/usr/include/ThePEG/MatrixElement/MEBase.h is in libthepeg-dev 1.8.0-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 | // -*- C++ -*-
//
// MEBase.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_MEBase_H
#define ThePEG_MEBase_H
// This is the declaration of the MEBase class.
#include "ThePEG/Handlers/HandlerBase.h"
#include "ThePEG/EventRecord/SubProcess.h"
#include "ThePEG/MatrixElement/DiagramBase.h"
#include "ThePEG/MatrixElement/ColourLines.h"
#include "ThePEG/MatrixElement/Amplitude.h"
#include "ThePEG/Handlers/LastXCombInfo.h"
#include "ThePEG/Handlers/StandardXComb.fh"
#include "ReweightBase.h"
#include "MEBase.fh"
namespace ThePEG {
/**
* The MEBase class is the base class of all objects
* representing hard matrix elements in ThePEG. There are three
* methods which must be overridden by a concrete subclass:<BR>
*
* includedDiagrams(tcPDPair) should return a vector of DiagramBase
* objects describing the diagrams used for this matrix element for
* the given pair of incoming parton types. These DiagramBases are
* used to identify the incoming and outgoing partons which can be
* handled by the process generation scheme, and is also used to
* cnstruct a corresponding SubProcess object.
*
* scale() should return the scale associated with the phase space
* point set with the last call to setKinematics(...) or
* generateKinematics(...).
*
* me() should return the the matrix element squared using the the
* type and momentum of the incoming and outgoing partons, previously
* set by the setKinematics(...) or generateKinematics(...) member
* functions, accessible through the methods meMomenta() and
* mePartonData() inherited from LastXCombInfo, and/or from
* information stored by sub classes. The returned value should be
* dimensionless suitable scaled by the total invariant mass squared
* (accessible through the sHat() member function). Any user of this
* method must make sure that the setKinematics(...) member function
* has been appropriately called before.
*
* colourGeometries() should return a Selector with the possible
* ColourLines objects weighted by their relative probabilities given
* the information set by the last call to setKinematics(...) or
* generateKinematics(...).
*
* There are other virtula functions which may be overridden as listed
* below.
*
* @see \ref MEBaseInterfaces "The interfaces"
* defined for MEBase.
* @see DiagramBase
* @see ColourLines
*
*/
class MEBase: public HandlerBase, public LastXCombInfo<StandardXComb> {
public:
/** A vector of pointers to DiagramBase objects. */
typedef vector<DiagPtr> DiagramVector;
/** The size_type used in the DiagramVector. */
typedef DiagramVector::size_type DiagramIndex;
/** A vector of pointers to ReweightBase objects. */
typedef vector<ReweightPtr> ReweightVector;
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Default constructor.
*/
MEBase();
/**
* Destructor.
*/
virtual ~MEBase();
//@}
public:
/** @name Virtual functions to be overridden by sub-classes.. */
//@{
/**
* Return the order in \f$\alpha_S\f$ in which this matrix element
* is given.
*/
virtual unsigned int orderInAlphaS() const = 0;
/**
* Return the order in \f$\alpha_{EM}\f$ in which this matrix
* element is given. Returns 0.
*/
virtual unsigned int orderInAlphaEW() const = 0;
/**
* Return the matrix element for the kinematical configuation
* previously provided by the last call to setKinematics(), suitably
* scaled by sHat() to give a dimension-less number.
*/
virtual double me2() const = 0;
/**
* Return the scale associated with the phase space point provided
* by the last call to setKinematics().
*/
virtual Energy2 scale() const = 0;
/**
* Return the value of \f$\alpha_S\f$ associated with the phase
* space point provided by the last call to setKinematics(). This
* versions returns SM().alphaS(scale()).
*/
virtual double alphaS() const;
/**
* Return the value of \f$\alpha_EM\f$ associated with the phase
* space point provided by the last call to setKinematics(). This
* versions returns SM().alphaEM(scale()).
*/
virtual double alphaEM() const;
/**
* Set the typed and momenta of the incoming and outgoing partons to
* be used in subsequent calls to me() and colourGeometries().
*/
void setKinematics(tPPair in, const PVector & out);
/**
* Set the typed and momenta of the incoming and outgoing partons to
* be used in subsequent calls to me() and colourGeometries()
* according to the associated XComb object. If the function is
* overridden in a sub class the new function must call the base
* class one first.
*/
virtual void setKinematics();
/**
* construct the spin information for the interaction
*/
virtual void constructVertex(tSubProPtr sub);
/**
* The number of internal degreed of freedom used in the matrix
* element. This default version returns 0;
*/
virtual int nDim() const;
/**
* Generate internal degrees of freedom given nDim() uniform random
* numbers in the interval ]0,1[. To help the phase space generator,
* the 'dSigHatDR' should be a smooth function of these numbers,
* although this is not strictly necessary. The return value should
* be true of the generation succeeded. If so the generated momenta
* should be stored in the meMomenta() vector.
