/usr/include/ThePEG/Analysis/LWH/Histogram2D.h is in libthepeg-dev 1.8.0-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 | // -*- C++ -*-
#ifndef LWH_Histogram2D_H
#define LWH_Histogram2D_H
//
// This is the declaration of the Histogram1D class.
//
#include "AIHistogram2D.h"
#include "ManagedObject.h"
#include "Axis.h"
#include "VariAxis.h"
#include <vector>
#include <stdexcept>
#include <iostream>
namespace LWH {
using namespace AIDA;
/**
* User level interface to 1D Histogram.
*/
class Histogram2D: public IHistogram2D, public ManagedObject {
public:
/** HistFactory is a friend. */
friend class HistogramFactory;
public:
/**
* Standard constructor.
*/
Histogram2D(int nx, double lox, double upx,
int ny, double loy, double upy)
: xfax(new Axis(nx, lox, upx)), xvax(0), yfax(new Axis(ny, loy, upy)),
sum(nx + 2, std::vector<int>(ny + 2)),
sumw(nx + 2, std::vector<double>(ny + 2)),
sumw2(nx + 2, std::vector<double>(ny + 2)),
sumxw(nx + 2, std::vector<double>(ny + 2)),
sumx2w(nx + 2, std::vector<double>(ny + 2)),
sumyw(nx + 2, std::vector<double>(ny + 2)),
sumy2w(nx + 2, std::vector<double>(ny + 2)) {
xax = xfax;
yax = yfax;
}
/**
* Standard constructor for variable bin width.
*/
Histogram2D(const std::vector<double> & xedges,
const std::vector<double> & yedges)
: xfax(0), xvax(new VariAxis(xedges)),
yfax(0), yvax(new VariAxis(xedges)),
sum(xedges.size() + 1, std::vector<int>(yedges.size() + 1)),
sumw(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
sumw2(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
sumxw(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
sumx2w(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
sumyw(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
sumy2w(xedges.size() + 1, std::vector<double>(yedges.size() + 1)) {
xax = xvax;
yax = yvax;
}
/**
* Copy constructor.
*/
Histogram2D(const Histogram2D & h)
: IBaseHistogram(h), IHistogram(h), IHistogram2D(h), ManagedObject(h),
xfax(0), xvax(0), yfax(0), yvax(0),
sum(h.sum), sumw(h.sumw), sumw2(h.sumw2),
sumxw(h.sumxw), sumx2w(h.sumx2w) ,
sumyw(h.sumyw), sumy2w(h.sumy2w){
const VariAxis * hxvax = dynamic_cast<const VariAxis *>(h.xax);
if ( hxvax ) xax = xvax = new VariAxis(*hxvax);
else xax = xfax = new Axis(dynamic_cast<const Axis &>(*h.xax));
const VariAxis * hyvax = dynamic_cast<const VariAxis *>(h.yax);
if ( hyvax ) yax = yvax = new VariAxis(*hyvax);
else yax = yfax = new Axis(dynamic_cast<const Axis &>(*h.yax));
}
/// Destructor.
virtual ~Histogram2D() {
delete xax;
delete yax;
}
/**
* Get the Histogram's title.
* @return The Histogram's title.
*/
std::string title() const {
return theTitle;
}
/**
* Get the Histogram's name.
* @return The Histogram's name
*/
std::string name() const {
return title();
}
/**
* Set the histogram title.
* @param title The title.
* @return false If title cannot be changed.
*/
bool setTitle(const std::string & title) {
theTitle = title;
return true;
}
/**
* Not implemented in LWH. will throw an exception.
*/
IAnnotation & annotation() {
throw std::runtime_error("LWH cannot handle annotations");
return *anno;
}
/**
* Not implemented in LWH. will throw an exception.
*/
const IAnnotation & annotation() const {
throw std::runtime_error("LWH cannot handle annotations");
return *anno;
}
/**
* Get the Histogram's dimension.
