This file is indexed.

/usr/include/ThePEG/Utilities/Maths.h is in libthepeg-dev 1.8.0-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// -*- C++ -*-
//
// Maths.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_Math_H
#define ThePEG_Math_H

#include <cmath>

namespace ThePEG {

/** The Math namespace includes the declaration of some useful
 *  mathematical functions. */
namespace Math {

/**
 * MathType is an empty non-polymorphic base class for all
 * mathematical function types.
 */
struct MathType {};

/** The gamma function */
double gamma(double);

/** The log of the gamma function */
double lngamma(double);

/** Return \f${\rm atanh}(x)\f$ */
double atanh(double);

/** Return \f$1-e^x\f$, with highest possible precision for
 *  \f$x\rightarrow 0\f$. */
double exp1m(double x);

/** Return \f$1\log(1-x)\f$, with highest possible precision for
 *  \f$x\rightarrow 0\f$. */
double log1m(double);

/** Return x rased to the integer power p, using recursion. */
double powi(double x, int p);

/** Return the integral of \f$x^p dx\f$ between xl and xu. */
inline double pIntegrate(double p, double xl, double xu) {
  return p == -1.0? log(xu/xl): (pow(xu, p + 1.0) - pow(xl, p + 1.0))/(p + 1.0);
}

/** Return the integral of \f$x^p dx\f$ between xl and xu. */
inline double pIntegrate(int p, double xl, double xu) {
  return p == -1? log(xu/xl): (powi(xu, p + 1) - powi(xl, p + 1))/double(p + 1);
}

/** Return the integral of \f$x^{e-1} dx\f$ between xl and xl+dx with
 *  highest possible precision for \f$dx\rightarrow 0\f$ and/or
 *  \f$e\rightarrow 0\f$. */
inline double pXIntegrate(double e, double xl, double dx) {
  return e == 0.0? log1m(-dx/xl): -pow(xl, e)*exp1m(e*log1m(-dx/xl))/e;
}

/** Generate an x between xl and xu distributed as \f$x^p\f$. */
inline double pGenerate(double p, double xl, double xu, double rnd) {
  return p == -1.0? xl*pow(xu/xl, rnd):
    pow((1.0 - rnd)*pow(xl, p + 1.0) + rnd*pow(xu, p + 1.0), 1.0/(1.0 + p));
}

/** Generate an x between xl and xu distributed as \f$x^p\f$. */
inline double pGenerate(int p, double xl, double xu, double rnd) {
  return p == -1? xl*pow(xu/xl, rnd):
    pow((1.0 - rnd)*powi(xl, p + 1) + rnd*powi(xu, p + 1), 1.0/double(1 + p));
}

/** Generate an x between xl and xl + dx distributed as \f$x^{e-1}\f$
 *  with highest possible precision for\f$dx\rightarrow 0\f$ and/or *
 *  \f$e\rightarrow 0\f$.
 * @param e the parameter defining the power in \f$x^{e-1}\f$.
 * @param xl the lower bound of the generation interval.
 * @param dx the interval.
 * @param rnd a flat random number in the interval ]0,1[. */
inline double pXGenerate(double e, double xl, double dx, double rnd) {
  return e == 0.0? -xl*exp1m(rnd*log1m(-dx/xl)):
    -exp1m(log1m(rnd*exp1m(e*log1m(-dx/xl)))/e)*xl;
}

/** Returns (x - y)/(|x| + |y|). */
template <typename FloatType>
inline double relativeError(FloatType x, FloatType y) {
  return ( x == y ? 0.0 : double((x - y)/(abs(x) + abs(y))) );
}

/** Return x if |x|<|y|, else return y. */
template <typename T>
inline T absmin(const T & x, const T & y) {
  return abs(x) < abs(y)? x: y;
}

/** Return x if |x|>|y|, else return y. */
template <typename T>
inline T absmax(const T & x, const T & y) {
  return abs(x) > abs(y)? x: y;
}

/** Transfer the sign of the second argument to the first.
 * @return \f$|x|\f$ if \f$y>0\f$ otherwise return \f$-|x|\f$.
 */
template <typename T, typename U>
inline T sign(T x, U y) {
  return y > U()? abs(x): -abs(x);
}

/** Templated class for calculating integer powers. */
//@{
/**
 *  Struct for powers
 */
template <int N, bool Inv>
struct Power: public MathType {};

/**
 *  Struct for powers
 */
template <int N>
struct Power<N,false> {
  /** Member for the power*/
  static double pow(double x) { return x*Power<N-1,false>::pow(x); }
};

/**
 *  Struct for powers
 */
template <int N>
struct Power<N,true> {
  /** Member for the power*/
  static double pow(double x) { return Power<N+1,true>::pow(x)/x; }
};

/**
 *  Struct for powers
 */
template <>
struct Power<0,true> {
  /** Member for the power*/
  static double pow(double) { return 1.0; }
};

/**
 *  Struct for powers
 */
template <>
struct Power<0,false> {
  /** Member for the power*/
  static double pow(double) { return 1.0; }
};
//@}