*/
virtual bool generateKinematics(const double * r) = 0;
/**
* Return true, if this matrix element expects
* the incoming partons in their center-of-mass system
*/
virtual bool wantCMS() const { return true; }
/**
* If this is a dependent matrix element in a ME group, return true,
* if cuts should be inherited from the head matrix element, i.e. no
* cut is being applied to the dependent matrix element if the head
* configuration has passed the cuts.
*/
virtual bool headCuts() const { return false; }
/**
* If this is a dependent matrix element in a ME group, return true,
* if cuts should be ignored.
*/
virtual bool ignoreCuts() const { return false; }
/**
* If this is a dependent matrix element in a ME group, return true,
* if it applies to the process set in lastXComb()
*/
virtual bool apply() const { return true; }
/**
* Return the matrix element squared differential in the variables
* given by the last call to generateKinematics().
*/
virtual CrossSection dSigHatDR() const = 0;
/**
* Return true, if this matrix element will generate momenta for the
* incoming partons itself. The matrix element is required to store
* the incoming parton momenta in meMomenta()[0,1]. No mapping in
* tau and y is performed by the PartonExtractor object, if a
* derived class returns true here. The phase space jacobian is to
* include a factor 1/(x1 x2).
*/
virtual bool haveX1X2() const { return false; }
/**
* Return true, if this matrix element provides the PDF
* weight for the first incoming parton itself.
*/
virtual bool havePDFWeight1() const { return false; }
/**
* Return true, if this matrix element provides the PDF
* weight for the second incoming parton itself.
*/
virtual bool havePDFWeight2() const { return false; }
/**
* Return true, if the XComb steering this matrix element
* should keep track of the random numbers used to generate
* the last phase space point
*/
virtual bool keepRandomNumbers() const { return false; }
/**
* Comlete a SubProcess object using the internal degrees of freedom
* generated in the last generateKinematics() (and possible other
* degrees of freedom which was intergated over in dSigHatDR(). This
* default version does nothing. Will be made purely virtual in the
* future.
*/
virtual void generateSubCollision(SubProcess &);
/**
* Clear the information previously provided by a call to
* setKinematics(...).
*/
virtual void clearKinematics();
/**
* Add all possible diagrams with the add() function.
*/
virtual void getDiagrams() const = 0;
/**
* Return true, if this matrix element does not want to
* make use of mirroring processes; in this case all
* possible partonic subprocesses with a fixed assignment
* of incoming particles need to be provided through the diagrams
* added with the add(...) method.
*/
virtual bool noMirror () const { return false; }
/**
* Return all possible diagrams.
*/
const DiagramVector & diagrams() const {
if ( theDiagrams.empty() ) getDiagrams();
return theDiagrams;
}
/**
* Return a Selector with possible colour geometries for the selected
* diagram weighted by their relative probabilities.
*/
virtual Selector<const ColourLines *>
colourGeometries(tcDiagPtr diag) const = 0;
/**
* Select a ColpurLines geometry. The default version returns a
* colour geometry selected among the ones returned from
* colourGeometries(tcDiagPtr).
*/
virtual const ColourLines &
selectColourGeometry(tcDiagPtr diag) const;
/**
* With the information previously supplied with the
* setKinematics(...) method, a derived class may optionally
* override this method to weight the given diagrams with their
* (although certainly not physical) relative probabilities.
*/
virtual Selector<DiagramIndex> diagrams(const DiagramVector &) const {
return Selector<DiagramIndex>();
}
/**
* Select a diagram. Default version uses diagrams(const
* DiagramVector &) to select a diagram according to the
* weights. This is the only method used that should be outside of
* MEBase.
*/
virtual DiagramIndex diagram(const DiagramVector &) const;
/**
* Return true if this matrix element has associated (p)reWeight
* objects assigned.
*/
inline bool reweighted() const {
return reweights.size() > 0 || preweights.size() > 0;
}
/**
* With the information previously supplied with the
* setKinematics(...) methods, return the combined effects of the
* reweighters.
*/
double reWeight() const;
/**
* With the information previously supplied with the
* setKinematics(...) methods, return the comined effects of the
* peweighters.
*/
double preWeight() const;
/**
* Add objects to the list of reweighters.
*/
void addReweighter(tReweightPtr rw);
/**
* Add objects to the list of preweighters.
*/
void addPreweighter(tReweightPtr rw);
/**
* Return the amplitude associated with this matrix element. This
* function is allowed to return the null pointer if the amplitude
* is not available.
*/
Ptr<Amplitude>::pointer amplitude() const { return theAmplitude; }
/**
* Set the amplitude associated with this matrix element.
*/
void amplitude(Ptr<Amplitude>::pointer amp) { theAmplitude = amp; }
//@}
public:
/** @name Acces information about the last generated phase space point. */
//@{
/**
* Return the last set invariant mass squared.