* @return The Histogram's dimension.
*/
int dimension() const {
return 2;
}
/**
* Reset the Histogram; as if just created.
* @return false If something goes wrong.
*/
bool reset() {
const int nx = xax->bins() + 2;
const int ny = yax->bins() + 2;
sum = std::vector< std::vector<int> >(nx, std::vector<int>(ny));
sumw = std::vector< std::vector<double> >(nx, std::vector<double>(ny));
sumw2 = sumw;
sumxw = sumw;
sumx2w = sumw;
sumyw = sumw;
sumy2w = sumw;
return true;
}
/**
* Get the number of in-range entries in the Histogram.
* @return The number of in-range entries.
*
*/
int entries() const {
int si = 0;
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
for ( int iy = 2; iy < yax->bins() + 2; ++iy ) si += sum[ix][iy];
return si;
}
/**
* Sum of the entries in all the IHistogram's bins,
* i.e in-range bins, UNDERFLOW and OVERFLOW.
* This is equivalent to the number of times the
* method fill was invoked.
* @return The sum of all the entries.
*/
int allEntries() const {
return entries() + extraEntries();
}
/**
* Number of entries in the UNDERFLOW and OVERFLOW bins.
* @return The number of entries outside the range of the IHistogram.
*/
int extraEntries() const {
int esum = sum[0][0] + sum[1][0] + sum[0][1] + sum[1][1];
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
esum += sum[ix][0] + sum[ix][1];
for ( int iy = 2; iy < yax->bins() + 2; ++iy )
esum += sum[0][iy] + sum[1][iy];
return esum;
}
/**
* Number of equivalent entries,
* i.e. <tt>SUM[ weight ] ^ 2 / SUM[ weight^2 ]</tt>
* @return The number of equivalent entries.
*/
double equivalentBinEntries() const {
double sw = 0.0;
double sw2 = 0.0;
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
sw += sumw[ix][iy];
sw2 += sumw2[ix][iy];
}
return sw2/(sw*sw);
}
/**
* Sum of in-range bin heights in the IHistogram,
* UNDERFLOW and OVERFLOW bins are excluded.
* @return The sum of the in-range bins heights.
*
*/
double sumBinHeights() const {
double sw = 0.0;
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
for ( int iy = 2; iy < yax->bins() + 2; ++iy ) sw += sumw[ix][iy];
return sw;
}
/**
* Sum of the heights of all the IHistogram's bins,
* i.e in-range bins, UNDERFLOW and OVERFLOW.
* @return The sum of all the bins heights.
*/
double sumAllBinHeights() const {
return sumBinHeights() + sumExtraBinHeights();
}
/**
* Sum of heights in the UNDERFLOW and OVERFLOW bins.
* @return The sum of the heights of the out-of-range bins.
*/
double sumExtraBinHeights() const {
int esum = sumw[0][0] + sumw[1][0] + sumw[0][1] + sumw[1][1];
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
esum += sumw[ix][0] + sumw[ix][1];
for ( int iy = 2; iy < yax->bins() + 2; ++iy )
esum += sumw[0][iy] + sumw[1][iy];
return esum;
}
/**
* Minimum height of the in-range bins,
* i.e. not considering the UNDERFLOW and OVERFLOW bins.
* @return The minimum height among the in-range bins.
*/
double minBinHeight() const {
double minw = sumw[2][2];
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
for ( int iy = 2; iy < yax->bins() + 2; ++iy )
minw = std::min(minw, sumw[ix][iy]);
return minw;
}
/**
* Maximum height of the in-range bins,
* i.e. not considering the UNDERFLOW and OVERFLOW bins.
* @return The maximum height among the in-range bins.
*/
double maxBinHeight() const{
double maxw = sumw[2][2];
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
for ( int iy = 2; iy < yax->bins() + 2; ++iy )
maxw = std::max(maxw, sumw[ix][iy]);
return maxw;
}
/**
* Fill the IHistogram1D with a value and the
* corresponding weight.
