/usr/include/trilinos/klu2_refactor.hpp is in libtrilinos-amesos2-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 | /* ========================================================================== */
/* === KLU_refactor ========================================================= */
/* ========================================================================== */
// @HEADER
// ***********************************************************************
//
// KLU2: A Direct Linear Solver package
// Copyright 2011 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, with Sandia Corporation, the
// U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Mike A. Heroux (maherou@sandia.gov)
//
// KLU2 is derived work from KLU, licensed under LGPL, and copyrighted by
// University of Florida. The Authors of KLU are Timothy A. Davis and
// Eka Palamadai. See Doc/KLU_README.txt for the licensing and copyright
// information for KLU.
//
// ***********************************************************************
// @HEADER
/* Factor the matrix, after ordering and analyzing it with KLU_analyze, and
* factoring it once with KLU_factor. This routine cannot do any numerical
* pivoting. The pattern of the input matrix (Ap, Ai) must be identical to
* the pattern given to KLU_factor.
*/
#ifndef KLU2_REFACTOR_HPP
#define KLU2_REFACTOR_HPP
#include "klu2_internal.h"
#include "klu2_memory.hpp"
#include "klu2_scale.hpp"
/* ========================================================================== */
/* === KLU_refactor ========================================================= */
/* ========================================================================== */
template <typename Entry, typename Int>
Int KLU_refactor /* returns TRUE if successful, FALSE otherwise */
(
/* inputs, not modified */
Int Ap [ ], /* size n+1, column pointers */
Int Ai [ ], /* size nz, row indices */
double Ax [ ],
KLU_symbolic<Entry, Int> *Symbolic,
/* input/output */
KLU_numeric<Entry, Int> *Numeric,
KLU_common<Entry, Int> *Common
)
{
Entry ukk, ujk, s ;
Entry *Offx, *Lx, *Ux, *X, *Az, *Udiag ;
double *Rs ;
Int *P, *Q, *R, *Pnum, *Offp, *Offi, *Ui, *Li, *Pinv, *Lip, *Uip, *Llen,
*Ulen ;
Unit **LUbx ;
Unit *LU ;
Int k1, k2, nk, k, block, oldcol, pend, oldrow, n, p, newrow, scale,
nblocks, poff, i, j, up, ulen, llen, maxblock, nzoff ;
/* ---------------------------------------------------------------------- */
/* check inputs */
/* ---------------------------------------------------------------------- */
if (Common == NULL)
{
return (FALSE) ;
}
Common->status = KLU_OK ;
if (Numeric == NULL)
{
/* invalid Numeric object */
Common->status = KLU_INVALID ;
return (FALSE) ;
}
Common->numerical_rank = EMPTY ;
Common->singular_col = EMPTY ;
Az = (Entry *) Ax ;
/* ---------------------------------------------------------------------- */
/* get the contents of the Symbolic object */
/* ---------------------------------------------------------------------- */
n = Symbolic->n ;
P = Symbolic->P ;
Q = Symbolic->Q ;
R = Symbolic->R ;
nblocks = Symbolic->nblocks ;
maxblock = Symbolic->maxblock ;
/* ---------------------------------------------------------------------- */
/* get the contents of the Numeric object */
/* ---------------------------------------------------------------------- */
Pnum = Numeric->Pnum ;
Offp = Numeric->Offp ;
Offi = Numeric->Offi ;
Offx = (Entry *) Numeric->Offx ;
LUbx = (Unit **) Numeric->LUbx ;
scale = Common->scale ;
if (scale > 0)
{
/* factorization was not scaled, but refactorization is scaled */
if (Numeric->Rs == NULL)
{
Numeric->Rs = (double *)KLU_malloc (n, sizeof (double), Common) ;
if (Common->status < KLU_OK)
{
Common->status = KLU_OUT_OF_MEMORY ;
return (FALSE) ;
}
}
}
else
{
/* no scaling for refactorization; ensure Numeric->Rs is freed. This
* does nothing if Numeric->Rs is already NULL. */
Numeric->Rs = (double *) KLU_free (Numeric->Rs, n, sizeof (double), Common) ;
}
Rs = Numeric->Rs ;
Pinv = Numeric->Pinv ;
X = (Entry *) Numeric->Xwork ;
Common->nrealloc = 0 ;
Udiag = (Entry *) Numeric->Udiag ;
nzoff = Symbolic->nzoff ;
