/usr/include/ThePEG/ACDC/ACDCGen.icc is in libthepeg-dev 1.8.0-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 | // -*- C++ -*-
//
// ACDCGen.icc is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
namespace ACDCGenerator {
template <typename Rnd, typename FncPtr>
inline ACDCGen<Rnd,FncPtr>::ACDCGen(Rnd * r)
: theRnd(r), theNAcc(0), theN(0), theNI(1, 0),
theSumW(1, 0.0), theSumW2(1, 0.0),
theEps(100*std::numeric_limits<double>::epsilon()), theMargin(1.1),
theNTry(100), theMaxTry(10000), useCheapRandom(false), theFunctions(1),
theDimensions(1, 0), thePrimaryCells(1), theSumMaxInts(1, 0.0), theLast(0),
theLastCell(0), theLastF(0.0) {
maxsize = 0;
}
template <typename Rnd, typename FncPtr>
inline ACDCGen<Rnd,FncPtr>::ACDCGen()
: theRnd(0), theNAcc(0), theN(0), theNI(1, 0),
theSumW(1, 0.0), theSumW2(1, 0.0),
theEps(100*std::numeric_limits<double>::epsilon()), theMargin(1.1),
theNTry(100), theMaxTry(10000), useCheapRandom(false), theFunctions(1),
theDimensions(1, 0), thePrimaryCells(1), theSumMaxInts(1, 0.0), theLast(0),
theLastCell(0), theLastF(0.0) {
maxsize = 0;
}
template <typename Rnd, typename FncPtr>
inline ACDCGen<Rnd,FncPtr>::~ACDCGen() {
clear();
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::setRnd(Rnd * r) {
theRnd = r;
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::clear() {
theNAcc = 0;
theN = 0;
theNI = vector<long>(1, 0);
theSumW = DVector(1, 0.0);
theSumW2 = DVector(1, 0.0);
theFunctions = FncVector(1);
theDimensions = DimVector(1, 0);
for ( int i = 0, N = thePrimaryCells.size(); i < N; ++i )
if ( thePrimaryCells[i] ) delete thePrimaryCells[i];
thePrimaryCells = CellVector(1);
theSumMaxInts = DVector(1, 0.0);
theLast = 0;
theLastCell = 0;
theLastPoint.clear();
theLastF = 0.0;
levels.clear();
}
template <typename Rnd, typename FncPtr>
inline bool ACDCGen<Rnd,FncPtr>::
addFunction(DimType dim, FncPtrType fnc, double maxrat) {
if ( maxrat < 0.0 ) maxrat = 1.0/nTry();
typedef map<double,DVector> PointMap;
theLast = theFunctions.size();
theFunctions.push_back(fnc);
theNI.push_back(0);
theSumW.push_back(0.0);
theSumW2.push_back(0.0);
theDimensions.push_back(dim);
// Generate nTry() points with non-zero function value
DVector x(dim);
PointMap pmap;
long itry = 0;
while ( pmap.size() < nTry() ) {
if ( ++itry > maxTry() ) {
thePrimaryCells.push_back(new ACDCGenCell(0.0));
theSumMaxInts.push_back(theSumMaxInts.back() + cells().back()->doMaxInt());
return false;
}
rnd(dim, x);
double val = FncTraits::value(fnc, x);
if ( val > 0.0 ) {
pmap[val] = x;
itry = 0;
}
}
// Create the root cell and set its overestimated function value to
// the smallest non-zero value found
double minf = pmap.begin()->first;
double maxf = (--pmap.end())->first;
minf = max(minf, maxrat*maxf);
// thePrimaryCells.push_back(new ACDCGenCell(pmap.begin()->first));
thePrimaryCells.push_back(new ACDCGenCell(minf));
theLastF = pmap.begin()->first;
pmap.erase(pmap.begin());
theSumMaxInts.push_back(theSumMaxInts.back() + cells().back()->doMaxInt());
// Start the divide-and-conquer procedure using the point with the
// highest function value found.
theLastF = (--pmap.end())->first;
theLastPoint = (--pmap.end())->second;
pmap.erase(--pmap.end());
DVector up(dim, 1.0);
DVector lo(dim, 0.0);
theLastCell = cells().back()->getCell(lo, lastPoint(), up);
if ( lastF() > lastCell()->g() ) {
compensate(lo, up);
levels.clear();
}
// For each other generated point check that it's below the
// overestimated value of the corresponding cell. If not start the
// divide-and-conquer using that point.