* @param x The value to be filled in.
* @param weight The corresponding weight (by default 1).
* @return false If the weight is <0 or >1 (?).
*/
bool fill(double x, double y, double weight = 1.) {
int ix = xax->coordToIndex(x) + 2;
int iy = yax->coordToIndex(y) + 2;
++sum[ix][iy];
sumw[ix][iy] += weight;
sumxw[ix][iy] += x*weight;
sumx2w[ix][iy] += x*x*weight;
sumyw[ix][iy] += y*weight;
sumy2w[ix][iy] += y*y*weight;
sumw2[ix][iy] += weight*weight;
return weight >= 0 && weight <= 1;
}
/**
* The weighted mean along the x-axis of a bin.
* @param xindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @param yindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The mean of the corresponding bin.
*/
double binMeanX(int xindex, int yindex) const {
int ix = xindex + 2;
int iy = yindex + 2;
return sumw[ix][iy] != 0.0? sumxw[ix][iy]/sumw[ix][iy]:
( xvax? xvax->binMidPoint(xindex): xfax->binMidPoint(xindex) );
};
/**
* The weighted mean along the y-axis of a bin.
* @param xindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @param yindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The mean of the corresponding bin.
*/
double binMeanY(int xindex, int yindex) const {
int ix = xindex + 2;
int iy = yindex + 2;
return sumw[ix][iy] != 0.0? sumyw[ix][iy]/sumw[ix][iy]:
( yvax? yvax->binMidPoint(yindex): xfax->binMidPoint(yindex) );
};
/**
* The weighted x-RMS of a bin.
* @param xindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @param yindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The RMS of the corresponding bin.
*/
double binRmsX(int xindex, int yindex) const {
int ix = xindex + 2;
int iy = yindex + 2;
return sumw[ix][iy] == 0.0 || sum[ix][iy] < 2? xax->binWidth(xindex):
std::sqrt(std::max(sumw[ix][iy]*sumx2w[ix][iy] -
sumxw[ix][iy]*sumxw[ix][iy], 0.0))/sumw[ix][iy];
};
/**
* The weighted y-RMS of a bin.
* @param xindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @param yindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The RMS of the corresponding bin.
*/
double binRmsY(int xindex, int yindex) const {
int ix = xindex + 2;
int iy = yindex + 2;
return sumw[ix][iy] == 0.0 || sum[ix][iy] < 2? yax->binWidth(yindex):
std::sqrt(std::max(sumw[ix][iy]*sumy2w[ix][iy] -
sumyw[ix][iy]*sumyw[ix][iy], 0.0))/sumw[ix][iy];
};
/**
* Number of entries in the corresponding bin (ie the number of
* times fill was called for this bin).
* @param index The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The number of entries in the corresponding bin.
*/
int binEntries(int xindex, int yindex) const {
return sum[xindex + 2][yindex + 2];
}
/**
* Sum of all the entries of the bins along a given x bin.
* This is equivalent to <tt>projectionX().binEntries(index)</tt>.
* @param index The x bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The number of entries in the corresponding set of bins.
*
*/
virtual int binEntriesX(int index) const {
int ret = 0;
for ( int iy = 2; iy < yax->bins() + 2; ++iy )
ret += sum[index + 2][iy];
return ret;
}
/**
* Sum of all the entries of the bins along a given y bin.
* This is equivalent to <tt>projectionY().binEntries(index)</tt>.
* @param index The y bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The number of entries in the corresponding set of bins.
*
*/
virtual int binEntriesY(int index) const {
int ret = 0;
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
ret += sum[ix][index + 2];
return ret;
}
/**
* Total height of the corresponding bin (ie the sum of the weights
* in this bin).
* @param index The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The height of the corresponding bin.
