/usr/include/timbl/TimblExperiment.h is in libtimbl4-dev 6.4.6-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | /*
$Id: TimblExperiment.h 16820 2014-01-06 10:12:30Z sloot $
$URL: https://ilk.uvt.nl/svn/trunk/sources/Timbl6/include/timbl/TimblExperiment.h $
Copyright (c) 1998 - 2014
ILK - Tilburg University
CLiPS - University of Antwerp
This file is part of timbl
timbl is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
timbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
For questions and suggestions, see:
http://ilk.uvt.nl/software.html
or send mail to:
timbl@uvt.nl
*/
#ifndef TIMBL_EXPERIMENT_H
#define TIMBL_EXPERIMENT_H
#include <sys/time.h>
#include <fstream>
#include <set>
#include "ticcutils/XMLtools.h"
#include "timbl/BestArray.h"
#include "timbl/Statistics.h"
#include "timbl/MBLClass.h"
namespace Timbl {
class TimblAPI;
class ConfusionMatrix;
class CL_Options;
class GetOptClass;
class resultStore: public MsgClass {
public:
resultStore(): dist(0), disposable(false), isTop(false), beam(0) {};
~resultStore();
bool reset( int, normType, double, const Target * );
void clear();
void addConstant( const ValueDistribution * );
void addTop( const ValueDistribution * );
void addDisposable( ValueDistribution * );
const WValueDistribution *getResultDist();
std::string getResult();
void prepare();
void normalize();
double confidence( const TargetValue* tv ) const {
return dist->Confidence( tv );
};
private:
const ValueDistribution *rawDist;
WValueDistribution *dist;
bool disposable;
bool isTop;
int beam;
normType norm;
double factor;
const Target *targets;
std::string topCache;
std::string resultCache;
};
class fCmp {
public:
bool operator()( const FeatureValue* F, const FeatureValue* G ) const{
return F->Index() > G->Index();
}
};
typedef std::map<FeatureValue*,std::set<std::streamsize>, fCmp> fileIndex;
typedef std::map<FeatureValue*, fileIndex, fCmp > fileDoubleIndex;
std::ostream& operator<< ( std::ostream&, const fileIndex& );
std::ostream& operator<< ( std::ostream&, const fileDoubleIndex& );
class threadData;
class TimblExperiment: public MBLClass {
friend class TimblAPI;
friend class threadData;
friend class threadBlock;
public:
virtual ~TimblExperiment();
virtual TimblExperiment *clone() const = 0;
TimblExperiment& operator=( const TimblExperiment& );
virtual bool Prepare( const std::string& = "", bool = true, bool = false );
virtual bool CVprepare( const std::string& = "",
WeightType = GR_w,
const std::string& = "" );
virtual bool Increment( const std::string& )
{ FatalError( "Increment" ); return false; };
virtual bool Decrement( const std::string& )
{ FatalError( "Decrement" ); return false; };
virtual bool Expand( const std::string& );
virtual bool Remove( const std::string& ){
FatalError( "Remove" ); return false;};
virtual bool Test( const std::string&,
const std::string& );
virtual bool NS_Test( const std::string&,
const std::string& );
virtual void InitInstanceBase() = 0;
virtual bool ReadInstanceBase( const std::string& );
virtual bool WriteInstanceBase( const std::string& );
bool chopLine( const std::string& );
bool WriteInstanceBaseXml( const std::string& );
bool WriteInstanceBaseLevels( const std::string&, unsigned int );
bool WriteNamesFile( const std::string& ) const;
virtual bool Learn( const std::string& = "", bool = true );
int Estimate() const { return estimate; };
void Estimate( int e ){ estimate = e; };
int Clones() const { return numOfThreads; };
void Clones( int cl ) { numOfThreads = cl; };
void setOutPath( const std::string& s ){ outPath = s; };
TimblExperiment *CreateClient( int ) const;
TimblExperiment *splitChild() const;
bool SetOptions( int, const char ** );
bool SetOptions( const std::string& );
bool SetOptions( const CL_Options& );
bool IndirectOptions( const CL_Options& );
bool ConfirmOptions();
bool DefaultOptions();
GetOptClass *getOptParams() const { return OptParams; };
void setOptParams( GetOptClass *op ) { OptParams = op; };
bool WriteArrays( const std::string& );
bool GetArrays( const std::string& );
bool WriteMatrices( const std::string& );
bool GetMatrices( const std::string& );
bool SaveWeights( const std::string& );
bool GetWeights( const std::string&, WeightType );