/** Templated function to calculate integer powers known at
 *  compile-time. */
template <int N>
inline double Pow(double x) { return Power<N, (N < 0)>::pow(x); }

/** This namespace introduces some useful function classes with known
 *  primitive and inverse primitive functions. Useful to sample
 *  corresponding distributions.*/
namespace Functions {

/** Class corresponding to functions of the form \f$x^N\f$ with integer N. */
template <int N>
struct PowX: public MathType {

  /** The primitive function. */
  static double primitive(double x) { 
    return Pow<N+1>(x)/double(N+1); 
  }

  /** Integrate function in a given interval. */
  static double integrate(double x0, double x1) {
    return primitive(x1) - primitive(x0);
  }

  /** Sample a distribution in a given interval given a flat random
   *  number R in the interval ]0,1[. */
  static double generate(double x0, double x1, double R) {
    return pow(primitive(x0) + R*integrate(x0, x1), 1.0/double(N+1));
  }

};

/** @cond TRAITSPECIALIZATIONS */

/**
 *  Template for generating according to a specific power
 */
template <>
inline double PowX<1>::generate(double x0, double x1, double R) {
  return std::sqrt(x0*x0 + R*(x1*x1 - x0*x0));
}

/**
 *  Template for generating according to a specific power
 */
template <>
inline double PowX<0>::generate(double x0, double x1, double R) {
  return x0 + R*(x1 - x0);
}

/**
 *  Template for generating according to a specific power
 */
template<>
inline double PowX<-1>::primitive(double x) {
  return log(x);
}

/**
 *  Template for generating according to a specific power
 */
template <>
inline double PowX<-1>::integrate(double x0, double x1) {
  return log(x1/x0);
}

/**
 *  Template for generating according to a specific power
 */
template <>
inline double PowX<-1>::generate(double x0, double x1, double R) {
  return x0*pow(x1/x0, R);
}

/**
 *  Template for generating according to a specific power
 */
template <>
inline double PowX<-2>::generate(double x0, double x1, double R) {
  return x0*x1/(x1 - R*(x1 - x0));
}

/**
 *  Template for generating according to a specific power
 */
template <>
inline double PowX<-3>::generate(double x0, double x1, double R) {
  return x0*x1/std::sqrt(x1*x1 - R*(x1*x1 - x0*x0));
}

/** @endcond */



/** Class corresponding to functions of the form \f$(1-x)^N\f$
 *  with integer N. */
template <int N>
struct Pow1mX: public MathType {

  /** The primitive function. */
  static double primitive(double x) {
    return -PowX<N>::primitive(1.0 - x);
  }

  /** Integrate function in a given interval. */
  static double integrate(double x0, double x1) {
    return PowX<N>::integrate(1.0 - x1, 1.0 - x0);
  }

  /** Sample a distribution in a given interval given a flat random
   *  number R in the interval ]0,1[. */
  static double generate(double x0, double x1, double R) {
    return 1.0 - PowX<N>::generate(1.0 - x1, 1.0 - x0, R);
  }

};

/** Class corresponding to functions of the form \f$1/(x(1-x))\f$ */
struct InvX1mX: public MathType {

  /** The primitive function. */
  static double primitive(double x) {
    return log(x/(1.0 - x));
  }

  /** Integrate function in a given interval. */
  static double integrate(double x0, double x1) {
    return log(x1*(1.0 - x0)/(x0*(1.0 - x1)));
  }

  /** Sample a distribution in a given interval given a flat random
   *  number R in the interval ]0,1[. */
  static double generate(double x0, double x1, double R) {
    double r = pow(x1*(1.0 - x0)/(x0*(1.0 - x1)), R)*x0/(1.0 - x0);
    return r/(1.0 + r);
  }

};

/** Class corresponding to functions of the form \f$e^x\f$ */
struct ExpX: public MathType {

  /** The primitive function. */
  static double primitive(double x) { 
    return exp(x);
  }

  /** Integrate function in a given interval. */
  static double integrate(double x0, double x1) {
    return exp(x1) - exp(x0);
  }

  /** Sample a distribution in a given interval given a flat random
   *  number R in the interval ]0,1[. */
  static double generate(double x0, double x1, double R) {
    return log(exp(x0) + R*(exp(x1) - exp(x0)));
  }

};  

/** Class corresponding to functions of the form \f$x^{N/D}\f$
 *  with integer N and D. */
template <int N, int D>
struct FracPowX: public MathType {

  /** The primitive function. */
  static double primitive(double x) {
    double r = double(N)/double(D) + 1.0;
    return pow(x, r)/r;
  }

  /** Integrate function in a given interval. */
  static double integrate(double x0, double x1) {
    return primitive(x1) - primitive(x0);
  }

  /** Sample a distribution in a given interval given a flat random
   *  number R in the interval ]0,1[. */
  static double generate(double x0, double x1, double R) {
    double r = double(N)/double(D) + 1.0;
    return pow(primitive(x0) + R*integrate(x0, x1), 1.0/r);
  }

};

}

}

}

#endif /* ThePEG_Math_H */