/usr/include/trilinos/AnasaziHelperTraits.hpp is in libtrilinos-anasazi-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_HELPER_TRAITS_HPP
#define ANASAZI_HELPER_TRAITS_HPP
/*! \file AnasaziOperatorTraits.hpp
\brief Virtual base class which defines basic traits for the operator type
*/
#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "Teuchos_LAPACK.hpp"
namespace Anasazi {
/*! \brief Class which defines basic traits for working with different scalar types.
An adapter for this traits class must exist for the <tt>ScalarType</tt>.
If not, this class will produce a compile-time error.
\ingroup anasazi_opvec_interfaces
*/
template <class ScalarType>
class HelperTraits
{
public:
//! Helper function for correctly storing the Ritz values when the eigenproblem is non-Hermitian
/*! This allows us to use template specialization to compute the right index vector and correctly
* handle complex-conjugate pairs.
*/
static void sortRitzValues(
const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>& rRV,
const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>& iRV,
std::vector<Value<ScalarType> >* RV, std::vector<int>* RO, std::vector<int>* RI );
//! Helper function for correctly scaling the eigenvectors of the projected eigenproblem.
/*! This allows us to use template specialization to compute the right scaling so the
* Ritz residuals are correct.
*/
static void scaleRitzVectors(
const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>& iRV,
Teuchos::SerialDenseMatrix<int, ScalarType>* S );
//! Helper function for correctly computing the Ritz residuals of the projected eigenproblem.
/*! This allows us to use template specialization to ensure the Ritz residuals are correct.
*/
static void computeRitzResiduals(
const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>& iRV,
const Teuchos::SerialDenseMatrix<int, ScalarType>& S,
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>* RR);
};
template<class ScalarType>
void HelperTraits<ScalarType>::sortRitzValues(
const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>& rRV,
const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>& iRV,
std::vector<Value<ScalarType> >* RV, std::vector<int>* RO, std::vector<int>* RI )
{
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
MagnitudeType MT_ZERO = Teuchos::ScalarTraits<MagnitudeType>::zero();
int curDim = (int)rRV.size();
int i = 0;
// Clear the current index.
RI->clear();
// Place the Ritz values from rRV and iRV into the RV container.
while( i < curDim ) {
if ( iRV[i] != MT_ZERO ) {
//
// We will have this situation for real-valued, non-Hermitian matrices.
(*RV)[i].set(rRV[i], iRV[i]);
(*RV)[i+1].set(rRV[i+1], iRV[i+1]);
// Make sure that complex conjugate pairs have their positive imaginary part first.
if ( (*RV)[i].imagpart < MT_ZERO ) {
// The negative imaginary part is first, so swap the order of the ritzValues and ritzOrders.
Anasazi::Value<ScalarType> tmp_ritz( (*RV)[i] );
(*RV)[i] = (*RV)[i+1];
(*RV)[i+1] = tmp_ritz;
int tmp_order = (*RO)[i];
(*RO)[i] = (*RO)[i+1];
(*RO)[i+1] = tmp_order;
}
RI->push_back(1); RI->push_back(-1);
i = i+2;
} else {
//
// The Ritz value is not complex.
(*RV)[i].set(rRV[i], MT_ZERO);
RI->push_back(0);
i++;
}
}
}
template<class ScalarType>
void HelperTraits<ScalarType>::scaleRitzVectors(
const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>& iRV,
Teuchos::SerialDenseMatrix<int, ScalarType>* S )
{
ScalarType ST_ONE = Teuchos::ScalarTraits<ScalarType>::one();
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
MagnitudeType MT_ZERO = Teuchos::ScalarTraits<MagnitudeType>::zero();
Teuchos::LAPACK<int,MagnitudeType> lapack_mag;
Teuchos::BLAS<int,ScalarType> blas;
int i = 0, curDim = S->numRows();
ScalarType temp;
ScalarType* s_ptr = S->values();
while( i < curDim ) {
if ( iRV[i] != MT_ZERO ) {
temp = lapack_mag.LAPY2( blas.NRM2( curDim, s_ptr+i*curDim, 1 ),
blas.NRM2( curDim, s_ptr+(i+1)*curDim, 1 ) );
blas.SCAL( curDim, ST_ONE/temp, s_ptr+i*curDim, 1 );
blas.SCAL( curDim, ST_ONE/temp, s_ptr+(i+1)*curDim, 1 );
i = i+2;
} else {
temp = blas.NRM2( curDim, s_ptr+i*curDim, 1 );
blas.SCAL( curDim, ST_ONE/temp, s_ptr+i*curDim, 1 );
i++;
}
}
}
template<class ScalarType>
void HelperTraits<ScalarType>::computeRitzResiduals(
const std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>& iRV,
const Teuchos::SerialDenseMatrix<int, ScalarType>& S,
std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>* RR )
{
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
MagnitudeType MT_ZERO = Teuchos::ScalarTraits<MagnitudeType>::zero();
Teuchos::LAPACK<int,MagnitudeType> lapack_mag;
Teuchos::BLAS<int,ScalarType> blas;
int i = 0;
int s_stride = S.stride();
int s_rows = S.numRows();
int s_cols = S.numCols();
ScalarType* s_ptr = S.values();
while( i < s_cols ) {
if ( iRV[i] != MT_ZERO ) {
(*RR)[i] = lapack_mag.LAPY2( blas.NRM2(s_rows, s_ptr + i*s_stride, 1),
blas.NRM2(s_rows, s_ptr + (i+1)*s_stride, 1) );
(*RR)[i+1] = (*RR)[i];
i = i+2;
} else {
(*RR)[i] = blas.NRM2(s_rows, s_ptr + i*s_stride, 1);
i++;
}
}
}
#ifdef HAVE_TEUCHOS_COMPLEX
// Partial template specializations for the complex scalar type.
