This file is indexed.

/usr/include/trilinos/klu2_extract.hpp is in libtrilinos-amesos2-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/* ========================================================================== */
/* === KLU_extract ========================================================== */
/* ========================================================================== */
// @HEADER
// ***********************************************************************
//
//                   KLU2: A Direct Linear Solver package
//                    Copyright 2011 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, with Sandia Corporation, the 
// U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Mike A. Heroux (maherou@sandia.gov)
//
// KLU2 is derived work from KLU, licensed under LGPL, and copyrighted by
// University of Florida. The Authors of KLU are Timothy A. Davis and
// Eka Palamadai. See Doc/KLU_README.txt for the licensing and copyright
// information for KLU.
//
// ***********************************************************************
// @HEADER

/* Extract KLU factorization into conventional compressed-column matrices.
 * If any output array is NULL, that part of the LU factorization is not
 * extracted (this is not an error condition).
 *
 * nnz(L) = Numeric->lnz, nnz(U) = Numeric->unz, and nnz(F) = Numeric->Offp [n]
 */

#ifndef KLU2_EXTRACT_HPP
#define KLU2_EXTRACT_HPP

#include "klu2_internal.h"

template <typename Entry, typename Int>
Int KLU_extract     /* returns TRUE if successful, FALSE otherwise */
(
    /* inputs: */
    KLU_numeric<Entry, Int> *Numeric,
    KLU_symbolic<Entry, Int> *Symbolic,

    /* outputs, all of which must be allocated on input */

    /* L */
    Int *Lp,        /* size n+1 */
    Int *Li,        /* size nnz(L) */
    double *Lx,     /* size nnz(L) */
#ifdef COMPLEX
    double *Lz,     /* size nnz(L) for the complex case, ignored if real */
#endif

    /* U */
    Int *Up,        /* size n+1 */
    Int *Ui,        /* size nnz(U) */
    double *Ux,     /* size nnz(U) */
#ifdef COMPLEX
    double *Uz,     /* size nnz(U) for the complex case, ignored if real */
#endif

    /* F */
    Int *Fp,        /* size n+1 */
    Int *Fi,        /* size nnz(F) */
    double *Fx,     /* size nnz(F) */
#ifdef COMPLEX
    double *Fz,     /* size nnz(F) for the complex case, ignored if real */
#endif

    /* P, row permutation */
    Int *P,         /* size n */

    /* Q, column permutation */
    Int *Q,         /* size n */

    /* Rs, scale factors */
    double *Rs,     /* size n */

    /* R, block boundaries */
    Int *R,         /* size nblocks+1 */

    KLU_common<Entry> *Common
)
{
    Int *Lip, *Llen, *Uip, *Ulen, *Li2, *Ui2 ;
    Unit *LU ;
    Entry *Lx2, *Ux2, *Ukk ;
    Int i, k, block, nblocks, n, nz, k1, k2, nk, len, kk, p ;

    if (Common == NULL)
    {
        return (FALSE) ;
    }

    if (Symbolic == NULL || Numeric == NULL)
    {
        Common->status = KLU_INVALID ;
        return (FALSE) ;
    }

    Common->status = KLU_OK ;
    n = Symbolic->n ;
    nblocks = Symbolic->nblocks ;

    /* ---------------------------------------------------------------------- */
    /* extract scale factors */
    /* ---------------------------------------------------------------------- */

    if (Rs != NULL)
    {
        if (Numeric->Rs != NULL)
        {
            for (i = 0 ; i < n ; i++)
            {
                Rs [i] = Numeric->Rs [i] ;
            }
        }
        else
        {
            /* no scaling */
            for (i = 0 ; i < n ; i++)
            {
                Rs [i] = 1 ;
            }
        }
    }

    /* ---------------------------------------------------------------------- */
    /* extract block boundaries */
    /* ---------------------------------------------------------------------- */

    if (R != NULL)
    {
        for (block = 0 ; block <= nblocks ; block++)
        {
            R [block] = Symbolic->R [block] ;
        }
    }

    /* ---------------------------------------------------------------------- */
    /* extract final row permutation */
    /* ---------------------------------------------------------------------- */

    if (P != NULL)
    {
        for (k = 0 ; k < n ; k++)
        {
            P [k] = Numeric->Pnum [k] ;
        }
    }

    /* ---------------------------------------------------------------------- */
    /* extract column permutation */
    /* ---------------------------------------------------------------------- */

    if (Q != NULL)
    {
        for (k = 0 ; k < n ; k++)
        {
            Q [k] = Symbolic->Q [k] ;
        }
    }