while ( !pmap.empty() ) {
theLastPoint = pmap.begin()->second;
theLastF = pmap.begin()->first;
pmap.erase(pmap.begin());
DVector up(dim, 1.0);
DVector lo(dim, 0.0);
theLastCell = cells().back()->getCell(lo, lastPoint(), up);
if ( lastF() > lastCell()->g() ) {
compensate(lo, up);
levels.clear();
}
}
// cells().back()->smooth(1.0/nTry());
return true;
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::chooseCell(DVector & lo, DVector & up) {
if ( compensating() ) {
// If we are compensating, we must choose the cell to be compensated.
up = levels.back().up;
lo = levels.back().lo;
theLastCell = levels.back().cell;
theLast = levels.back().index;
} else {
// Otherwise, first choose the function to be used and choose the
// corresponding root cell.
theLast = upper_bound(sumMaxInts().begin(), sumMaxInts().end(),
rnd()*sumMaxInts().back())
- sumMaxInts().begin();
if(theLast>=sumMaxInts().size()) {
throw ThePEG::Exception() << "Selected a function outside the allowed range"
<< " in ACDCGen::chooseCell(). This is usually due"
<< " to a floating point error (nan or inf) in the"
<< " calculation of the weight"
<< ThePEG::Exception::abortnow;
}
up = DVector(lastDimension(), 1.0);
lo = DVector(lastDimension(), 0.0);
theLastCell = lastPrimary();
}
// Now select randomly a sub-cell of the chosen cell
if ( cheapRandom() ) {
theLastCell = lastCell()->generate(lo, up, theRnd);
} else {
DVector rndv(lastDimension());
rnd(lastDimension(), rndv);
theLastCell = lastCell()->generate(lo, up, rndv);
}
}
template <typename Rnd, typename FncPtr>
inline typename ACDCGen<Rnd,FncPtr>::FncPtrType
ACDCGen<Rnd,FncPtr>::generate() {
long itry = 0;
while ( true ) {
if ( ++itry > maxTry() ) return FncPtrType();
++theN;
// First choose a function and a cell to generate in.
DVector up;
DVector lo;
chooseCell(lo, up);
// Now choose a point in that cell according to a flat distribution.
DimType D = lastDimension();
theLastPoint.resize(D);
for ( DimType d = 0; d < D; ++d ) theLastPoint[d] = rnd(lo[d], up[d]);
// Calculate the function value in this point
theLastF = FncTraits::value(lastFunction(), theLastPoint);
if ( theLastF <= 0.0 ) continue;
// If we are compensating we require the function value to be
// above the previous overestimate of the function.
if ( compensating() && lastF() < levels.back().g ) theLastF = 0.0;
double w = lastF()/lastCell()->g();
if ( w > 1.0 ) {
// If the value was above the overestimate then we must start
// the compensation procedure and the curren point is disregarded.
--theN;
compensate(lo, up);
continue;
}
// Accept the point according to the ratio of the true and
// overestimated function value.
theSumW[last()] += w;
theSumW2[last()] += w*w;
++theNI[last()];
if ( w > rnd() ) {
++theNAcc;
return lastFunction();
}
}
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::reject() {
theSumW[last()] -= 1.0;
theSumW2[last()] -= 1.0;
--theNAcc;
}
template <typename Rnd, typename FncPtr>
inline bool ACDCGen<Rnd,FncPtr>::compensating() {
while ( levels.size() && levels.back().lastN < N() ) levels.pop_back();
// Leave all levels which has reached there 'expiry date'.
return !levels.empty();
}
template <typename Rnd, typename FncPtr>
inline long ACDCGen<Rnd,FncPtr>::compleft() const {
if ( levels.empty() ) return 0;
long left = 1;
for ( int i = 0, Ni = levels.size(); i < Ni; ++i )
left = max(left, levels[i].lastN - N());
return left;
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::
compensate(const DVector & lo, const DVector & up) {
//Save the previous overestimated integral and create a new
//compensation level.
double i0 = maxInt();
Level level;
level.g = lastCell()->g();
// Start the divide-and-conquer algorithm slicing up the selected
// cell and specify it as the cell to compensate.
