStatusTest() const;

    //! Get a constant reference to the eigenvalue problem.
    const Eigenproblem<ScalarType,MV,OP>& getProblem() const;


    /*! \brief Set the blocksize to be used by the iterative solver in solving
     * this eigenproblem.
     *  
     *  If the block size is reduced, then the new iterate (and residual and
     *  search direction) are chosen as the subset of the current iterate
     *  preferred by the sort manager.  Otherwise, the solver state is set to
     *  uninitialized.
     */
    void setBlockSize(int blockSize);


    //! Get the blocksize to be used by the iterative solver in solving this eigenproblem.
    int getBlockSize() const;


    /*! \brief Set the auxiliary vectors for the solver.
     *
     *  Because the current iterate X cannot be assumed orthogonal to the new
     *  auxiliary vectors, a call to setAuxVecs() with a non-empty argument
     *  will reset the solver to the uninitialized state.
     *
     *  In order to preserve the current state, the user will need to extract
     *  it from the solver using getState(), orthogonalize it against the new
     *  auxiliary vectors, and manually reinitialize the solver using
     *  initialize().
     *
     *  <b>NOTE:</b> The requirements of the %IRTR solvers is such that the 
     *  auxiliary vectors must be moved into contiguous storage with the 
     *  current iterate. As a result, the multivector data in \c auxvecs will be copied,
     *  and the multivectors in \c auxvecs will no longer be referenced. The (unchanged) 
     *  internal copies of the auxilliary vectors will be made available to the caller
     *  by the getAuxVecs() routine. This allows the caller to delete the caller's copies and
     *  instead use the copies owned by the solver, avoiding the duplication of data. This 
     *  is not necessary, however. The partitioning of the auxiliary vectors passed to setAuxVecs() will be preserved.
     */
    void setAuxVecs(const Teuchos::Array<Teuchos::RCP<const MV> > &auxvecs);

    //! Get the current auxiliary vectors.
    Teuchos::Array<Teuchos::RCP<const MV> > getAuxVecs() const;

    //@}

    //!  @name Output methods
    //@{

    //! This method requests that the solver print out its current status to screen.
    virtual void currentStatus(std::ostream &os);

    //@}

  protected:
    //
    // Convenience typedefs
    //
    typedef SolverUtils<ScalarType,MV,OP> Utils;
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename SCT::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<MagnitudeType> MAT;
    const MagnitudeType ONE;  
    const MagnitudeType ZERO; 
    const MagnitudeType NANVAL;
    typedef typename std::vector<MagnitudeType>::iterator vecMTiter;
    typedef typename std::vector<ScalarType>::iterator    vecSTiter;
    //
    // Internal structs
    //
    struct CheckList {
      bool checkX, checkAX, checkBX;
      bool checkEta, checkAEta, checkBEta;
      bool checkR, checkQ, checkBR;
      bool checkZ, checkPBX;
      CheckList() : checkX(false),checkAX(false),checkBX(false),
                    checkEta(false),checkAEta(false),checkBEta(false),
                    checkR(false),checkQ(false),checkBR(false),
                    checkZ(false), checkPBX(false) {};
    };
    //
    // Internal methods
    //
    std::string accuracyCheck(const CheckList &chk, const std::string &where) const;
    // solves the model minimization
    virtual void solveTRSubproblem() = 0;
    // Riemannian metric
    typename Teuchos::ScalarTraits<ScalarType>::magnitudeType ginner(const MV &xi) const;
    typename Teuchos::ScalarTraits<ScalarType>::magnitudeType ginner(const MV &xi, const MV &zeta) const;
    void ginnersep(const MV &xi, std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &d) const;
    void ginnersep(const MV &xi, const MV &zeta, std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &d) const;
    //
    // Classes input through constructor that define the eigenproblem to be solved.
    //
    const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> >     problem_;
    const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> >           sm_;
    const Teuchos::RCP<OutputManager<ScalarType> >          om_;
    Teuchos::RCP<StatusTest<ScalarType,MV,OP> >             tester_;
    const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> >  orthman_;
    //
    // Information obtained from the eigenproblem
    //
    Teuchos::RCP<const OP> AOp_;
    Teuchos::RCP<const OP> BOp_;
    Teuchos::RCP<const OP> Prec_;
    bool hasBOp_, hasPrec_, olsenPrec_;
    //
    // Internal timers
    //
    Teuchos::RCP<Teuchos::Time> timerAOp_, timerBOp_, timerPrec_,
                                timerSort_, 
                                timerLocalProj_, timerDS_,
                                timerLocalUpdate_, timerCompRes_,
                                timerOrtho_, timerInit_;
    //
    // Counters
    //
    // Number of operator applications
    int counterAOp_, counterBOp_, counterPrec_;

    //
    // Algorithmic parameters.
    //
    // blockSize_ is the solver block size
    int blockSize_;
    //
    // Current solver state
    //
    // initialized_ specifies that the basis vectors have been initialized and the iterate() routine
    // is capable of running; _initialize is controlled  by the initialize() member method
    // For the implications of the state of initialized_, please see documentation for initialize()
    bool initialized_;
    //
    // nevLocal_ reflects how much of the current basis is valid (0 <= nevLocal_ <= blockSize_)
    // this tells us how many of the values in theta_ are valid Ritz values
    int nevLocal_;
    // 
    // are we implementing a skinny solver? (SkinnyIRTR)
    bool isSkinny_;
    // 
    // are we computing leftmost or rightmost eigenvalue?
    bool leftMost_;
    //
    // State Multivecs
    //
    // if we are implementing a skinny solver (SkinnyIRTR), 
    // then some of these will never be allocated
    // 
    // In order to handle auxiliary vectors, we need to handle the projector
    //   P_{[BQ BX],[BQ BX]}
    // Using an orthomanager with B-inner product, this requires calling with multivectors
    // [BQ,BX] and [Q,X].
    // These multivectors must be combined because <[BQ,BX],[Q,X]>_B != I
    // Hence, we will create two multivectors V and BV, which store
    //   V = [Q,X]
    //  BV = [BQ,BX]
    // 
    //  In the context of preconditioning, we may need to apply the projector
    //   P_{prec*[BQ,BX],[BQ,BX]}
    //  Because [BQ,BX] do not change during the supproblem solver, we will apply 
    //  the preconditioner to [BQ,BX] only once. This result is stored in PBV.
    // 
    // X,BX are views into V,BV
    // We don't need views for Q,BQ
    // Inside the subproblem solver, X,BX are constant, so we can allow these
    // views to exist alongside the full view of V,BV without violating
    // view semantics.
    // 
    // Skinny solver allocates 6/7/8 multivectors:
    //    V_, BV_ (if hasB)
    //    PBV_ (if hasPrec and olsenPrec)
    //    R_, Z_  (regardless of hasPrec)
    //    eta_, delta_, Hdelta_
    //
    // Hefty solver allocates 10/11/12/13 multivectors:
    //    V_, AX_, BV_ (if hasB)
    //    PBV_ (if hasPrec and olsenPrec)
    //    R_, Z_ (if hasPrec)
    //    eta_, Aeta_, Beta_
    //    delta_, Adelta_, Bdelta_, Hdelta_
    //
    Teuchos::RCP<MV> V_, BV_, PBV_,                     // V = [Q,X]; B*V; Prec*B*V
                     AX_, R_,                           // A*X_; residual, gradient, and residual of model minimization
                     eta_, Aeta_, Beta_,                // update vector from model minimization
                     delta_, Adelta_, Bdelta_, Hdelta_, // search direction in model minimization
                     Z_;                                // preconditioned residual
    Teuchos::RCP<const MV> X_, BX_;
    // 
    // auxiliary vectors
    Teuchos::Array<Teuchos::RCP<const MV> > auxVecs_;
    int numAuxVecs_;
    //
    // Number of iterations that have been performed.
    int iter_;
    // 
    // Current eigenvalues, residual norms
    std::vector<MagnitudeType> theta_, Rnorms_, R2norms_, ritz2norms_;
    // 
    // are the residual norms current with the residual?
    bool Rnorms_current_, R2norms_current_;
    // 
    // parameters solver and inner solver
    MagnitudeType conv_kappa_, conv_theta_;
    MagnitudeType rho_;
    // 
    // current objective function value
    MagnitudeType fx_;
  };




