/usr/include/ThePEG/PDF/PDFBase.h is in libthepeg-dev 1.8.0-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | // -*- C++ -*-
//
// PDFBase.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_PDFBase_H
#define ThePEG_PDFBase_H
// This is the declaration of the PDFBase class.
#include "ThePEG/Config/ThePEG.h"
#include "ThePEG/Handlers/HandlerBase.h"
#include "ThePEG/PDF/PDFCuts.h"
#include "PDFBase.xh"
namespace ThePEG {
/**
* PDFBase is the base class for implementing parton density functions
* for particles with sub-structure. A number of of virtual methods
* are defined which should be overridden by sub-classes.
*
* It is essential that either xfx or xfl is overidden to avoid
* infinite recursive function calls.
*
* A PDFBase object can be assigned to a BeamParticleData object
* and/or to a PartonExtractor object. A PDFBase has a pointer to a
* RemnantHandler object which should be capable of generating
* remnants for all partons which may be extracted by the PDF.
*
* @see \ref PDFBaseInterfaces "The interfaces"
* defined for PDFBase.
* @see BeamParticleData
* @see PartonExtractor
* @see RemnantHandler
* @see PDFCuts
*/
class PDFBase: public HandlerBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Default constructor.
*/
PDFBase();
/**
* Copy-constructor.
*/
PDFBase(const PDFBase &);
/**
* Destructor.
*/
virtual ~PDFBase();
//@}
public:
/** @name Virtual functions to be overridden by sub-classes. */
//@{
/**
* Return true if this PDF can handle the extraction of partons from
* the given \a particle.
*/
virtual bool canHandleParticle(tcPDPtr particle) const = 0;
/**
* Return true if canHandleParticle() and if the corresponding
* method for remnantHandler() returns true for the given \a
* particle.
*/
virtual bool canHandle(tcPDPtr particle) const;
/**
* Return true if this PDF has a pole at $x=1$ for the given \a
* particle and \a parton. This default version of the function
* returns false.
*/
virtual bool hasPoleIn1(tcPDPtr particle, tcPDPtr parton) const;
/**
* Return the partons which this PDF may extract from the given
* \a particle.
*/
virtual cPDVector partons(tcPDPtr particle) const = 0;
/**
* The density. Return the pdf for the given \a parton inside the
* given \a particle for the virtuality \a partonScale and
* logarithmic momentum fraction \a l \f$(l=\log(1/x)\f$. The \a
* particle is assumed to have a virtuality \a particleScale.
*/
virtual double xfl(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
double l, Energy2 particleScale = ZERO) const;
/**
* The density. Return the pdf for the given \a parton inside the
* given \a particle for the virtuality \a partonScale and momentum
* fraction \a x. The \a particle is assumed to have a virtuality \a
* particleScale.
*/
virtual double xfx(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
double x, double eps = 0.0,
Energy2 particleScale = ZERO) const;
/**
* The valence density. Return the pdf for the given cvalence \a
* parton inside the given \a particle for the virtuality \a
* partonScale and logarithmic momentum fraction \a l
* \f$(l=\log(1/x)\f$. The \a particle is assumed to have a
* virtuality \a particleScale. If not overidden by a sub class this
* implementation will assume that the difference between a quark
* and anti-quark distribution is due do valense quarks, but return
* zero for anything else.
*/
virtual double xfvl(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
double l, Energy2 particleScale = ZERO) const;
/**
* The valence density. Return the pdf for the given cvalence \a
* parton inside the given \a particle for the virtuality \a
* partonScale and momentum fraction \a x. The \a particle is
* assumed to have a virtuality \a particleScale. If not overidden
* by a sub class this implementation will assume that the
* difference between a quark and anti-quark distribution is due do
* valense quarks, but return zero for anything else.
*/
virtual double xfvx(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
double x, double eps = 0.0,
Energy2 particleScale = ZERO) const;
/**
* The sea density. Return the pdf for the given cvalence \a
* parton inside the given \a particle for the virtuality \a
* partonScale and logarithmic momentum fraction \a l
* \f$(l=\log(1/x)\f$. The \a particle is assumed to have a
* virtuality \a particleScale. If not overidden by a sub class this
* implementation will assume that the difference between a quark
* and anti-quark distribution is due do valense quarks.
*/
virtual double xfsl(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
double l, Energy2 particleScale = ZERO) const;
/**
* The sea density. Return the pdf for the given cvalence \a
* parton inside the given \a particle for the virtuality \a
* partonScale and momentum fraction \a x. The \a particle is
* assumed to have a virtuality \a particleScale. If not overidden
* by a sub class this implementation will assume that the
* difference between a quark and anti-quark distribution is due do
* valense quarks.
*/
virtual double xfsx(tcPDPtr particle, tcPDPtr parton, Energy2 partonScale,
double x, double eps = 0.0,
Energy2 particleScale = ZERO) const;
/**
* Generate a momentum fraction. If the PDF contains strange peaks
* which can be difficult to handle, this function may be
* overwritten to return an appropriate \f$l=\log(1/x)\f$ for a \a z
* uniformly distributed in ]0,1[. Also the jacobobian of the
* \f$l\rightarrow z\f$ variable transformation must in the function
* multiply the \a jacobian argument. The default version will
* simply use the function \f$l(z) = l_{\min} +
* z*(l_{\max}-l_{\min})\f$ (where the limits are set by \a cut).
*/
virtual double flattenL(tcPDPtr particle, tcPDPtr parton, const PDFCuts &cut,
double z, double & jacobian) const;
/**
* Generate scale (as a fraction of the maximum scale). If the PDF
* contains strange peaks which can be difficult to handle, this
* function may be overwritten to return an appropriate scale
* \f$Q^2/Q^2_{\max}\f$ for a \a z uniformly distributed in
* ]0,1[. Also the jacobobian of the \f$Q^2/Q^2_{\max}\rightarrow
* z\f$ variable transformation must multiply the \a jacobian
* argument. The default version will simply use the function
* \f$Q^2/Q^2_{\max} = (Q^2_{\max}/Q^2_{\min})^(z-1)\f$ or, if
* \f$Q^2_{\min}\f$ is zero, \f$Q^2/Q^2_{\max} = z\f$ (where the
* limits are set by \a cut).
*/
virtual double flattenScale(tcPDPtr particle, tcPDPtr parton,
const PDFCuts & cut, double l, double z,
double & jacobian) const;
//@}
/**
* Pointer to the remnant handler to handle remnant when extracting
* partons according to these densities.
*/
tcRemHPtr remnantHandler() const { return theRemnantHandler; }
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* Standard Init function used to initialize the interface.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
protected:
/**
* A remnant handler which can generate remnants for the parton
* extracted withfor this PDF
*/
RemHPtr theRemnantHandler;
protected:
/**
* Indicate how to deal with x and Q2 which are out of range.
*/
enum RangeException {
rangeFreeze, /**> Freeze the value of the PDF outside the limits. */
rangeZero, /**> Set the PDF to zero outside the limits. */
rangeThrow /**> Throw an exception if outside the limits. */
};
/**
* Indicate to subclasses how to deal with x and Q2 which are out of
* range.
*/
RangeException rangeException;
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is an abstract class with persistent data.
*/
static AbstractClassDescription<PDFBase> initPDFBase;
/**
* Private and non-existent assignment operator.
*/
PDFBase & operator=(const PDFBase &);
};
ThePEG_DECLARE_CLASS_TRAITS(PDFBase,HandlerBase);
}
#endif /* ThePEG_PDFBase_H */
|