*/
Energy2 sHat() const { return theLastSHat; }
/**
* Return the factor with which this matrix element was last
* pre-weighted.
*/
double preweight() const { return lastPreweight; }
/**
* Inform this matrix element that a new phase space
* point is about to be generated, so all caches should
* be flushed.
*/
virtual void flushCaches() {}
/**
* Set the XComb object to be used in the next call to
* generateKinematics() and dSigHatDR().
*/
virtual void setXComb(tStdXCombPtr);
/**
* Retrieve information obtained in the calculation of the cross
* section to be used later when selecting diagrams and colour flow.
*/
const DVector & meInfo() const;
/**
* Save information obtained in the calculation of the cross
* section to be used later when selecting diagrams and colour flow.
*/
void meInfo(const DVector & info) const;
/**
* If this matrix element is to be used together with others for
* CKKW reweighting and veto, this should give the multiplicity of
* outgoing particles in the highest multiplicity matrix element in
* the group.
*/
int maxMultCKKW() const { return theMaxMultCKKW; }
/**
* If this matrix element is to be used together with others for
* CKKW reweighting and veto, this should give the multiplicity of
* outgoing particles in the lowest multiplicity matrix element in
* the group.
*/
int minMultCKKW() const { return theMinMultCKKW; }
/**
* Set veto scales on the particles at the given
* SubProcess which has been generated using this
* matrix element.
*/
virtual void setVetoScales(tSubProPtr) const {}
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* Standard Init function used to initialize the interfaces.
*/
static void Init();
protected:
/**
* To be used by sub classes in the getDiagrams() method to add
* included diagrams.
*/
void add(DiagPtr dp) const { theDiagrams.push_back(dp); }
/**
* Access the momenta set by the last call to generateKinematics().
*/
vector<Lorentz5Momentum> & meMomenta();
using LastXCombInfo<StandardXComb>::meMomenta;
/**
* Set the matrix element squared as calculated
* for the last phase space point. This may optionally
* be used by a matrix element for caching.
*/
void lastME2(double v) const;
using LastXCombInfo<StandardXComb>::lastME2;
/**
* Set the partonic cross section as calculated
* for the last phase space point. This may optionally
* be used by a matrix element for caching.
*/
void lastMECrossSection(CrossSection v) const;
using LastXCombInfo<StandardXComb>::lastMECrossSection;
/**
* Set the PDF weight as calculated
* for the last phase space point, if the matrix
* element does supply PDF weights. This may optionally
* be used by a matrix element for caching.
*/
void lastMEPDFWeight(double v) const;
using LastXCombInfo<StandardXComb>::lastMEPDFWeight;
/**
* Set the last jacobian obtained when generating the kinematics for
* the call to dSigHatDR.
*/
void jacobian(double j);
using LastXCombInfo<StandardXComb>::jacobian;
/**
* Initialize all member variables from another
* MEBase object.
*
* @TODO remove?
*/
void use(tcMEPtr other);
/**
* Initialize the diagrams from another MEBase object.
*/
void useDiagrams(tcMEPtr other) const;
private:
/**
* The diagrams included for this matrix element.
*/
mutable DiagramVector theDiagrams;
/**
* The last set invariant mass squared.
*/
Energy2 theLastSHat;
/**
* The reweight objects modifying this matrix element.
*/
ReweightVector reweights;
/**
* The preweight objects modifying this matrix element.
*/
ReweightVector preweights;
/**
* The factor with which this matrix element was last pre-weighted.
*/
mutable double lastPreweight;
/**
* The amplitude associated with this matrix element.
*/
Ptr<Amplitude>::pointer theAmplitude;
/**
* If this matrix element is to be used together with others for
* CKKW reweighting and veto, this should give the multiplicity of
* outgoing particles in the highest multiplicity matrix element in
* the group.
*/
int theMaxMultCKKW;
/**
* If this matrix element is to be used together with others for
* CKKW reweighting and veto, this should give the multiplicity of
* outgoing particles in the lowest multiplicity matrix element in
* the group.
*/
int theMinMultCKKW;
private:
/**
* Describe an abstract base class with persistent data.
*/
static AbstractClassDescription<MEBase> initMEBase;
/**
* Private and non-existent assignment operator.
*/
MEBase & operator=(const MEBase &);
};
}
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/**
* This template specialization informs ThePEG about the base class of
* MEBase.
*/
template <>
struct BaseClassTrait<MEBase,1>: public ClassTraitsType {
/** Typedef of the base class of MEBase. */
typedef HandlerBase NthBase;
};
/**
* This template specialization informs ThePEG about the name of the
* MEBase class.
*/
template <>
struct ClassTraits<MEBase>: public ClassTraitsBase<MEBase> {
/** Return the class name. */
static string className() { return "ThePEG::MEBase"; }
};
/** @endcond */
}
#include "ThePEG/Handlers/StandardXComb.h"
#endif /* ThePEG_MEBase_H */
|