*/
double binHeight(int xindex, int yindex) const {
/// @todo While this is compatible with the reference AIDA
/// implementation, it is not the bin height!
return sumw[xindex + 2][yindex + 2];
}
/**
* Sum of all the heights of the bins along a given x bin.
* This is equivalent to <tt>projectionX().binHeight(index)</tt>.
* @param index The x bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The sum of the heights in the corresponding set of bins.
*
*/
virtual double binHeightX(int index) const {
double ret = 0;
for ( int iy = 2; iy < yax->bins() + 2; ++iy )
ret += sumw[index + 2][iy];
return ret;
}
/**
* Sum of all the heights of the bins along a given y bin.
* This is equivalent to <tt>projectionY().binHeight(index)</tt>.
* @param index The y bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The sum of the heights in the corresponding set of bins.
*
*/
virtual double binHeightY(int index) const {
double ret = 0;
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
ret += sumw[ix][index + 2];
return ret;
}
/**
* The error of a given bin.
* @param index The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
* @return The error on the corresponding bin.
*
*/
double binError(int xindex, int yindex) const {
return std::sqrt(sumw2[xindex + 2][yindex + 2]);
}
/**
* The mean of the IHistogram2D along the x axis.
* @return The mean of the IHistogram2D along the x axis.
*
*/
double meanX() const {
double s = 0.0;
double sx = 0.0;
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
s += sumw[ix][iy];
sx += sumxw[ix][iy];
}
return s != 0.0? sx/s: 0.0;
}
/**
* The mean of the IHistogram2D along the y axis.
* @return The mean of the IHistogram2D along the y axis.
*
*/
double meanY() const {
double s = 0.0;
double sy = 0.0;
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
s += sumw[ix][iy];
sy += sumyw[ix][iy];
}
return s != 0.0? sy/s: 0.0;
}
/**
* The RMS of the IHistogram2D along the x axis.
* @return The RMS if the IHistogram2D along the x axis.
*
*/
double rmsX() const {
double s = 0.0;
double sx = 0.0;
double sx2 = 0.0;
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
s += sumw[ix][iy];
sx += sumxw[ix][iy];
sx2 += sumx2w[ix][iy];
}
return s != 0.0? std::sqrt(std::max(s*sx2 - sx*sx, 0.0))/s:
xax->upperEdge() - xax->lowerEdge();
}
/**
* The RMS of the IHistogram2D along the x axis.
* @return The RMS if the IHistogram2D along the x axis.
*
*/
double rmsY() const {
double s = 0.0;
double sy = 0.0;
double sy2 = 0.0;
for ( int ix = 2; ix < xax->bins() + 2; ++ix )
for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
s += sumw[ix][iy];
sy += sumyw[ix][iy];
sy2 += sumy2w[ix][iy];
}
return s != 0.0? std::sqrt(std::max(s*sy2 - sy*sy, 0.0))/s:
yax->upperEdge() - yax->lowerEdge();
}
/** The weights. */
double getSumW(int xindex, int yindex) const {
return sumw[xindex + 2][yindex + 2];
}
/** The squared weights. */
double getSumW2(int xindex, int yindex) const {
return sumw2[xindex + 2][yindex + 2];
}
/** The weighted x-values. */
double getSumXW(int xindex, int yindex) const {
return sumxw[xindex + 2][yindex + 2];
}
/** The weighted x-square-values. */
double getSumX2W(int xindex, int yindex) const {
return sumx2w[xindex + 2][yindex + 2];
}
/** The weighted x-values. */
double getSumYW(int xindex, int yindex) const {
return sumyw[xindex + 2][yindex + 2];
}
/** The weighted x-square-values. */
double getSumY2W(int xindex, int yindex) const {
return sumy2w[xindex + 2][yindex + 2];
}
/**
* Get the x axis of the IHistogram2D.
* @return The x coordinate IAxis.
*/
const IAxis & xAxis() const {
return *xax;
}
/**
* Get the y axis of the IHistogram2D.
* @return The y coordinate IAxis.