    /* ---------------------------------------------------------------------- */
    /* extract each block of L */
    /* ---------------------------------------------------------------------- */

    if (Lp != NULL && Li != NULL && Lx != NULL
#ifdef COMPLEX
        && Lz != NULL
#endif
    )
    {
        nz = 0 ;
        for (block = 0 ; block < nblocks ; block++)
        {
            k1 = Symbolic->R [block] ;
            k2 = Symbolic->R [block+1] ;
            nk = k2 - k1 ;
            if (nk == 1)
            {
                /* singleton block */
                Lp [k1] = nz ;
                Li [nz] = k1 ;
                Lx [nz] = 1 ;
#ifdef COMPLEX
                Lz [nz] = 0 ;
#endif
                nz++ ;
            }
            else
            {
                /* non-singleton block */
                LU = (Unit *) Numeric->LUbx [block] ;
                Lip = Numeric->Lip + k1 ;
                Llen = Numeric->Llen + k1 ;
                for (kk = 0 ; kk < nk ; kk++)
                {
                    Lp [k1+kk] = nz ;
                    /* add the unit diagonal entry */
                    Li [nz] = k1 + kk ;
                    Lx [nz] = 1 ;
#ifdef COMPLEX
                    Lz [nz] = 0 ;
#endif
                    nz++ ;
                    GET_POINTER (LU, Lip, Llen, Li2, Lx2, kk, len) ;
                    for (p = 0 ; p < len ; p++)
                    {
                        Li [nz] = k1 + Li2 [p] ;
                        Lx [nz] = REAL (Lx2 [p]) ;
#ifdef COMPLEX
                        Lz [nz] = IMAG (Lx2 [p]) ;
#endif
                        nz++ ;
                    }
                }
            }
        }
        Lp [n] = nz ;
        ASSERT (nz == Numeric->lnz) ;
    }

    /* ---------------------------------------------------------------------- */
    /* extract each block of U */
    /* ---------------------------------------------------------------------- */

    if (Up != NULL && Ui != NULL && Ux != NULL
#ifdef COMPLEX
        && Uz != NULL
#endif
    )
    {
        nz = 0 ;
        for (block = 0 ; block < nblocks ; block++)
        {
            k1 = Symbolic->R [block] ;
            k2 = Symbolic->R [block+1] ;
            nk = k2 - k1 ;
            Ukk = ((Entry *) Numeric->Udiag) + k1 ;
            if (nk == 1)
            {
                /* singleton block */
                Up [k1] = nz ;
                Ui [nz] = k1 ;
                Ux [nz] = REAL (Ukk [0]) ;
#ifdef COMPLEX
                Uz [nz] = IMAG (Ukk [0]) ;
#endif
                nz++ ;
            }
            else
            {
                /* non-singleton block */
                LU = (Unit *) Numeric->LUbx [block] ;
                Uip = Numeric->Uip + k1 ;
                Ulen = Numeric->Ulen + k1 ;
                for (kk = 0 ; kk < nk ; kk++)
                {
                    Up [k1+kk] = nz ;
                    GET_POINTER (LU, Uip, Ulen, Ui2, Ux2, kk, len) ;
                    for (p = 0 ; p < len ; p++)
                    {
                        Ui [nz] = k1 + Ui2 [p] ;
                        Ux [nz] = REAL (Ux2 [p]) ;
#ifdef COMPLEX
                        Uz [nz] = IMAG (Ux2 [p]) ;
#endif
                        nz++ ;
                    }
                    /* add the diagonal entry */
                    Ui [nz] = k1 + kk ;
                    Ux [nz] = REAL (Ukk [kk]) ;
#ifdef COMPLEX
                    Uz [nz] = IMAG (Ukk [kk]) ;
#endif
                    nz++ ;
                }
            }
        }
        Up [n] = nz ;
        ASSERT (nz == Numeric->unz) ;
    }

    /* ---------------------------------------------------------------------- */
    /* extract the off-diagonal blocks, F */
    /* ---------------------------------------------------------------------- */

    if (Fp != NULL && Fi != NULL && Fx != NULL
#ifdef COMPLEX
        && Fz != NULL
#endif
    )
    {
        for (k = 0 ; k <= n ; k++)
        {
            Fp [k] = Numeric->Offp [k] ;
        }
        nz = Fp [n] ;
        for (k = 0 ; k < nz ; k++)
        {
            Fi [k] = Numeric->Offi [k] ;
        }
        for (k = 0 ; k < nz ; k++)
        {
            Fx [k] = REAL (((Entry *) Numeric->Offx) [k]) ;
#ifdef COMPLEX
            Fz [k] = IMAG (((Entry *) Numeric->Offx) [k]) ;
#endif
        }
    }

    return (TRUE) ;
}

#endif