  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor
  template <class ScalarType, class MV, class OP>
  RTRBase<ScalarType,MV,OP>::RTRBase(
        const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> >    &problem, 
        const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> > &sorter,
        const Teuchos::RCP<OutputManager<ScalarType> >         &printer,
        const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >      &tester,
        const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> > &ortho,
        Teuchos::ParameterList                                 &params,
        const std::string &solverLabel, bool skinnySolver
        ) :
    ONE(Teuchos::ScalarTraits<MagnitudeType>::one()),
    ZERO(Teuchos::ScalarTraits<MagnitudeType>::zero()),
    NANVAL(Teuchos::ScalarTraits<MagnitudeType>::nan()),
    // problem, tools
    problem_(problem), 
    sm_(sorter),
    om_(printer),
    tester_(tester),
    orthman_(ortho),
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
    timerAOp_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Operation A*x")),
    timerBOp_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Operation B*x")),
    timerPrec_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Operation Prec*x")),
    timerSort_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Sorting eigenvalues")),
    timerLocalProj_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Local projection")),
    timerDS_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Direct solve")),
    timerLocalUpdate_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Local update")),
    timerCompRes_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Computing residuals")),
    timerOrtho_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Orthogonalization")),
    timerInit_(Teuchos::TimeMonitor::getNewTimer("Anasazi: "+solverLabel+"::Initialization")),
#endif
    counterAOp_(0),
    counterBOp_(0),
    counterPrec_(0),
    // internal data
    blockSize_(0),
    initialized_(false),
    nevLocal_(0),
    isSkinny_(skinnySolver),
    leftMost_(true),
    auxVecs_( Teuchos::Array<Teuchos::RCP<const MV> >(0) ), 
    numAuxVecs_(0),
    iter_(0),
    Rnorms_current_(false),
    R2norms_current_(false),
    conv_kappa_(.1), 
    conv_theta_(1),
    rho_( MAT::nan() ),
    fx_( MAT::nan() )
  {
    TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null,std::invalid_argument,
        "Anasazi::RTRBase::constructor: user passed null problem pointer.");
    TEUCHOS_TEST_FOR_EXCEPTION(sm_ == Teuchos::null,std::invalid_argument,
        "Anasazi::RTRBase::constructor: user passed null sort manager pointer.");
    TEUCHOS_TEST_FOR_EXCEPTION(om_ == Teuchos::null,std::invalid_argument,
        "Anasazi::RTRBase::constructor: user passed null output manager pointer.");
    TEUCHOS_TEST_FOR_EXCEPTION(tester_ == Teuchos::null,std::invalid_argument,
        "Anasazi::RTRBase::constructor: user passed null status test pointer.");
    TEUCHOS_TEST_FOR_EXCEPTION(orthman_ == Teuchos::null,std::invalid_argument,
        "Anasazi::RTRBase::constructor: user passed null orthogonalization manager pointer.");
    TEUCHOS_TEST_FOR_EXCEPTION(problem_->isProblemSet() == false, std::invalid_argument,
        "Anasazi::RTRBase::constructor: problem is not set.");
    TEUCHOS_TEST_FOR_EXCEPTION(problem_->isHermitian() == false, std::invalid_argument,
        "Anasazi::RTRBase::constructor: problem is not Hermitian.");

    // get the problem operators
    AOp_   = problem_->getOperator();
    TEUCHOS_TEST_FOR_EXCEPTION(AOp_ == Teuchos::null, std::invalid_argument,
                       "Anasazi::RTRBase::constructor: problem provides no A matrix.");
    BOp_  = problem_->getM();
    Prec_ = problem_->getPrec();
    hasBOp_ = (BOp_ != Teuchos::null);
    hasPrec_ = (Prec_ != Teuchos::null);
    olsenPrec_ = params.get<bool>("Olsen Prec", true);

    TEUCHOS_TEST_FOR_EXCEPTION(orthman_->getOp() != BOp_,std::invalid_argument,
        "Anasazi::RTRBase::constructor: orthogonalization manager must use mass matrix for inner product.");

    // set the block size and allocate data
    int bs = params.get("Block Size", problem_->getNEV());
    setBlockSize(bs);

    // leftmost or rightmost?
    leftMost_ = params.get("Leftmost",leftMost_);

    conv_kappa_ = params.get("Kappa Convergence",conv_kappa_);
    TEUCHOS_TEST_FOR_EXCEPTION(conv_kappa_ <= 0 || conv_kappa_ >= 1,std::invalid_argument,
                       "Anasazi::RTRBase::constructor: kappa must be in (0,1).");
    conv_theta_ = params.get("Theta Convergence",conv_theta_);
    TEUCHOS_TEST_FOR_EXCEPTION(conv_theta_ <= 0,std::invalid_argument,
                       "Anasazi::RTRBase::constructor: theta must be strictly postitive.");
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Set the block size and make necessary adjustments.
  template <class ScalarType, class MV, class OP>
  void RTRBase<ScalarType,MV,OP>::setBlockSize (int blockSize) 
  {
    // time spent here counts towards timerInit_
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
    Teuchos::TimeMonitor lcltimer( *timerInit_ );
#endif

    // This routine only allocates space; it doesn't not perform any computation
    // if solver is initialized and size is to be decreased, take the first blockSize vectors of all to preserve state
    // otherwise, shrink/grow/allocate space and set solver to unitialized

