This file is indexed.

/usr/include/ThePEG/PDF/PDFBase.h is in libthepeg-dev 1.8.0-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// -*- C++ -*-
//
// PDFBase.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_PDFBase_H
#define ThePEG_PDFBase_H
// This is the declaration of the PDFBase class.

#include "ThePEG/Config/ThePEG.h"
#include "ThePEG/Handlers/HandlerBase.h"
#include "ThePEG/PDF/PDFCuts.h"
#include "PDFBase.xh"

namespace ThePEG {

/**
 * PDFBase is the base class for implementing parton density functions
 * for particles with sub-structure. A number of of virtual methods
 * are defined which should be overridden by sub-classes.
 *
 * It is essential that either xfx or xfl is overidden to avoid
 * infinite recursive function calls.
 *
 * A PDFBase object can be assigned to a BeamParticleData object
 * and/or to a PartonExtractor object. A PDFBase has a pointer to a
 * RemnantHandler object which should be capable of generating
 * remnants for all partons which may be extracted by the PDF.
 *
 * @see \ref PDFBaseInterfaces "The interfaces"
 * defined for PDFBase.
 * @see BeamParticleData
 * @see PartonExtractor
 * @see RemnantHandler
 * @see PDFCuts
 */
class PDFBase: public HandlerBase {

public:

  /** @name Standard constructors and destructors. */
  //@{
  /**
   * Default constructor.
   */
  PDFBase();

  /**
   * Copy-constructor.
   */
  PDFBase(const PDFBase &);

  /**
   * Destructor.
   */
  virtual ~PDFBase();
  //@}

public:

  /** @name Virtual functions to be overridden by sub-classes. */
  //@{
  /**
   * Return true if this PDF can handle the extraction of partons from
   * the given \a particle.
   */
  virtual bool canHandleParticle(tcPDPtr particle) const = 0;

  /**
   * Return true if canHandleParticle() and if the corresponding
   * method for remnantHandler() returns true for the given \a
   * particle.
   */
  virtual bool canHandle(tcPDPtr particle) const;

  /**
   * Return true if this PDF has a pole at $x=1$ for the given \a
   * particle and \a parton. This default version of the function
   * returns false.
   */
  virtual bool hasPoleIn1(tcPDPtr particle, tcPDPtr parton) const;

  /**
   * Return the partons which this PDF may extract from the given
   * \a particle.
   */
  virtual cPDVector partons(tcPDPtr particle) const = 0;

  /**
   * The density. Return the pdf for the given \a parton inside the
   * given \a particle for the virtuality \a partonScale and
   * logarithmic momentum fraction \a l \f$(l=\log(1/x)\f$. The \a
   * particle is assumed to have a virtuality \a particleScale.
   */
  virtual double xfl(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
		     double l, Energy2 particleScale = ZERO) const;

  /**
   * The density. Return the pdf for the given \a parton inside the
   * given \a particle for the virtuality \a partonScale and momentum
   * fraction \a x. The \a particle is assumed to have a virtuality \a
   * particleScale.
   */
  virtual double xfx(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
		     double x, double eps = 0.0,
		     Energy2 particleScale = ZERO) const;

  /**
   * The valence density. Return the pdf for the given cvalence \a
   * parton inside the given \a particle for the virtuality \a
   * partonScale and logarithmic momentum fraction \a l
   * \f$(l=\log(1/x)\f$. The \a particle is assumed to have a
   * virtuality \a particleScale. If not overidden by a sub class this
   * implementation will assume that the difference between a quark
   * and anti-quark distribution is due do valense quarks, but return
   * zero for anything else.
   */
  virtual double xfvl(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
		     double l, Energy2 particleScale = ZERO) const;

  /**
   * The valence density. Return the pdf for the given cvalence \a
   * parton inside the given \a particle for the virtuality \a
   * partonScale and momentum fraction \a x. The \a particle is
   * assumed to have a virtuality \a particleScale. If not overidden
   * by a sub class this implementation will assume that the
   * difference between a quark and anti-quark distribution is due do
   * valense quarks, but return zero for anything else.
   */
  virtual double xfvx(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
		      double x, double eps = 0.0,
		      Energy2 particleScale = ZERO) const;