/*! \brief Class which defines basic traits for working with different scalar types.
An adapter for this traits class must exist for the <tt>ScalarType</tt>.
If not, this class will produce a compile-time error.
\ingroup anasazi_opvec_interfaces
*/
template <class T>
class HelperTraits<ANSZI_CPLX_CLASS<T> >
{
public:
static void sortRitzValues(
const std::vector<T>& rRV,
const std::vector<T>& iRV,
std::vector<Value<ANSZI_CPLX_CLASS<T> > >* RV,
std::vector<int>* RO, std::vector<int>* RI );
static void scaleRitzVectors(
const std::vector<T>& iRV,
Teuchos::SerialDenseMatrix<int, ANSZI_CPLX_CLASS<T> >* S );
static void computeRitzResiduals(
const std::vector<T>& iRV,
const Teuchos::SerialDenseMatrix<int, ANSZI_CPLX_CLASS<T> >& S,
std::vector<T>* RR );
};
template<class T>
void HelperTraits<ANSZI_CPLX_CLASS<T> >::sortRitzValues(
const std::vector<T>& rRV,
const std::vector<T>& iRV,
std::vector<Value<ANSZI_CPLX_CLASS<T> > >* RV,
std::vector<int>* RO, std::vector<int>* RI )
{
(void)RO;
int curDim = (int)rRV.size();
int i = 0;
// Clear the current index.
RI->clear();
// Place the Ritz values from rRV and iRV into the RV container.
while( i < curDim ) {
(*RV)[i].set(rRV[i], iRV[i]);
RI->push_back(0);
i++;
}
}
template<class T>
void HelperTraits<ANSZI_CPLX_CLASS<T> >::scaleRitzVectors(
const std::vector<T>& iRV,
Teuchos::SerialDenseMatrix<int, ANSZI_CPLX_CLASS<T> >* S )
{
(void)iRV;
typedef ANSZI_CPLX_CLASS<T> ST;
ST ST_ONE = Teuchos::ScalarTraits<ST>::one();
Teuchos::BLAS<int,ST> blas;
int i = 0, curDim = S->numRows();
ST temp;
ST* s_ptr = S->values();
while( i < curDim ) {
temp = blas.NRM2( curDim, s_ptr+i*curDim, 1 );
blas.SCAL( curDim, ST_ONE/temp, s_ptr+i*curDim, 1 );
i++;
}
}
template<class T>
void HelperTraits<ANSZI_CPLX_CLASS<T> >::computeRitzResiduals(
const std::vector<T>& iRV,
const Teuchos::SerialDenseMatrix<int, ANSZI_CPLX_CLASS<T> >& S,
std::vector<T>* RR )
{
(void)iRV;
Teuchos::BLAS<int,ANSZI_CPLX_CLASS<T> > blas;
int s_stride = S.stride();
int s_rows = S.numRows();
int s_cols = S.numCols();
ANSZI_CPLX_CLASS<T>* s_ptr = S.values();
for (int i=0; i<s_cols; ++i ) {
(*RR)[i] = blas.NRM2(s_rows, s_ptr + i*s_stride, 1);
}
}
#endif
} // end Anasazi namespace
#endif // ANASAZI_HELPER_TRAITS_HPP
|