    Teuchos::RCP<const MV> tmp;
    // grab some Multivector to Clone
    // in practice, getInitVec() should always provide this, but it is possible to use a 
    // Eigenproblem with nothing in getInitVec() by manually initializing with initialize(); 
    // in case of that strange scenario, we will try to Clone from R_
    // we like R_ for this, because it has minimal size (blockSize_), as opposed to V_ (blockSize_+numAuxVecs_)
    if (blockSize_ > 0) {
      tmp = R_;
    }
    else {
      tmp = problem_->getInitVec();
      TEUCHOS_TEST_FOR_EXCEPTION(tmp == Teuchos::null,std::logic_error,
          "Anasazi::RTRBase::setBlockSize(): Eigenproblem did not specify initial vectors to clone from");
    }

    TEUCHOS_TEST_FOR_EXCEPTION(blockSize <= 0 || blockSize > MVT::GetGlobalLength(*tmp), std::invalid_argument, 
        "Anasazi::RTRBase::setBlockSize was passed a non-positive block size");

    // last chance to quit before causing side-effects
    if (blockSize == blockSize_) {
      // do nothing
      return;
    }

    // clear views
    X_  = Teuchos::null;
    BX_ = Teuchos::null;

    // regardless of whether we preserve any data, any content in V, BV and PBV corresponding to the
    // auxiliary vectors must be retained
    // go ahead and do these first
    // 
    // two cases here: 
    // * we are growing (possibly, from empty) 
    //   any aux data must be copied over, nothing from X need copying
    // * we are shrinking
    //   any aux data must be copied over, go ahead and copy X material (initialized or not)
    //
    if (blockSize > blockSize_)
    {
      // GROWING 
      // get a pointer for Q-related material, and an index for extracting/setting it
      Teuchos::RCP<const MV> Q;
      std::vector<int> indQ(numAuxVecs_);
      for (int i=0; i<numAuxVecs_; i++) indQ[i] = i;
      // if numAuxVecs_ > 0, then necessarily blockSize_ > 0 (we have already been allocated once)
      TEUCHOS_TEST_FOR_EXCEPTION(numAuxVecs_ > 0 && blockSize_ == 0, std::logic_error,
          "Anasazi::RTRBase::setSize(): logic error. Please contact Anasazi team.");
      // V
      if (numAuxVecs_ > 0) Q = MVT::CloneView(*V_,indQ);
      V_ = MVT::Clone(*tmp,numAuxVecs_ + blockSize);
      if (numAuxVecs_ > 0) MVT::SetBlock(*Q,indQ,*V_);
      // BV
      if (hasBOp_) {
        if (numAuxVecs_ > 0) Q = MVT::CloneView(*BV_,indQ);
        BV_ = MVT::Clone(*tmp,numAuxVecs_ + blockSize);
        if (numAuxVecs_ > 0) MVT::SetBlock(*Q,indQ,*BV_);
      }
      else {
        BV_ = V_;
      }
      // PBV
      if (hasPrec_ && olsenPrec_) {
        if (numAuxVecs_ > 0) Q = MVT::CloneView(*PBV_,indQ);
        PBV_ = MVT::Clone(*tmp,numAuxVecs_ + blockSize);
        if (numAuxVecs_ > 0) MVT::SetBlock(*Q,indQ,*PBV_);
      }
    }
    else 
    {
      // SHRINKING
      std::vector<int> indV(numAuxVecs_+blockSize);
      for (int i=0; i<numAuxVecs_+blockSize; i++) indV[i] = i;
      // V
      V_ = MVT::CloneCopy(*V_,indV);
      // BV
      if (hasBOp_) {
        BV_ = MVT::CloneCopy(*BV_,indV);
      }
      else {
        BV_ = V_;
      }
      // PBV
      if (hasPrec_ && olsenPrec_) {
        PBV_ = MVT::CloneCopy(*PBV_,indV);
      }
    }

    if (blockSize < blockSize_) {
      // shrink vectors
      blockSize_ = blockSize;

      theta_.resize(blockSize_);
      ritz2norms_.resize(blockSize_);
      Rnorms_.resize(blockSize_);
      R2norms_.resize(blockSize_);

      if (initialized_) {
        // shrink multivectors with copy
        std::vector<int> ind(blockSize_);
        for (int i=0; i<blockSize_; i++) ind[i] = i;

        // Z can be deleted, no important info there
        Z_ = Teuchos::null;
        
        // we will not use tmp for cloning, clear it and free some space
        tmp = Teuchos::null;

        R_      = MVT::CloneCopy(*R_     ,ind);
        eta_    = MVT::CloneCopy(*eta_   ,ind);
        delta_  = MVT::CloneCopy(*delta_ ,ind);
        Hdelta_ = MVT::CloneCopy(*Hdelta_,ind);
        if (!isSkinny_) {
          AX_     = MVT::CloneCopy(*AX_    ,ind);
          Aeta_   = MVT::CloneCopy(*Aeta_  ,ind);
          Adelta_ = MVT::CloneCopy(*Adelta_,ind);
        }
        else {
          AX_     = Teuchos::null;
          Aeta_   = Teuchos::null;
          Adelta_ = Teuchos::null;
        }

        if (hasBOp_) {
          if (!isSkinny_) {
            Beta_   = MVT::CloneCopy(*Beta_,ind);
            Bdelta_ = MVT::CloneCopy(*Bdelta_,ind);
          }
          else {
            Beta_   = Teuchos::null;
            Bdelta_ = Teuchos::null;
          }
        }
        else {
          Beta_   = eta_;
          Bdelta_ = delta_;
        }
        
        // we need Z if we have a preconditioner
        // we also use Z for temp storage in the skinny solvers
        if (hasPrec_ || isSkinny_) {
          Z_ = MVT::Clone(*V_,blockSize_);
        }
        else {
          Z_ = R_;
        }

      }
      else {
        // release previous multivectors
        // shrink multivectors without copying
        AX_     = Teuchos::null;
        R_      = Teuchos::null;
        eta_    = Teuchos::null;
        Aeta_   = Teuchos::null;
        delta_  = Teuchos::null;
        Adelta_ = Teuchos::null;
        Hdelta_ = Teuchos::null;
        Beta_   = Teuchos::null;
        Bdelta_ = Teuchos::null;
        Z_      = Teuchos::null;

        R_      = MVT::Clone(*tmp,blockSize_);
        eta_    = MVT::Clone(*tmp,blockSize_);
        delta_  = MVT::Clone(*tmp,blockSize_);
        Hdelta_ = MVT::Clone(*tmp,blockSize_);
        if (!isSkinny_) {
          AX_     = MVT::Clone(*tmp,blockSize_);
          Aeta_   = MVT::Clone(*tmp,blockSize_);
          Adelta_ = MVT::Clone(*tmp,blockSize_);
        }

        if (hasBOp_) {
          if (!isSkinny_) {
            Beta_   = MVT::Clone(*tmp,blockSize_);
            Bdelta_ = MVT::Clone(*tmp,blockSize_);
          }
        }
        else {
          Beta_   = eta_;
          Bdelta_ = delta_;
        }