Slicer slicer(lastDimension(), *this, lo, up);
level.cell = slicer.first;
level.index = last();
level.up = slicer.firstup;
level.lo = slicer.firstlo;
// Now calculate the the new overestimated total integral and
// calculate the number of attempted points needed to compensate.
double rat = (doMaxInt())/i0;
level.lastN = long(N()*rat);
// If we are already compensating increase also the previous
// compensation levels.
for ( size_type i = 0; i < levels.size(); ++i )
levels[i].lastN = long(levels[i].lastN*rat);
levels.insert(levels.end(), level);
maxsize = std::max(maxsize, levels.size());
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::eps(double newEps) {
theEps = newEps;
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::margin(double newMargin) {
theMargin = newMargin;
}
template <typename Rnd, typename FncPtr>
inline long ACDCGen<Rnd,FncPtr>::N() const {
return theN;
}
template <typename Rnd, typename FncPtr>
inline long ACDCGen<Rnd,FncPtr>::n() const {
return theNAcc;
}
template <typename Rnd, typename FncPtr>
inline typename ACDCGen<Rnd,FncPtr>::size_type
ACDCGen<Rnd,FncPtr>::nTry() const {
return theNTry;
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::nTry(size_type newNTry) {
theNTry = newNTry;
}
template <typename Rnd, typename FncPtr>
inline long ACDCGen<Rnd,FncPtr>::maxTry() const {
return theMaxTry;
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::maxTry(long newMaxTry) {
theMaxTry = newMaxTry;
}
template <typename Rnd, typename FncPtr>
inline bool ACDCGen<Rnd,FncPtr>::cheapRandom() const {
return useCheapRandom;
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::cheapRandom(bool b) {
useCheapRandom = b;
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::maxInt() const {
return theSumMaxInts.back();
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::doMaxInt() {
for ( size_type i = 1, imax = functions().size(); i < imax; ++i )
theSumMaxInts[i] = sumMaxInts()[i - 1] + cells()[i]->doMaxInt();
return maxInt();
}
template <typename Rnd, typename FncPtr>
inline int ACDCGen<Rnd,FncPtr>::nBins() const {
int sum = 0;
for ( size_type i = 1; i < functions().size(); ++i )
sum += cell(i)->nBins();
return sum;
}
template <typename Rnd, typename FncPtr>
inline int ACDCGen<Rnd,FncPtr>::depth() const {
int mx = 0;
for ( size_type i = 1; i < functions().size(); ++i )
mx = max(mx, cell(i)->depth());
return mx;
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::efficiency() const {
return N() > 0? double(n())/double(N()): 0.0;
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::integral(FncPtrType f) const {
if ( N() <= 0 ) return maxInt();
double sumw = 0.0;
for ( size_type i = 1; i < functions().size(); ++i )
if ( functions()[i] == f || !f ) sumw += theSumW[i];
return maxInt()*sumw/N();
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::integralErr(FncPtrType f) const {
if ( N() <= 0 ) return maxInt();
double sumw2 = 0.0;
double sumw = 0.0;
for ( size_type i = 1; i < functions().size(); ++i )
if ( functions()[i] == f || !f ) {
sumw2 += theSumW2[i];
sumw += theSumW[i];
}
if ( f ) return maxInt()*sqrt(sumw2)/N();
return maxInt()*sqrt(max(0.,sumw2 - sumw*sumw/N()))/N();
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::eps() const {
return theEps;
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::margin() const {
return theMargin;
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::rnd() const {
return RndTraits::rnd(theRnd);
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::rnd(double lo, double up) const {
return RndTraits::rnd(theRnd, lo, up);
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::
rnd(const DVector & lo, const DVector & up, DVector & r) const {
RndTraits::rnd(theRnd, lo.begin(), lo.end(), up.begin(), r.begin());
}
template <typename Rnd, typename FncPtr>
inline void ACDCGen<Rnd,FncPtr>::
rnd(DimType D, DVector & r) const {
RndTraits::rnd(theRnd, D, r.begin());
}