  /**
   * The sea density. Return the pdf for the given cvalence \a
   * parton inside the given \a particle for the virtuality \a
   * partonScale and logarithmic momentum fraction \a l
   * \f$(l=\log(1/x)\f$. The \a particle is assumed to have a
   * virtuality \a particleScale. If not overidden by a sub class this
   * implementation will assume that the difference between a quark
   * and anti-quark distribution is due do valense quarks.
   */
  virtual double xfsl(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
		      double l, Energy2 particleScale = ZERO) const;

  /**
   * The sea density. Return the pdf for the given cvalence \a
   * parton inside the given \a particle for the virtuality \a
   * partonScale and momentum fraction \a x. The \a particle is
   * assumed to have a virtuality \a particleScale. If not overidden
   * by a sub class this implementation will assume that the
   * difference between a quark and anti-quark distribution is due do
   * valense quarks.
   */
  virtual double xfsx(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
		      double x, double eps = 0.0,
		      Energy2 particleScale = ZERO) const;

  /**
   * Generate a momentum fraction. If the PDF contains strange peaks
   * which can be difficult to handle, this function may be
   * overwritten to return an appropriate \f$l=\log(1/x)\f$ for a \a z
   * uniformly distributed in ]0,1[. Also the jacobobian of the
   * \f$l\rightarrow z\f$ variable transformation must in the function
   * multiply the \a jacobian argument. The default version will
   * simply use the function \f$l(z) = l_{\min} +
   * z*(l_{\max}-l_{\min})\f$ (where the limits are set by \a cut).
   */
  virtual double flattenL(tcPDPtr particle, tcPDPtr parton, const PDFCuts &cut,
			  double z, double & jacobian) const;

  /**
   * Generate scale (as a fraction of the maximum scale). If the PDF
   * contains strange peaks which can be difficult to handle, this
   * function may be overwritten to return an appropriate scale
   * \f$Q^2/Q^2_{\max}\f$ for a \a z uniformly distributed in
   * ]0,1[. Also the jacobobian of the \f$Q^2/Q^2_{\max}\rightarrow
   * z\f$ variable transformation must multiply the \a jacobian
   * argument. The default version will simply use the function
   * \f$Q^2/Q^2_{\max} = (Q^2_{\max}/Q^2_{\min})^(z-1)\f$ or, if
   * \f$Q^2_{\min}\f$ is zero, \f$Q^2/Q^2_{\max} = z\f$ (where the
   * limits are set by \a cut).
   */
  virtual double flattenScale(tcPDPtr particle, tcPDPtr parton,
			       const PDFCuts & cut, double l, double z,
			       double & jacobian) const;
  //@}

  /**
   * Pointer to the remnant handler to handle remnant when extracting
   * partons according to these densities.
   */
  tcRemHPtr remnantHandler() const { return theRemnantHandler; }


public:

  /** @name Functions used by the persistent I/O system. */
  //@{
  /**
   * Function used to write out object persistently.
   * @param os the persistent output stream written to.
   */
  void persistentOutput(PersistentOStream & os) const;

  /**
   * Function used to read in object persistently.
   * @param is the persistent input stream read from.
   * @param version the version number of the object when written.
   */
  void persistentInput(PersistentIStream & is, int version);
  //@}

  /**
   * Standard Init function used to initialize the interface.
   */
  static void Init();

protected:

  /** @name Standard Interfaced functions. */
  //@{
  /**
   * Initialize this object after the setup phase before saving an
   * EventGenerator to disk.
   * @throws InitException if object could not be initialized properly.
   */
  virtual void doinit();

protected:

  /**
   * A remnant handler which can generate remnants for the parton
   * extracted withfor this PDF
   */
  RemHPtr theRemnantHandler;

protected:

  /**
   * Indicate how to deal with x and Q2 which are out of range.
   */
  enum RangeException {
    rangeFreeze, /**> Freeze the value of the PDF outside the limits. */
    rangeZero,   /**> Set the PDF to zero outside the limits. */
    rangeThrow   /**> Throw an exception if outside the limits. */
  };

  /**
   * Indicate to subclasses how to deal with x and Q2 which are out of
   * range.
   */
  RangeException rangeException;

private:


  /**
   * The static object used to initialize the description of this class.
   * Indicates that this is an abstract class with persistent data.
   */
  static AbstractClassDescription<PDFBase> initPDFBase;

  /**
   *  Private and non-existent assignment operator.
   */
  PDFBase & operator=(const PDFBase &);

};

ThePEG_DECLARE_CLASS_TRAITS(PDFBase,HandlerBase);

}

#endif /* ThePEG_PDFBase_H */