        // we need Z if we have a preconditioner
        // we also use Z for temp storage in the skinny solvers
        if (hasPrec_ || isSkinny_) {
          Z_ = MVT::Clone(*tmp,blockSize_);
        }
        else {
          Z_ = R_;
        }
      } // if initialized_
    } // if blockSize is shrinking
    else {  // if blockSize > blockSize_
      // this is also the scenario for our initial call to setBlockSize(), in the constructor
      initialized_ = false;

      // grow/allocate vectors
      theta_.resize(blockSize,NANVAL);
      ritz2norms_.resize(blockSize,NANVAL);
      Rnorms_.resize(blockSize,NANVAL);
      R2norms_.resize(blockSize,NANVAL);

      // deallocate old multivectors
      AX_     = Teuchos::null;
      R_      = Teuchos::null;
      eta_    = Teuchos::null;
      Aeta_   = Teuchos::null;
      delta_  = Teuchos::null;
      Adelta_ = Teuchos::null;
      Hdelta_ = Teuchos::null;
      Beta_   = Teuchos::null;
      Bdelta_ = Teuchos::null;
      Z_      = Teuchos::null;

      // clone multivectors off of tmp
      R_      = MVT::Clone(*tmp,blockSize);
      eta_    = MVT::Clone(*tmp,blockSize);
      delta_  = MVT::Clone(*tmp,blockSize);
      Hdelta_ = MVT::Clone(*tmp,blockSize);
      if (!isSkinny_) {
        AX_     = MVT::Clone(*tmp,blockSize);
        Aeta_   = MVT::Clone(*tmp,blockSize);
        Adelta_ = MVT::Clone(*tmp,blockSize);
      }

      if (hasBOp_) {
        if (!isSkinny_) {
          Beta_   = MVT::Clone(*tmp,blockSize);
          Bdelta_ = MVT::Clone(*tmp,blockSize);
        }
      }
      else {
        Beta_   = eta_;
        Bdelta_ = delta_;
      }
      if (hasPrec_ || isSkinny_) {
        Z_ = MVT::Clone(*tmp,blockSize);
      }
      else {
        Z_ = R_;
      }
      blockSize_ = blockSize;
    }

    // get view of X from V, BX from BV
    // these are located after the first numAuxVecs columns
    {
      std::vector<int> indX(blockSize_);
      for (int i=0; i<blockSize_; i++) indX[i] = numAuxVecs_+i;
      X_ = MVT::CloneView(*V_,indX);
      if (hasBOp_) {
        BX_ = MVT::CloneView(*BV_,indX);
      }
      else {
        BX_ = X_;
      }
    }
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Set a new StatusTest for the solver.
  template <class ScalarType, class MV, class OP>
  void RTRBase<ScalarType,MV,OP>::setStatusTest(Teuchos::RCP<StatusTest<ScalarType,MV,OP> > test) {
    TEUCHOS_TEST_FOR_EXCEPTION(test == Teuchos::null,std::invalid_argument,
        "Anasazi::RTRBase::setStatusTest() was passed a null StatusTest.");
    tester_ = test;
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Get the current StatusTest used by the solver.
  template <class ScalarType, class MV, class OP>
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > RTRBase<ScalarType,MV,OP>::getStatusTest() const {
    return tester_;
  }
  

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Set the auxiliary vectors
  template <class ScalarType, class MV, class OP>
  void RTRBase<ScalarType,MV,OP>::setAuxVecs(const Teuchos::Array<Teuchos::RCP<const MV> > &auxvecs) {
    typedef typename Teuchos::Array<Teuchos::RCP<const MV> >::const_iterator tarcpmv;

    // set new auxiliary vectors
    auxVecs_.resize(0);
    auxVecs_.reserve(auxvecs.size());

    numAuxVecs_ = 0;
    for (tarcpmv v=auxvecs.begin(); v != auxvecs.end(); ++v) {
      numAuxVecs_ += MVT::GetNumberVecs(**v);
    }

    // If the solver has been initialized, X is not necessarily orthogonal to new auxiliary vectors
    if (numAuxVecs_ > 0 && initialized_) {
      initialized_ = false;
    }

    // clear X,BX views
    X_   = Teuchos::null;
    BX_  = Teuchos::null;
    // deallocate, we'll clone off R_ below
    V_   = Teuchos::null;
    BV_  = Teuchos::null;
    PBV_ = Teuchos::null;

    // put auxvecs into V, update BV and PBV if necessary
    if (numAuxVecs_ > 0) {
      V_ = MVT::Clone(*R_,numAuxVecs_ + blockSize_);
      int numsofar = 0;
      for (tarcpmv v=auxvecs.begin(); v != auxvecs.end(); ++v) {
        std::vector<int> ind(MVT::GetNumberVecs(**v));
        for (size_t j=0; j<ind.size(); j++) ind[j] = numsofar++;
        MVT::SetBlock(**v,ind,*V_);
        auxVecs_.push_back(MVT::CloneView(*Teuchos::rcp_static_cast<const MV>(V_),ind));
      }
      TEUCHOS_TEST_FOR_EXCEPTION(numsofar != numAuxVecs_, std::logic_error,
          "Anasazi::RTRBase::setAuxVecs(): Logic error. Please contact Anasazi team.");
      // compute B*V, Prec*B*V
      if (hasBOp_) {
        BV_ = MVT::Clone(*R_,numAuxVecs_ + blockSize_);
        OPT::Apply(*BOp_,*V_,*BV_);
      }
      else {
        BV_ = V_;
      }
      if (hasPrec_ && olsenPrec_) {
        PBV_ = MVT::Clone(*R_,numAuxVecs_ + blockSize_);
        OPT::Apply(*Prec_,*BV_,*V_);
      }
    }
    // 

    if (om_->isVerbosity( Debug ) ) {
      // Check almost everything here
      CheckList chk;
      chk.checkQ = true;
      om_->print( Debug, accuracyCheck(chk, "in setAuxVecs()") );
    }
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  /* Initialize the state of the solver
   * 
   * POST-CONDITIONS:
   *
   * initialized_ == true
   * X is orthonormal, orthogonal to auxVecs_
   * AX = A*X if not skinnny
   * BX = B*X if hasBOp_
   * theta_ contains Ritz values of X
   * R = AX - BX*diag(theta_)
   */
  template <class ScalarType, class MV, class OP>
  void RTRBase<ScalarType,MV,OP>::initialize(RTRState<ScalarType,MV>& newstate)
  {
    // NOTE: memory has been allocated by setBlockSize(). Use SetBlock below; do not Clone
    // NOTE: Overall time spent in this routine is counted to timerInit_; portions will also be counted towards other primitives