/* ---------------------------------------------------------------------- */
/* check the input matrix compute the row scale factors, Rs */
/* ---------------------------------------------------------------------- */
/* do no scale, or check the input matrix, if scale < 0 */
if (scale >= 0)
{
/* check for out-of-range indices, but do not check for duplicates */
if (!KLU_scale (scale, n, Ap, Ai, Ax, Rs, NULL, Common))
{
return (FALSE) ;
}
}
/* ---------------------------------------------------------------------- */
/* clear workspace X */
/* ---------------------------------------------------------------------- */
for (k = 0 ; k < maxblock ; k++)
{
/* X [k] = 0 */
CLEAR (X [k]) ;
}
poff = 0 ;
/* ---------------------------------------------------------------------- */
/* factor each block */
/* ---------------------------------------------------------------------- */
if (scale <= 0)
{
/* ------------------------------------------------------------------ */
/* no scaling */
/* ------------------------------------------------------------------ */
for (block = 0 ; block < nblocks ; block++)
{
/* -------------------------------------------------------------- */
/* the block is from rows/columns k1 to k2-1 */
/* -------------------------------------------------------------- */
k1 = R [block] ;
k2 = R [block+1] ;
nk = k2 - k1 ;
if (nk == 1)
{
/* ---------------------------------------------------------- */
/* singleton case */
/* ---------------------------------------------------------- */
oldcol = Q [k1] ;
pend = Ap [oldcol+1] ;
CLEAR (s) ;
for (p = Ap [oldcol] ; p < pend ; p++)
{
newrow = Pinv [Ai [p]] - k1 ;
if (newrow < 0 && poff < nzoff)
{
/* entry in off-diagonal block */
Offx [poff] = Az [p] ;
poff++ ;
}
else
{
/* singleton */
s = Az [p] ;
}
}
Udiag [k1] = s ;
}
else
{
/* ---------------------------------------------------------- */
/* construct and factor the kth block */
/* ---------------------------------------------------------- */
Lip = Numeric->Lip + k1 ;
Llen = Numeric->Llen + k1 ;
Uip = Numeric->Uip + k1 ;
Ulen = Numeric->Ulen + k1 ;
LU = LUbx [block] ;
for (k = 0 ; k < nk ; k++)
{
/* ------------------------------------------------------ */
/* scatter kth column of the block into workspace X */
/* ------------------------------------------------------ */
oldcol = Q [k+k1] ;
pend = Ap [oldcol+1] ;
for (p = Ap [oldcol] ; p < pend ; p++)
{
newrow = Pinv [Ai [p]] - k1 ;
if (newrow < 0 && poff < nzoff)
{
/* entry in off-diagonal block */
Offx [poff] = Az [p] ;
poff++ ;
}
else
{
/* (newrow,k) is an entry in the block */
X [newrow] = Az [p] ;
}
}
/* ------------------------------------------------------ */
/* compute kth column of U, and update kth column of A */
/* ------------------------------------------------------ */
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, ulen) ;
for (up = 0 ; up < ulen ; up++)
{
j = Ui [up] ;
ujk = X [j] ;
/* X [j] = 0 */
CLEAR (X [j]) ;
Ux [up] = ujk ;
GET_POINTER (LU, Lip, Llen, Li, Lx, j, llen) ;
for (p = 0 ; p < llen ; p++)
{
/* X [Li [p]] -= Lx [p] * ujk */
MULT_SUB (X [Li [p]], Lx [p], ujk) ;
}
}
/* get the diagonal entry of U */
ukk = X [k] ;
/* X [k] = 0 */
CLEAR (X [k]) ;
/* singular case */
if (IS_ZERO (ukk))
{
/* matrix is numerically singular */
Common->status = KLU_SINGULAR ;
if (Common->numerical_rank == EMPTY)
{
Common->numerical_rank = k+k1 ;
Common->singular_col = Q [k+k1] ;
}
if (Common->halt_if_singular)
{
/* do not continue the factorization */
return (FALSE) ;
}
}
Udiag [k+k1] = ukk ;
/* gather and divide by pivot to get kth column of L */
GET_POINTER (LU, Lip, Llen, Li, Lx, k, llen) ;
for (p = 0 ; p < llen ; p++)
{
i = Li [p] ;
DIV (Lx [p], X [i], ukk) ;
CLEAR (X [i]) ;
}
}
}
}
}
else
{
/* ------------------------------------------------------------------ */
/* scaling */
/* ------------------------------------------------------------------ */
for (block = 0 ; block < nblocks ; block++)
{
/* -------------------------------------------------------------- */
/* the block is from rows/columns k1 to k2-1 */
/* -------------------------------------------------------------- */