template <typename Rnd, typename FncPtr>
inline long ACDCGen<Rnd,FncPtr>::rndInt(long x) const {
return RndTraits::rndInt(theRnd, x);
}
template <typename Rnd, typename FncPtr>
inline const typename ACDCGen<Rnd,FncPtr>::FncVector &
ACDCGen<Rnd,FncPtr>::functions() const {
return theFunctions;
}
template <typename Rnd, typename FncPtr>
inline typename ACDCGen<Rnd,FncPtr>::FncPtrType
ACDCGen<Rnd,FncPtr>::function(size_type i) const {
return functions()[i];
}
template <typename Rnd, typename FncPtr>
inline typename ACDCGen<Rnd,FncPtr>::FncPtrType
ACDCGen<Rnd,FncPtr>::lastFunction() const {
return function(last());
}
template <typename Rnd, typename FncPtr>
inline const typename ACDCGen<Rnd,FncPtr>::DimVector &
ACDCGen<Rnd,FncPtr>::dimensions() const {
return theDimensions;
}
template <typename Rnd, typename FncPtr>
inline DimType ACDCGen<Rnd,FncPtr>::dimension(size_type i) const {
return dimensions()[i];
}
template <typename Rnd, typename FncPtr>
inline DimType ACDCGen<Rnd,FncPtr>::lastDimension() const {
return dimension(last());
}
template <typename Rnd, typename FncPtr>
inline const typename ACDCGen<Rnd,FncPtr>::CellVector &
ACDCGen<Rnd,FncPtr>::cells() const {
return thePrimaryCells;
}
template <typename Rnd, typename FncPtr>
inline ACDCGenCell * ACDCGen<Rnd,FncPtr>::cell(size_type i) const {
return cells()[i];
}
template <typename Rnd, typename FncPtr>
inline ACDCGenCell * ACDCGen<Rnd,FncPtr>::lastPrimary() const {
return cell(last());
}
template <typename Rnd, typename FncPtr>
inline const DVector & ACDCGen<Rnd,FncPtr>::sumMaxInts() const {
return theSumMaxInts;
}
template <typename Rnd, typename FncPtr>
inline typename ACDCGen<Rnd,FncPtr>::size_type
ACDCGen<Rnd,FncPtr>::last() const {
return theLast;
}
template <typename Rnd, typename FncPtr>
inline typename ACDCGen<Rnd,FncPtr>::size_type
ACDCGen<Rnd,FncPtr>::size() const {
return cells().size() - 1;
}
template <typename Rnd, typename FncPtr>
inline ACDCGenCell * ACDCGen<Rnd,FncPtr>::lastCell() const {
return theLastCell;
}
template <typename Rnd, typename FncPtr>
inline const DVector & ACDCGen<Rnd,FncPtr>::lastPoint() const {
return theLastPoint;
}
template <typename Rnd, typename FncPtr>
inline double ACDCGen<Rnd,FncPtr>::lastF() const {
return theLastF;
}
template <typename Rnd, typename FncPtr>
typename ACDCGen<Rnd,FncPtr>::size_type ACDCGen<Rnd,FncPtr>::maxsize = 0;
template <typename Rnd, typename FncPtr>
vector<ACDCGenCellInfo> ACDCGen<Rnd,FncPtr>::extractCellInfo() const {
vector<ACDCGenCellInfo> ret;
for ( size_type i = 1; i < cells().size(); ++i ) {
DVector lo(dimension(i), 0.0);
DVector up(dimension(i), 1.0);
cell(i)->extract(lo, up, ret);
}
return ret;
}
template <typename Rnd, typename FncPtr>
ACDCGen<Rnd,FncPtr>::Slicer::
Slicer(DimType Din, ACDCGen & gen, const DVector & loin, const DVector & upin)
: D(Din), lo(loin), up(upin), xcl(loin), xcu(upin), xhl(loin), xhu(upin),
fhl(Din, 0.0), fhu(Din, 0.0), xsel(gen.lastPoint()), fsel(gen.lastF()),
current(gen.lastCell()), first(gen.lastCell()),
firstlo(loin), firstup(upin),f(gen.lastFunction()),
epsilon(gen.eps()), margin(gen.margin()), minf(0.0), wholecomp(false) {
divideandconquer();
}
template <typename Rnd, typename FncPtr>
ACDCGen<Rnd,FncPtr>::Slicer::~Slicer() {
// Added for debugging purposes.
}
template <typename Rnd, typename FncPtr>
void ACDCGen<Rnd,FncPtr>::Slicer::divideandconquer() {
// If the current function value was just a little above the
// overestimate, just increase the overestimate of this cell and
// we're done.
if ( fsel < current->g()*margin ) {
current->g(current->g()*margin);
return;
}
// First initialize and slice up the current cell and save the
// resulting for the compensation procedure.
init();
slice();
if ( !wholecomp ) {
first = current;
firstlo = lo;
firstup = up;
}
// Find the largest function value in the current cell and as long
// as it is above the current overestimate, increase the
// overestimate and repeat the slicing.