    // clear const views to X,BX in V,BV
    // work with temporary non-const views
    X_  = Teuchos::null;
    BX_ = Teuchos::null;
    Teuchos::RCP<MV> X, BX;
    {
      std::vector<int> ind(blockSize_);
      for (int i=0; i<blockSize_; ++i) ind[i] = numAuxVecs_+i;
      X = MVT::CloneViewNonConst(*V_,ind);
      if (hasBOp_) {
        BX = MVT::CloneViewNonConst(*BV_,ind);
      }
      else {
        BX = X;
      }
    }

#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
    Teuchos::TimeMonitor inittimer( *timerInit_ );
#endif

    std::vector<int> bsind(blockSize_);
    for (int i=0; i<blockSize_; i++) bsind[i] = i;

    // in RTR, X (the subspace iterate) is primary
    // the order of dependence follows like so.
    // --init->                 X
    //    --op apply->          AX,BX
    //       --ritz analysis->  theta
    // 
    // if the user specifies all data for a level, we will accept it.
    // otherwise, we will generate the whole level, and all subsequent levels.
    //
    // the data members are ordered based on dependence, and the levels are
    // partitioned according to the amount of work required to produce the
    // items in a level.
    //
    // inconsitent multivectors widths and lengths will not be tolerated, and
    // will be treated with exceptions.

    // set up X, AX, BX: get them from "state" if user specified them
    if (newstate.X != Teuchos::null) {
      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.X) != MVT::GetGlobalLength(*X),
                          std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): vector length of newstate.X not correct." );
      // newstate.X must have blockSize_ vectors; any more will be ignored
      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.X) < blockSize_,
                          std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.X must have at least block size vectors.");

      // put data in X
      MVT::SetBlock(*newstate.X,bsind,*X);

      // put data in AX
      // if we are implementing a skinny solver, then we don't have memory allocated for AX
      // in this case, point AX at Z (skinny solvers allocate Z) and use it for temporary storage
      // we will clear the pointer later
      if (isSkinny_) {
        AX_ = Z_;
      }
      if (newstate.AX != Teuchos::null) {
        TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.AX) != MVT::GetGlobalLength(*X),
                            std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): vector length of newstate.AX not correct." );
        // newstate.AX must have blockSize_ vectors; any more will be ignored
        TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.AX) < blockSize_,
                            std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.AX must have at least block size vectors.");
        MVT::SetBlock(*newstate.AX,bsind,*AX_);
      }
      else {
        {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor lcltimer( *timerAOp_ );
#endif
          OPT::Apply(*AOp_,*X,*AX_);
          counterAOp_ += blockSize_;
        }
        // we generated AX; we will generate R as well
        newstate.R = Teuchos::null;
      }

      // put data in BX
      // skinny solvers always allocate BX if hasB, so this is unconditionally appropriate
      if (hasBOp_) {
        if (newstate.BX != Teuchos::null) {
          TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.BX) != MVT::GetGlobalLength(*X),
                              std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): vector length of newstate.BX not correct." );
          // newstate.BX must have blockSize_ vectors; any more will be ignored
          TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.BX) < blockSize_,
                              std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.BX must have at least block size vectors.");
          MVT::SetBlock(*newstate.BX,bsind,*BX);
        }
        else {
          {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
            Teuchos::TimeMonitor lcltimer( *timerBOp_ );
#endif
            OPT::Apply(*BOp_,*X,*BX);
            counterBOp_ += blockSize_;
          }
          // we generated BX; we will generate R as well
          newstate.R = Teuchos::null;
        }
      }
      else {
        // the assignment BX_==X_ would be redundant; take advantage of this opportunity to debug a little
        TEUCHOS_TEST_FOR_EXCEPTION(BX != X, std::logic_error, "Anasazi::RTRBase::initialize(): solver invariant not satisfied (BX==X).");
      }

    }
    else {
      // user did not specify X

      // clear state so we won't use any data from it below
      newstate.R  = Teuchos::null;
      newstate.T  = Teuchos::null;

      // generate something and projectAndNormalize
      Teuchos::RCP<const MV> ivec = problem_->getInitVec();
      TEUCHOS_TEST_FOR_EXCEPTION(ivec == Teuchos::null,std::logic_error,
                         "Anasazi::RTRBase::initialize(): Eigenproblem did not specify initial vectors to clone from.");

      int initSize = MVT::GetNumberVecs(*ivec);
      if (initSize > blockSize_) {
        // we need only the first blockSize_ vectors from ivec; get a view of them
        initSize = blockSize_;
        std::vector<int> ind(blockSize_);
        for (int i=0; i<blockSize_; i++) ind[i] = i;
        ivec = MVT::CloneView(*ivec,ind);
      }

      // assign ivec to first part of X
      if (initSize > 0) {
        std::vector<int> ind(initSize);
        for (int i=0; i<initSize; i++) ind[i] = i;
        MVT::SetBlock(*ivec,ind,*X);
      }
      // fill the rest of X with random
      if (blockSize_ > initSize) {
        std::vector<int> ind(blockSize_ - initSize);
        for (int i=0; i<blockSize_ - initSize; i++) ind[i] = initSize + i;
        Teuchos::RCP<MV> rX = MVT::CloneViewNonConst(*X,ind);
        MVT::MvRandom(*rX);
        rX = Teuchos::null;
      }

      // put data in BX
      if (hasBOp_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerBOp_ );
#endif
        OPT::Apply(*BOp_,*X,*BX);
        counterBOp_ += blockSize_;
      }
      else {
        // the assignment BX==X would be redundant; take advantage of this opportunity to debug a little
        TEUCHOS_TEST_FOR_EXCEPTION(BX != X, std::logic_error, "Anasazi::RTRBase::initialize(): solver invariant not satisfied (BX==X).");
      }
  
      // remove auxVecs from X and normalize it
      if (numAuxVecs_ > 0) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerOrtho_ );
#endif
        Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > dummyC;
        int rank = orthman_->projectAndNormalizeMat(*X,auxVecs_,dummyC,Teuchos::null,BX);
        TEUCHOS_TEST_FOR_EXCEPTION(rank != blockSize_, RTRInitFailure,
                           "Anasazi::RTRBase::initialize(): Couldn't generate initial basis of full rank.");
      }
      else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerOrtho_ );
#endif
        int rank = orthman_->normalizeMat(*X,Teuchos::null,BX);
        TEUCHOS_TEST_FOR_EXCEPTION(rank != blockSize_, RTRInitFailure,
                           "Anasazi::RTRBase::initialize(): Couldn't generate initial basis of full rank.");
      }