*/
const IAxis & yAxis() const {
return *yax;
}
/**
* Get the bin number corresponding to a given coordinate along the
* x axis. This is a convenience method, equivalent to
* <tt>axis().coordToIndex(coord)</tt>.
* @param coord The coordinalte along the x axis.
* @return The corresponding bin number.
*/
int coordToIndexX(double coord) const {
return xax->coordToIndex(coord);
}
/**
* Get the bin number corresponding to a given coordinate along the
* y axis. This is a convenience method, equivalent to
* <tt>axis().coordToIndex(coord)</tt>.
* @param coord The coordinalte along the y axis.
* @return The corresponding bin number.
*/
int coordToIndexY(double coord) const {
return yax->coordToIndex(coord);
}
/**
* Add to this Histogram2D the contents of another IHistogram2D.
* @param h The Histogram2D to be added to this IHistogram2D.
* @return false If the IHistogram1Ds binnings are incompatible.
*/
bool add(const Histogram2D & h) {
if ( xax->upperEdge() != h.xax->upperEdge() ||
xax->lowerEdge() != h.xax->lowerEdge() ||
xax->bins() != h.xax->bins() ) return false;
if ( yax->upperEdge() != h.yax->upperEdge() ||
yax->lowerEdge() != h.yax->lowerEdge() ||
yax->bins() != h.yax->bins() ) return false;
for ( int ix = 0; ix < xax->bins() + 2; ++ix )
for ( int iy = 0; iy < yax->bins() + 2; ++iy ) {
sum[ix][iy] += h.sum[ix][iy];
sumw[ix][iy] += h.sumw[ix][iy];
sumxw[ix][iy] += h.sumxw[ix][iy];
sumx2w[ix][iy] += h.sumx2w[ix][iy];
sumyw[ix][iy] += h.sumyw[ix][iy];
sumy2w[ix][iy] += h.sumy2w[ix][iy];
sumw2[ix][iy] += h.sumw2[ix][iy];
}
return true;
}
/**
* Add to this IHistogram1D the contents of another IHistogram1D.
* @param hist The IHistogram1D to be added to this IHistogram1D.
* @return false If the IHistogram1Ds binnings are incompatible.
*/
bool add(const IHistogram2D & hist) {
return add(dynamic_cast<const Histogram2D &>(hist));
}
/**
* Scale the contents of this histogram with the given factor.
* @param s the scaling factor to use.
*/
bool scale(double s) {
for ( int ix = 0; ix < xax->bins() + 2; ++ix )
for ( int iy = 0; iy < yax->bins() + 2; ++iy ) {
sumw[ix][iy] *= s;
sumxw[ix][iy] *= s;
sumx2w[ix][iy] *= s;
sumyw[ix][iy] *= s;
sumy2w[ix][iy] *= s;
sumw2[ix][iy] *= s*s;
}
return true;
}
/**
* Scale the given histogram so that the integral over all bins
* (including overflow) gives \a intg. This function also corrects
* for the bin-widths, which means that it should only be run once
* for each histogram. Further rescaling must be done with the
* scale(double) function.
*/
void normalize(double intg) {
double oldintg = sumAllBinHeights();
if ( oldintg == 0.0 ) return;
for ( int ix = 0; ix < xax->bins() + 2; ++ix )
for ( int iy = 0; iy < yax->bins() + 2; ++iy ) {
double fac = intg/oldintg;
if ( ix >= 2 && iy >= 2 )
fac /= (xax->binUpperEdge(ix - 2) - xax->binLowerEdge(ix - 2))*
(yax->binUpperEdge(iy - 2) - yax->binLowerEdge(iy - 2));
sumw[ix][iy] *= fac;
sumxw[ix][iy] *= fac;
sumx2w[ix][iy] *= fac;
sumyw[ix][iy] *= fac;
sumy2w[ix][iy] *= fac;
sumw2[ix][iy] *= fac*fac;
}
}
/**
* Return the integral over the histogram bins assuming it has been
* normalize()d.