k1 = R [block] ;
k2 = R [block+1] ;
nk = k2 - k1 ;
if (nk == 1)
{
/* ---------------------------------------------------------- */
/* singleton case */
/* ---------------------------------------------------------- */
oldcol = Q [k1] ;
pend = Ap [oldcol+1] ;
CLEAR (s) ;
for (p = Ap [oldcol] ; p < pend ; p++)
{
oldrow = Ai [p] ;
newrow = Pinv [oldrow] - k1 ;
if (newrow < 0 && poff < nzoff)
{
/* entry in off-diagonal block */
/* Offx [poff] = Az [p] / Rs [oldrow] */
SCALE_DIV_ASSIGN (Offx [poff], Az [p], Rs [oldrow]) ;
poff++ ;
}
else
{
/* singleton */
/* s = Az [p] / Rs [oldrow] */
SCALE_DIV_ASSIGN (s, Az [p], Rs [oldrow]) ;
}
}
Udiag [k1] = s ;
}
else
{
/* ---------------------------------------------------------- */
/* construct and factor the kth block */
/* ---------------------------------------------------------- */
Lip = Numeric->Lip + k1 ;
Llen = Numeric->Llen + k1 ;
Uip = Numeric->Uip + k1 ;
Ulen = Numeric->Ulen + k1 ;
LU = LUbx [block] ;
for (k = 0 ; k < nk ; k++)
{
/* ------------------------------------------------------ */
/* scatter kth column of the block into workspace X */
/* ------------------------------------------------------ */
oldcol = Q [k+k1] ;
pend = Ap [oldcol+1] ;
for (p = Ap [oldcol] ; p < pend ; p++)
{
oldrow = Ai [p] ;
newrow = Pinv [oldrow] - k1 ;
if (newrow < 0 && poff < nzoff)
{
/* entry in off-diagonal part */
/* Offx [poff] = Az [p] / Rs [oldrow] */
SCALE_DIV_ASSIGN (Offx [poff], Az [p], Rs [oldrow]);
poff++ ;
}
else
{
/* (newrow,k) is an entry in the block */
/* X [newrow] = Az [p] / Rs [oldrow] */
SCALE_DIV_ASSIGN (X [newrow], Az [p], Rs [oldrow]) ;
}
}
/* ------------------------------------------------------ */
/* compute kth column of U, and update kth column of A */
/* ------------------------------------------------------ */
GET_POINTER (LU, Uip, Ulen, Ui, Ux, k, ulen) ;
for (up = 0 ; up < ulen ; up++)
{
j = Ui [up] ;
ujk = X [j] ;
/* X [j] = 0 */
CLEAR (X [j]) ;
Ux [up] = ujk ;
GET_POINTER (LU, Lip, Llen, Li, Lx, j, llen) ;
for (p = 0 ; p < llen ; p++)
{
/* X [Li [p]] -= Lx [p] * ujk */
MULT_SUB (X [Li [p]], Lx [p], ujk) ;
}
}
/* get the diagonal entry of U */
ukk = X [k] ;
/* X [k] = 0 */
CLEAR (X [k]) ;
/* singular case */
if (IS_ZERO (ukk))
{
/* matrix is numerically singular */
Common->status = KLU_SINGULAR ;
if (Common->numerical_rank == EMPTY)
{
Common->numerical_rank = k+k1 ;
Common->singular_col = Q [k+k1] ;
}
if (Common->halt_if_singular)
{
/* do not continue the factorization */
return (FALSE) ;
}
}
Udiag [k+k1] = ukk ;
/* gather and divide by pivot to get kth column of L */
GET_POINTER (LU, Lip, Llen, Li, Lx, k, llen) ;
for (p = 0 ; p < llen ; p++)
{
i = Li [p] ;
DIV (Lx [p], X [i], ukk) ;
CLEAR (X [i]) ;
}
}
}
}
}
/* ---------------------------------------------------------------------- */
/* permute scale factors Rs according to pivotal row order */
/* ---------------------------------------------------------------------- */
if (scale > 0)
{
for (k = 0 ; k < n ; k++)
{
/* TODO : Check. REAL(X[k]) Can be just X[k] */
/* REAL (X [k]) = Rs [Pnum [k]] ; */
X [k] = Rs [Pnum [k]] ;
}
for (k = 0 ; k < n ; k++)
{
Rs [k] = REAL (X [k]) ;
}
}
#ifndef NDEBUG
ASSERT (Offp [n] == poff) ;
ASSERT (Symbolic->nzoff == poff) ;
PRINTF (("\n------------------- Off diagonal entries, new:\n")) ;
ASSERT (KLU_valid (n, Offp, Offi, Offx)) ;
if (Common->status == KLU_OK)
{
PRINTF (("\n ########### KLU_BTF_REFACTOR done, nblocks %d\n",nblocks));
for (block = 0 ; block < nblocks ; block++)
{
k1 = R [block] ;
k2 = R [block+1] ;
nk = k2 - k1 ;
PRINTF ((
"\n================KLU_refactor output: k1 %d k2 %d nk %d\n",
k1, k2, nk)) ;
if (nk == 1)
{
PRINTF (("singleton ")) ;
PRINT_ENTRY (Udiag [k1]) ;
}
else
{
Lip = Numeric->Lip + k1 ;
Llen = Numeric->Llen + k1 ;
LU = (Unit *) Numeric->LUbx [block] ;
PRINTF (("\n---- L block %d\n", block)) ;
ASSERT (KLU_valid_LU (nk, TRUE, Lip, Llen, LU)) ;
Uip = Numeric->Uip + k1 ;
Ulen = Numeric->Ulen + k1 ;
PRINTF (("\n---- U block %d\n", block)) ;
ASSERT (KLU_valid_LU (nk, FALSE, Uip, Ulen, LU)) ;
}
}
}
#endif
return (TRUE) ;
}
#endif
|