      // put data in AX
      if (isSkinny_) {
        AX_ = Z_;
      }
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerAOp_ );
#endif
        OPT::Apply(*AOp_,*X,*AX_);
        counterAOp_ += blockSize_;
      }

    } // end if (newstate.X != Teuchos::null)


    // set up Ritz values
    if (newstate.T != Teuchos::null) {
      TEUCHOS_TEST_FOR_EXCEPTION( (signed int)(newstate.T->size()) < blockSize_,
                          std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.T must contain at least block size Ritz values.");
      for (int i=0; i<blockSize_; i++) {
        theta_[i] = (*newstate.T)[i];
      }
    }
    else {
      // get ritz vecs/vals
      Teuchos::SerialDenseMatrix<int,ScalarType> AA(blockSize_,blockSize_),
                                                 BB(blockSize_,blockSize_),
                                                  S(blockSize_,blockSize_);
      // project A
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerLocalProj_ );
#endif
        MVT::MvTransMv(ONE,*X,*AX_,AA);
        if (hasBOp_) {
          MVT::MvTransMv(ONE,*X,*BX,BB);
        }
      }
      nevLocal_ = blockSize_;

      // solve the projected problem
      // project B
      int ret;
      if (hasBOp_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerDS_ );
#endif
        ret = Utils::directSolver(blockSize_,AA,Teuchos::rcpFromRef(BB),S,theta_,nevLocal_,1);
      }
      else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerDS_ );
#endif
        ret = Utils::directSolver(blockSize_,AA,Teuchos::null,S,theta_,nevLocal_,10);
      }
      TEUCHOS_TEST_FOR_EXCEPTION(ret != 0,RTRInitFailure,
          "Anasazi::RTRBase::initialize(): failure solving projected eigenproblem after retraction. LAPACK returns " << ret);
      TEUCHOS_TEST_FOR_EXCEPTION(nevLocal_ != blockSize_,RTRInitFailure,"Anasazi::RTRBase::initialize(): retracted iterate failed in Ritz analysis.");

      // We only have blockSize_ ritz pairs, ergo we do not need to select.
      // However, we still require them to be ordered correctly
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerSort_ );
#endif
        
        std::vector<int> order(blockSize_);
        // 
        // sort the first blockSize_ values in theta_
        sm_->sort(theta_, Teuchos::rcpFromRef(order), blockSize_);   // don't catch exception
        //
        // apply the same ordering to the primitive ritz vectors
        Utils::permuteVectors(order,S);
      }

      // compute ritz residual norms
      {
        Teuchos::BLAS<int,ScalarType> blas;
        Teuchos::SerialDenseMatrix<int,ScalarType> RR(blockSize_,blockSize_);
        // RR = AA*S - BB*S*diag(theta)
        int info;
        if (hasBOp_) {
          info = RR.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,ONE,BB,S,ZERO);
          TEUCHOS_TEST_FOR_EXCEPTION(info != 0, std::logic_error, "Anasazi::RTRBase::initialize(): Logic error calling SerialDenseMatrix::multiply.");
        }
        else {
          RR.assign(S);
        }
        for (int i=0; i<blockSize_; i++) {
          blas.SCAL(blockSize_,theta_[i],RR[i],1);
        }
        info = RR.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,ONE,AA,S,-ONE);
        TEUCHOS_TEST_FOR_EXCEPTION(info != 0, std::logic_error, "Anasazi::RTRBase::initialize(): Logic error calling SerialDenseMatrix::multiply.");
        for (int i=0; i<blockSize_; i++) {
          ritz2norms_[i] = blas.NRM2(blockSize_,RR[i],1);
        }
      }

      // update the solution
      // use R as local work space
      // Z may already be in use as work space (holding AX if isSkinny)
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerLocalUpdate_ );
#endif
        // X <- X*S
        MVT::MvAddMv( ONE, *X, ZERO, *X, *R_ );        
        MVT::MvTimesMatAddMv( ONE, *R_, S, ZERO, *X );
        // AX <- AX*S
        MVT::MvAddMv( ONE, *AX_, ZERO, *AX_, *R_ );        
        MVT::MvTimesMatAddMv( ONE, *R_, S, ZERO, *AX_ );
        if (hasBOp_) {
          // BX <- BX*S
          MVT::MvAddMv( ONE, *BX, ZERO, *BX, *R_ );        
          MVT::MvTimesMatAddMv( ONE, *R_, S, ZERO, *BX );
        }
      }
    }
    
    // done modifying X,BX; clear temp views and setup const views
    X  = Teuchos::null;
    BX = Teuchos::null;
    {
      std::vector<int> ind(blockSize_);
      for (int i=0; i<blockSize_; ++i) ind[i] = numAuxVecs_+i;
      this->X_ = MVT::CloneView(static_cast<const MV&>(*V_),ind);
      if (hasBOp_) {
        this->BX_ = MVT::CloneView(static_cast<const MV&>(*BV_),ind);
      }
      else {
        this->BX_ = this->X_;
      }
    }


    // get objective function value
    fx_ = std::accumulate(theta_.begin(),theta_.end(),ZERO);

    // set up R
    if (newstate.R != Teuchos::null) {
      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.R) < blockSize_,
                          std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): newstate.R must have blockSize number of vectors." );
      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.R) != MVT::GetGlobalLength(*R_),
                          std::invalid_argument, "Anasazi::RTRBase::initialize(newstate): vector length of newstate.R not correct." );
      MVT::SetBlock(*newstate.R,bsind,*R_);
    }
    else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
      Teuchos::TimeMonitor lcltimer( *timerCompRes_ );
#endif
      // form R <- AX - BX*T
      MVT::MvAddMv(ZERO,*AX_,ONE,*AX_,*R_);
      Teuchos::SerialDenseMatrix<int,ScalarType> T(blockSize_,blockSize_);
      T.putScalar(ZERO);
      for (int i=0; i<blockSize_; i++) T(i,i) = theta_[i];
      MVT::MvTimesMatAddMv(-ONE,*BX_,T,ONE,*R_);
    }

    // R has been updated; mark the norms as out-of-date
    Rnorms_current_ = false;
    R2norms_current_ = false;

    // if isSkinny, then AX currently points to Z for temp storage
    // set AX back to null
    if (isSkinny_) {
      AX_ = Teuchos::null;
    }

    // finally, we are initialized
    initialized_ = true;

    if (om_->isVerbosity( Debug ) ) {
      // Check almost everything here
      CheckList chk;
      chk.checkX = true;
      chk.checkAX = true;
      chk.checkBX = true;
      chk.checkR = true;
      chk.checkQ = true;
      om_->print( Debug, accuracyCheck(chk, "after initialize()") );
    }
  }

  template <class ScalarType, class MV, class OP>
  void RTRBase<ScalarType,MV,OP>::initialize()
  {
    RTRState<ScalarType,MV> empty;
    initialize(empty);
  }