bool GetCurrentWeights( std::vector<double>& );
xmlNode *weightsToXML();
bool ShowOptions( std::ostream& );
bool ShowSettings( std::ostream& );
xmlNode *settingsToXML();
bool showBestNeighbors( std::ostream& ) const;
xmlNode *bestNeighborsToXML() const;
bool showStatistics( std::ostream& ) const;
void showInputFormat( std::ostream& ) const;
const std::string& ExpName() const { return exp_name; };
void setExpName( const std::string& s ) { exp_name = s; };
bool Classify( const std::string& , std::string& );
bool Classify( const std::string& , std::string&, double& );
bool Classify( const std::string& , std::string&, std::string&, double& );
size_t matchDepth() const { return match_depth; };
bool matchedAtLeaf() const { return last_leaf; };
virtual AlgorithmType Algorithm() const = 0;
const TargetValue *Classify( const std::string& Line,
const ValueDistribution *& db,
double& di ){
const TargetValue *res = classifyString( Line, di );
if ( res ){
normalizeResult();
db = bestResult.getResultDist();
}
return res;
}
const TargetValue *Classify( const std::string& Line ){
double dum_d;
return classifyString( Line, dum_d );
}
const TargetValue *Classify( const std::string& Line,
const ValueDistribution *& db ){
double dum_d;
const TargetValue *res = classifyString( Line, dum_d );
if ( res ){
normalizeResult();
db = bestResult.getResultDist();
}
return res;
}
const TargetValue *Classify( const std::string& Line,
double& di ){
return classifyString( Line, di );
}
const neighborSet *NB_Classify( const std::string& );
virtual void initExperiment( bool = false );
protected:
TimblExperiment( const AlgorithmType, const std::string& = "" );
virtual bool checkLine( const std::string& );
virtual bool ClassicLearn( const std::string& = "", bool = true );
virtual const TargetValue *LocalClassify( const Instance& ,
double&,
bool& );
virtual bool GetInstanceBase( std::istream& ) = 0;
virtual void showTestingInfo( std::ostream& );
virtual bool checkTestFile();
bool learnFromFileIndex( const fileIndex&, std::istream& );
bool initTestFiles( const std::string&, const std::string& );
void show_results( std::ostream&,
const double,
const std::string&,
const TargetValue *,
const double ) ;
void testInstance( const Instance&,
InstanceBase_base *,
size_t = 0 );
void normalizeResult();
const neighborSet *LocalClassify( const Instance& );
bool nextLine( std::istream &, std::string&, int& );
bool nextLine( std::istream &, std::string& );
bool skipARFFHeader( std::istream & );
void show_progress( std::ostream& os, time_t, unsigned int );
bool createPercFile( const std::string& = "" ) const;
void show_speed_summary( std::ostream& os,
const timeval& ) const;
void show_ignore_info( std::ostream& os ) const;
void show_weight_info( std::ostream& os ) const;
void show_metric_info( std::ostream& os ) const;
double sum_remaining_weights( size_t ) const;
bool build_file_index( const std::string&, fileIndex& );
bool build_file_multi_index( const std::string&, fileDoubleIndex& );
bool Initialized;
GetOptClass *OptParams;
AlgorithmType algorithm;
std::string CurrentDataFile;
std::string WFileName;
std::string outPath;
std::string testStreamName;
std::string outStreamName;
std::ifstream testStream;
std::ofstream outStream;
unsigned long ibCount;
ConfusionMatrix *confusionInfo;
std::vector<Instance> instances;
StatisticsClass stats;
resultStore bestResult;
size_t match_depth;
bool last_leaf;
private:
TimblExperiment( const TimblExperiment& );
int estimate;
int numOfThreads;
const TargetValue *classifyString( const std::string& , double& );
};
class IB1_Experiment: public TimblExperiment {
public:
IB1_Experiment( const size_t N = DEFAULT_MAX_FEATS,
const std::string& s= "",
const bool init = true );
bool Increment( const std::string& );
bool Decrement( const std::string& );
// bool Expand( const std::string& );
bool Remove( const std::string& );
AlgorithmType Algorithm() const { return IB1_a; };
void InitInstanceBase();
bool NS_Test( const std::string&,
const std::string& );
protected:
TimblExperiment *clone() const {
return new IB1_Experiment( MaxFeats(), "", false );
};
bool checkTestFile();
bool checkLine( const std::string& );