*/
// double integral() const {
// double intg = sumw[0] + sumw[1];
// for ( int i = 2; i < ax->bins() + 2; ++i )
// is this right? Leave out bin width factor?
// intg += sumw[ix][iy]*(ax->binUpperEdge(i - 2) - ax->binLowerEdge(i - 2));
// return intg;
// }
/**
* Not implemented in LWH.
* @return null pointer always.
*/
void * cast(const std::string &) const {
return 0;
}
/**
* Write out the histogram in the AIDA xml format.
*/
bool writeXML(std::ostream & os, std::string path, std::string name) {
//std::cout << "Writing out histogram " << name << " in AIDA file format!" << std::endl;
os << " <histogram2d name=\"" << name
<< "\"\n title=\"" << title()
<< "\" path=\"" << path
<< "\">\n <axis max=\"" << xax->upperEdge()
<< "\" numberOfBins=\"" << xax->bins()
<< "\" min=\"" << xax->lowerEdge()
<< "\" direction=\"x\"";
if ( xvax ) {
os << ">\n";
for ( int i = 0, N = xax->bins() - 1; i < N; ++i )
os << " <binBorder value=\"" << xax->binUpperEdge(i) << "\"/>\n";
os << " </axis>\n";
} else {
os << "/>\n";
}
os << " <axis max=\"" << yax->upperEdge()
<< "\" numberOfBins=\"" << yax->bins()
<< "\" min=\"" << yax->lowerEdge()
<< "\" direction=\"y\"";
if ( yvax ) {
os << ">\n";
for ( int i = 0, N = yax->bins() - 1; i < N; ++i )
os << " <binBorder value=\"" << yax->binUpperEdge(i) << "\"/>\n";
os << " </axis>\n";
} else {
os << "/>\n";
}
os << " <statistics entries=\"" << entries()
<< "\">\n <statistic mean=\"" << meanX()
<< "\" direction=\"x\"\n rms=\"" << rmsX()
<< "\"/>\n </statistics>\n <statistic mean=\"" << meanY()
<< "\" direction=\"y\"\n rms=\"" << rmsY()
<< "\"/>\n </statistics>\n <data2d>\n";
for ( int ix = 0; ix < xax->bins() + 2; ++ix )
for ( int iy = 0; iy < yax->bins() + 2; ++iy )
if ( sum[ix][iy] ) {
os << " <bin2d binNumX=\"";
if ( ix == 0 ) os << "UNDERFLOW";
else if ( ix == 1 ) os << "OVERFLOW";
else os << ix - 2;
os << "\" binNumY=\"";
if ( iy == 0 ) os << "UNDERFLOW";
else if ( iy == 1 ) os << "OVERFLOW";
else os << iy - 2;
os << "\" entries=\"" << sum[ix][iy]
<< "\" height=\"" << sumw[ix][iy]
<< "\"\n error=\"" << std::sqrt(sumw2[ix][iy])
<< "\" error2=\"" << sumw2[ix][iy]
<< "\"\n weightedMeanX=\"" << binMeanX(ix - 2, iy - 2)
<< "\" weightedRmsX=\"" << binRmsX(ix - 2, iy - 2)
<< "\"\n weightedMeanY=\"" << binMeanY(ix - 2, iy - 2)
<< "\" weightedRmsY=\"" << binRmsY(ix - 2, iy - 2)
<< "\"/>\n";
}
os << " </data2d>\n </histogram2d>" << std::endl;
return true;
}
/**
* Write out the histogram in a flat text file suitable for
* eg. gnuplot to read. The coloums are layed out as 'x w w2 n'.