  //////////////////////////////////////////////////////////////////////////////////////////////////
  // compute/return residual B-norms
  template <class ScalarType, class MV, class OP>
  std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> 
  RTRBase<ScalarType,MV,OP>::getResNorms() {
    if (Rnorms_current_ == false) {
      // Update the residual norms
      orthman_->norm(*R_,Rnorms_);
      Rnorms_current_ = true;
    }
    return Rnorms_;
  }

  
  //////////////////////////////////////////////////////////////////////////////////////////////////
  // compute/return residual 2-norms
  template <class ScalarType, class MV, class OP>
  std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> 
  RTRBase<ScalarType,MV,OP>::getRes2Norms() {
    if (R2norms_current_ == false) {
      // Update the residual 2-norms 
      MVT::MvNorm(*R_,R2norms_);
      R2norms_current_ = true;
    }
    return R2norms_;
  }




  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Check accuracy, orthogonality, and other debugging stuff
  // 
  // bools specify which tests we want to run (instead of running more than we actually care about)
  //
  // we don't bother checking the following because they are computed explicitly:
  //   AH == A*H
  //
  // 
  // checkX    : X orthonormal
  //             orthogonal to auxvecs
  // checkAX   : check AX == A*X
  // checkBX   : check BX == B*X
  // checkEta  : check that Eta'*B*X == 0
  //             orthogonal to auxvecs
  // checkAEta : check that AEta = A*Eta
  // checkBEta : check that BEta = B*Eta
  // checkR    : check R orthogonal to X
  // checkBR   : check R B-orthogonal to X, valid in and immediately after solveTRSubproblem
  // checkQ    : check that auxiliary vectors are actually orthonormal
  //
  // TODO: 
  //  add checkTheta 
  //
  template <class ScalarType, class MV, class OP>
  std::string RTRBase<ScalarType,MV,OP>::accuracyCheck( const CheckList &chk, const std::string &where ) const 
  {
    using std::setprecision;
    using std::scientific;
    using std::setw;
    using std::endl;
    std::stringstream os;
    MagnitudeType tmp;

    os << " Debugging checks: " << where << endl;

    // X and friends
    if (chk.checkX && initialized_) {
      tmp = orthman_->orthonormError(*X_);
      os << " >> Error in X^H B X == I :    " << scientific << setprecision(10) << tmp << endl;
      for (Array_size_type i=0; i<auxVecs_.size(); i++) {
        tmp = orthman_->orthogError(*X_,*auxVecs_[i]);
        os << " >> Error in X^H B Q[" << i << "] == 0 : " << scientific << setprecision(10) << tmp << endl;
      }
    }
    if (chk.checkAX && !isSkinny_ && initialized_) {
      tmp = Utils::errorEquality(*X_, *AX_, AOp_);
      os << " >> Error in AX == A*X    :    " << scientific << setprecision(10) << tmp << endl;
    }
    if (chk.checkBX && hasBOp_ && initialized_) {
      Teuchos::RCP<MV> BX = MVT::Clone(*this->X_,this->blockSize_);
      OPT::Apply(*BOp_,*this->X_,*BX);
      tmp = Utils::errorEquality(*BX, *BX_);
      os << " >> Error in BX == B*X    :    " << scientific << setprecision(10) << tmp << endl;
    }

    // Eta and friends
    if (chk.checkEta && initialized_) {
      tmp = orthman_->orthogError(*X_,*eta_);
      os << " >> Error in X^H B Eta == 0 :  " << scientific << setprecision(10) << tmp << endl;
      for (Array_size_type i=0; i<auxVecs_.size(); i++) {
        tmp = orthman_->orthogError(*eta_,*auxVecs_[i]);
        os << " >> Error in Eta^H B Q[" << i << "]==0 : " << scientific << setprecision(10) << tmp << endl;
      }
    }
    if (chk.checkAEta && !isSkinny_ && initialized_) {
      tmp = Utils::errorEquality(*eta_, *Aeta_, AOp_);
      os << " >> Error in AEta == A*Eta    :    " << scientific << setprecision(10) << tmp << endl;
    }
    if (chk.checkBEta && !isSkinny_ && hasBOp_ && initialized_) {
      tmp = Utils::errorEquality(*eta_, *Beta_, BOp_);
      os << " >> Error in BEta == B*Eta    :    " << scientific << setprecision(10) << tmp << endl;
    }

    // R: this is not B-orthogonality, but standard euclidean orthogonality
    if (chk.checkR && initialized_) {
      Teuchos::SerialDenseMatrix<int,ScalarType> xTx(blockSize_,blockSize_);
      MVT::MvTransMv(ONE,*X_,*R_,xTx);
      tmp = xTx.normFrobenius();
      os << " >> Error in X^H R == 0   :    " << scientific << setprecision(10) << tmp << endl;
    }

    // BR: this is B-orthogonality: this is only valid inside and immediately after solveTRSubproblem 
    // only check if B != I, otherwise, it is equivalent to the above test
    if (chk.checkBR && hasBOp_ && initialized_) {
      Teuchos::SerialDenseMatrix<int,ScalarType> xTx(blockSize_,blockSize_);
      MVT::MvTransMv(ONE,*BX_,*R_,xTx);
      tmp = xTx.normFrobenius();
      os << " >> Error in X^H B R == 0 :    " << scientific << setprecision(10) << tmp << endl;
    }

    // Z: Z is preconditioned R, should be on tangent plane
    if (chk.checkZ && initialized_) {
      Teuchos::SerialDenseMatrix<int,ScalarType> xTx(blockSize_,blockSize_);
      MVT::MvTransMv(ONE,*BX_,*Z_,xTx);
      tmp = xTx.normFrobenius();
      os << " >> Error in X^H B Z == 0 :    " << scientific << setprecision(10) << tmp << endl;
    }