bool Increment( const Instance& I ) { return UnHideInstance( I ); };
bool Decrement( const Instance& I ) { return HideInstance( I ); };
private:
bool GetInstanceBase( std::istream& );
};
class IB2_Experiment: public IB1_Experiment {
public:
IB2_Experiment( size_t N, const std::string& s="" ):
IB1_Experiment( N, s ) {
IB2_offset( 0 );
};
bool Prepare( const std::string& = "", bool = false, bool = false );
bool Expand( const std::string& );
bool Remove( const std::string& );
bool Learn( const std::string& = "", bool = false );
AlgorithmType Algorithm() const { return IB2_a; };
protected:
bool checkTestFile( );
TimblExperiment *clone() const { return new IB2_Experiment( MaxFeats() ); };
bool Expand_N( const std::string& );
bool show_learn_progress( std::ostream& os, time_t, size_t );
};
class LOO_Experiment: public IB1_Experiment {
public:
LOO_Experiment( int N, const std::string& s = "" ):
IB1_Experiment( N, s ) {
};
bool Test( const std::string&,
const std::string& );
AlgorithmType Algorithm() const { return LOO_a; };
bool ReadInstanceBase( const std::string& );
void initExperiment( bool = false );
protected:
bool checkTestFile( );
void showTestingInfo( std::ostream& );
};
class CV_Experiment: public IB1_Experiment {
public:
CV_Experiment( int N = DEFAULT_MAX_FEATS, const std::string& s = "" ):
IB1_Experiment( N, s ), NumOfFiles( 0 ), FileNames( NULL )
{ };
~CV_Experiment(){ delete [] FileNames; };
bool Learn( const std::string& = "", bool = true );
bool Prepare( const std::string& = "", bool = true, bool = false );
bool Test( const std::string&,
const std::string& );
bool CVprepare( const std::string& = "",
WeightType = GR_w,
const std::string& = "" );
AlgorithmType Algorithm() const { return CV_a; };
protected:
bool checkTestFile();
bool get_file_names( const std::string& );
private:
CV_Experiment( const CV_Experiment& );
CV_Experiment& operator=( const CV_Experiment& );
int NumOfFiles;
std::string *FileNames;
std::string CV_WfileName;
std::string CV_PfileName;
WeightType CV_fileW;
};
class TRIBL_Experiment: public TimblExperiment {
public:
TRIBL_Experiment( const size_t N = DEFAULT_MAX_FEATS,
const std::string& s = "",
const bool init = true ):
TimblExperiment( TRIBL_a, s ) {
if ( init ) InitClass( N );
};
void InitInstanceBase();
protected:
TimblExperiment *clone() const {
return new TRIBL_Experiment( MaxFeats(), "", false ); };
void showTestingInfo( std::ostream& );
bool checkTestFile();
AlgorithmType Algorithm() const { return TRIBL_a; };
bool checkLine( const std::string& );
const TargetValue *LocalClassify( const Instance& ,
double&,
bool& );
private:
bool GetInstanceBase( std::istream& );
};
class TRIBL2_Experiment: public TimblExperiment {
public:
TRIBL2_Experiment( const size_t N = DEFAULT_MAX_FEATS,
const std::string& s = "",
const bool init = true ):
TimblExperiment( TRIBL2_a, s ) {
if ( init ) InitClass( N );
};
void InitInstanceBase();
protected:
TimblExperiment *clone() const {
return new TRIBL2_Experiment( MaxFeats(), "", false ); };
bool checkTestFile();
AlgorithmType Algorithm() const { return TRIBL2_a; };
bool checkLine( const std::string& );
const TargetValue *LocalClassify( const Instance& ,
double&,
bool& );
private:
bool GetInstanceBase( std::istream& );
};
class IG_Experiment: public TimblExperiment {
public:
IG_Experiment( const size_t N = DEFAULT_MAX_FEATS,
const std::string& s = "",
const bool init = true ):
TimblExperiment( IGTREE_a, s ) {
if ( init ) InitClass( N );
};
AlgorithmType Algorithm() const { return IGTREE_a; };
void InitInstanceBase();
bool WriteInstanceBase( const std::string& );
bool ReadInstanceBase( const std::string& );
void initExperiment( bool = false );
bool Expand( const std::string& ){
FatalError( "Expand not supported for IGTree" );
return false;
};
protected:
TimblExperiment *clone() const {
return new IG_Experiment( MaxFeats(), "", false ); };
bool ClassicLearn( const std::string& = "", bool = true );
bool checkTestFile();
void showTestingInfo( std::ostream& );
bool checkLine( const std::string& );
bool sanityCheck() const;
const TargetValue *LocalClassify( const Instance&,
double&,
bool& );
private:
bool GetInstanceBase( std::istream& );
};
}
#endif // TIMBL_EXPERIMENT_H
|