*/
bool writeFLAT(std::ostream & os, std::string path, std::string name) {
os << "#2D " << path << "/" << name << " " << xax->lowerEdge()
<< " " << xax->bins() << " " << xax->upperEdge() << " "
<< yax->lowerEdge() << " " << yax->bins() << " " << yax->upperEdge()
<< " \"" << title() << "\"" << std::endl;
for ( int ix = 2; ix < xax->bins() + 2; ++ix ) {
for ( int iy = 2; iy < yax->bins() + 2; ++iy )
os << 0.5*(xax->binLowerEdge(ix - 2)+xax->binUpperEdge(ix - 2)) << " "
<< 0.5*(yax->binLowerEdge(iy - 2)+yax->binUpperEdge(iy - 2))
<< " " << sumw[ix][iy] << " " << sqrt(sumw2[ix][iy])
<< " " << sum[ix][iy] << std::endl;
os << std::endl;
}
os << std::endl;
return true;
}
#ifdef HAVE_ROOT
/**
* Write out the histogram in Root file format.
*/
//bool writeROOT(std::ostream & os, std::string path, std::string name) {
bool writeROOT(TFile* file, std::string path, std::string name) {
//std::cout << "Writing out histogram " << name.c_str() << " in ROOT file format" << std::endl;
TH1D* hist1d;
int nbins;
if (!vax || vax->isFixedBinning() ) {//equidistant binning (easier case)
nbins = ax->bins();
hist1d = new TH1D(name.c_str(), title().c_str(), nbins, ax->lowerEdge(), ax->upperEdge());
}
else {
nbins = vax->bins();
double* bins = new double[nbins+1];
for (int i=0; i<nbins; ++i) {
bins[ix][iy] = vax->binEdges(i).first;
}
bins[nbins] = vax->binEdges(nbins-1).second; //take last bin right border
hist1d = new TH1D(name.c_str(), title().c_str(), nbins, bins);
delete [] bins;
}
double entries = 0;
for ( int i = 0; i < nbins + 2; ++i ) {
if ( sum[ix][iy] ) {
//i==0: underflow->RootBin(0), i==1: overflow->RootBin(NBins+1)
entries = entries + sum[ix][iy];
int j=i;
if (i==0) j=0; //underflow
else if (i==1) j=nbins+1; //overflow
if (i>=2) j=i-1; //normal bin entries
hist1d->SetBinContent(j, sumw[ix][iy]);
hist1d->SetBinError(j, sqrt(sumw2[ix][iy]));
//hist1d->Fill(binMean(i), sumw[ix][iy]);
}
}
hist1d->Sumw2();
hist1d->SetEntries(entries);
std::string DirName; //remove preceding slash from directory name, else ROOT error
for (unsigned int i=1; i<path.size(); ++i) DirName += path[i];
if (!file->Get(DirName.c_str())) file->mkdir(DirName.c_str());
file->cd(DirName.c_str());
hist1d->Write();
delete hist1d;
return true;
}
#endif
private:
/** The title */
std::string theTitle;
/** The axis. */
IAxis * xax;
/** Pointer (possibly null) to a axis with fixed bin width. */
Axis * xfax;
/** Pointer (possibly null) to a axis with fixed bin width. */
VariAxis * xvax;
/** The axis. */
IAxis * yax;
/** Pointer (possibly null) to a axis with fixed bin width. */
Axis * yfax;
/** Pointer (possibly null) to a axis with fixed bin width. */
VariAxis * yvax;
/** The counts. */
std::vector< std::vector<int> > sum;
/** The weights. */
std::vector< std::vector<double> > sumw;
/** The squared weights. */
std::vector< std::vector<double> > sumw2;
/** The weighted x-values. */
std::vector< std::vector<double> > sumxw;
/** The weighted x-square-values. */
std::vector< std::vector<double> > sumx2w;
/** The weighted y-values. */
std::vector< std::vector<double> > sumyw;
/** The weighted y-square-values. */
std::vector< std::vector<double> > sumy2w;
/** dummy pointer to non-existen annotation. */
IAnnotation * anno;
};
}
#endif /* LWH_Histogram1D_H */
|