    // Q
    if (chk.checkQ) {
      for (Array_size_type i=0; i<auxVecs_.size(); i++) {
        tmp = orthman_->orthonormError(*auxVecs_[i]);
        os << " >> Error in Q[" << i << "]^H B Q[" << i << "]==I: " << scientific << setprecision(10) << tmp << endl;
        for (Array_size_type j=i+1; j<auxVecs_.size(); j++) {
          tmp = orthman_->orthogError(*auxVecs_[i],*auxVecs_[j]);
          os << " >> Error in Q[" << i << "]^H B Q[" << j << "]==0: " << scientific << setprecision(10) << tmp << endl;
        }
      }
    }
    os << endl;
    return os.str();
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Print the current status of the solver
  template <class ScalarType, class MV, class OP>
  void 
  RTRBase<ScalarType,MV,OP>::currentStatus(std::ostream &os) 
  {
    using std::setprecision;
    using std::scientific;
    using std::setw;
    using std::endl;

    os <<endl;
    os <<"================================================================================" << endl;
    os << endl;
    os <<"                              RTRBase Solver Status" << endl;
    os << endl;
    os <<"The solver is "<<(initialized_ ? "initialized." : "not initialized.") << endl;
    os <<"The number of iterations performed is " << iter_       << endl;
    os <<"The current block size is             " << blockSize_  << endl;
    os <<"The number of auxiliary vectors is    " << numAuxVecs_ << endl;
    os <<"The number of operations A*x    is " << counterAOp_   << endl;
    os <<"The number of operations B*x    is " << counterBOp_    << endl;
    os <<"The number of operations Prec*x is " << counterPrec_ << endl;
    os <<"The most recent rho was " << scientific << setprecision(10) << rho_ << endl;
    os <<"The current value of f(x) is " << scientific << setprecision(10) << fx_ << endl;

    if (initialized_) {
      os << endl;
      os <<"CURRENT EIGENVALUE ESTIMATES             "<<endl;
      os << setw(20) << "Eigenvalue" 
         << setw(20) << "Residual(B)"
         << setw(20) << "Residual(2)"
         << endl;
      os <<"--------------------------------------------------------------------------------"<<endl;
      for (int i=0; i<blockSize_; i++) {
        os << scientific << setprecision(10) << setw(20) << theta_[i];
        if (Rnorms_current_) os << scientific << setprecision(10) << setw(20) << Rnorms_[i];
        else os << scientific << setprecision(10) << setw(20) << "not current";
        if (R2norms_current_) os << scientific << setprecision(10) << setw(20) << R2norms_[i];
        else os << scientific << setprecision(10) << setw(20) << "not current";
        os << endl;
      }
    }
    os <<"================================================================================" << endl;
    os << endl;
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Inner product 1
  template <class ScalarType, class MV, class OP>
  typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
  RTRBase<ScalarType,MV,OP>::ginner(const MV &xi) const 
  {
    std::vector<MagnitudeType> d(MVT::GetNumberVecs(xi));
    MVT::MvNorm(xi,d);
    MagnitudeType ret = 0;
    for (vecMTiter i=d.begin(); i != d.end(); ++i) {
      ret += (*i)*(*i);
    }
    return ret;
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Inner product 2
  template <class ScalarType, class MV, class OP>
  typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
  RTRBase<ScalarType,MV,OP>::ginner(const MV &xi, const MV &zeta) const 
  {
    std::vector<ScalarType> d(MVT::GetNumberVecs(xi));
    MVT::MvDot(xi,zeta,d);
    return SCT::real(std::accumulate(d.begin(),d.end(),SCT::zero()));
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Inner product 1 without trace accumulation
  template <class ScalarType, class MV, class OP>
  void RTRBase<ScalarType,MV,OP>::ginnersep(
      const MV &xi, 
      std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> &d) const 
  {
    MVT::MvNorm(xi,d);
    for (vecMTiter i=d.begin(); i != d.end(); ++i) {
      (*i) = (*i)*(*i);
    }
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Inner product 2 without trace accumulation
  template <class ScalarType, class MV, class OP>
  void RTRBase<ScalarType,MV,OP>::ginnersep(
      const MV &xi, const MV &zeta, 
      std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> &d) const 
  {
    std::vector<ScalarType> dC(MVT::GetNumberVecs(xi));
    MVT::MvDot(xi,zeta,dC);
    vecMTiter iR=d.begin(); 
    vecSTiter iS=dC.begin();
    for (; iR != d.end(); iR++, iS++) {
      (*iR) = SCT::real(*iS);
    }
  }

  template <class ScalarType, class MV, class OP>
  Teuchos::Array<Teuchos::RCP<const MV> > RTRBase<ScalarType,MV,OP>::getAuxVecs() const {
    return auxVecs_;
  }

  template <class ScalarType, class MV, class OP>
  int RTRBase<ScalarType,MV,OP>::getBlockSize() const { 
    return(blockSize_); 
  }

  template <class ScalarType, class MV, class OP>
  const Eigenproblem<ScalarType,MV,OP>& RTRBase<ScalarType,MV,OP>::getProblem() const { 
    return(*problem_); 
  }

  template <class ScalarType, class MV, class OP>
  int RTRBase<ScalarType,MV,OP>::getMaxSubspaceDim() const {
    return blockSize_;
  }

  template <class ScalarType, class MV, class OP>
  int RTRBase<ScalarType,MV,OP>::getCurSubspaceDim() const 
  {
    if (!initialized_) return 0;
    return nevLocal_;
  }

  template <class ScalarType, class MV, class OP>
  std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> 
  RTRBase<ScalarType,MV,OP>::getRitzRes2Norms() 
  {
    std::vector<MagnitudeType> ret = ritz2norms_;
    ret.resize(nevLocal_);
    return ret;
  }

  template <class ScalarType, class MV, class OP>
  std::vector<Value<ScalarType> > 
  RTRBase<ScalarType,MV,OP>::getRitzValues() 
  {
    std::vector<Value<ScalarType> > ret(nevLocal_);
    for (int i=0; i<nevLocal_; i++) {
      ret[i].realpart = theta_[i];
      ret[i].imagpart = ZERO;
    }
    return ret;
  }

  template <class ScalarType, class MV, class OP>
  Teuchos::RCP<const MV> 
  RTRBase<ScalarType,MV,OP>::getRitzVectors() 
  {
    return X_;
  }

  template <class ScalarType, class MV, class OP>
  void RTRBase<ScalarType,MV,OP>::resetNumIters() 
  { 
    iter_=0; 
  }

  template <class ScalarType, class MV, class OP>
  int RTRBase<ScalarType,MV,OP>::getNumIters() const 
  { 
    return iter_; 
  }

  template <class ScalarType, class MV, class OP>
  RTRState<ScalarType,MV> RTRBase<ScalarType,MV,OP>::getState() const 
  {
    RTRState<ScalarType,MV> state;
    state.X = X_;
    state.AX = AX_;
    if (hasBOp_) {
      state.BX = BX_;
    }
    else {
      state.BX = Teuchos::null;
    }
    state.rho = rho_;
    state.R = R_;
    state.T = Teuchos::rcp(new std::vector<MagnitudeType>(theta_));
    return state;
  }

  template <class ScalarType, class MV, class OP>
  bool RTRBase<ScalarType,MV,OP>::isInitialized() const 
  { 
    return initialized_; 
  }

  template <class ScalarType, class MV, class OP>
  std::vector<int> RTRBase<ScalarType,MV,OP>::getRitzIndex() 
  {
    std::vector<int> ret(nevLocal_,0);
    return ret;
  }


} // end Anasazi namespace

#endif // ANASAZI_RTRBASE_HPP