while ( shiftmaxmin() > current->g() ) {
current->g(minf*margin);
if ( current->g() > fsel ) return;
init();
slice();
}
}
template <typename Rnd, typename FncPtr>
double ACDCGen<Rnd,FncPtr>::Slicer::shiftmaxmin() {
// Find the largest diagonal
DVector test = xsel;
double scale = 0.0;
for ( DimType d = 0; d < D; ++d )
if ( fhl[d] > fsel || fhu[d] > fsel ) scale += 1.0;
scale = sqrt(scale);
for ( DimType d = 0; d < D; ++d ) {
if ( fhl[d] > fsel && fhl[d] > fhu[d] )
test[d] = test[d] + (xhl[d] - test[d])/scale;
if ( fhu[d] > fsel && fhu[d] > fhl[d] )
test[d] = test[d] + (xhu[d] - test[d])/scale;
}
// Find the largest value above overestimate
DimType dsel = -1;
double x = 0;
minf = fsel;
for ( DimType d = 0; d < D; ++d ) {
// Find the point with the function minimum value above the
// current overestimate.
minf = std::min(minf, fhl[d]);
minf = std::min(minf, fhu[d]);
// Find points with the maximum function value and shift the
// current point to it.
if ( fhu[d] > fsel ) {
fsel = fhu[d];
dsel = d;
x = xhu[d];
}
if ( fhl[d] > fsel ) {
fsel = fhl[d];
dsel = d;
x = xhl[d];
}
}
// Check also the largest diagonal
// double ftest = (*f)(test);
// if ( ftest > fsel ) {
// xsel = test;
// fsel = ftest;
// dsel = -1;
// }
if ( dsel >= 0 ) xsel[dsel] = x;
minf = std::max(minf, current->g());
return fsel;
}
template <typename Rnd, typename FncPtr>
void ACDCGen<Rnd,FncPtr>::Slicer::dohalf(DimType d) {
xcl[d] = lo[d];
// Find the point closest below the current point in the given
// dimension with a function value below the current overestimate,
// also find the one furthest away from the current point with a
// function value above the current overestimate. Use a crude
// iterative mid-point selection.
while ( true ) {
xhl[d] = (xsel[d] + xcl[d])*0.5;
std::swap(xsel[d], xhl[d]);
fhl[d] = FncTraits::value(f, xsel);
std::swap(xsel[d], xhl[d]);
if ( fhl[d] > current->g() ) break;
if ( xsel[d] - xcl[d] < epsilon ) break;
xcl[d] = xhl[d];
}
// Check if the current slicing is worth doing...
double cut = ( up[d] - xcl[d] )/( up[d] - lo[d] );
if ( cut < 1.0 - current->g()/fsel && cut > 0.0 )
rateslice.insert(std::make_pair(cut, -1-d));
// Find the point closest above the current point in the given
// dimension with a function value below the current overestimate,
// also find the one furthest away from the current point with a
// function value above the current overestimate. Use a crude
// iterative mid-point selection.
xcu[d] = up[d];
while ( true ) {
xhu[d] = (xsel[d] + xcu[d])*0.5;
std::swap(xsel[d], xhu[d]);
fhu[d] = FncTraits::value(f, xsel);
std::swap(xsel[d], xhu[d]);
if ( fhu[d] > current->g() ) break;
if ( xcu[d] - xsel[d] < epsilon ) break;
xcu[d] = xhu[d];
}
// Check if the current slicing is worth doing...
cut = ( xcu[d] - lo[d] )/( up[d] - lo[d] );
if ( cut < 1.0 - current->g()/fsel && cut > 0.0 )
rateslice.insert(std::make_pair(cut, 1+d));
}
template <typename Rnd, typename FncPtr>
void ACDCGen<Rnd,FncPtr>::Slicer::init() {
for ( DimType d = 0; d < D; ++d ) dohalf(d);
}
template <typename Rnd, typename FncPtr>
void ACDCGen<Rnd,FncPtr>::Slicer::slice() {
while ( !rateslice.empty() ) {
// Perform the slicing which reduces the volume of the cell the
// most first.
DimType d = rateslice.begin()->second;
rateslice.erase(rateslice.begin());
if ( d > 0 ) {
// Slice from above.
d = d - 1;
current->splitme(lo[d], xcu[d], up[d], d);
checkdiag(current->upper(), d, xcu[d], up[d]);
current = current->lower();
up[d] = xcu[d];
} else {
// Slice from below..
d = -d - 1;
current->splitme(lo[d], xcl[d], up[d], d);
checkdiag(current->lower(), d, lo[d], xcl[d]);
current = current->upper();
lo[d] = xcl[d];
}
dohalf(d);
}
}
template <typename Rnd, typename FncPtr>
void ACDCGen<Rnd,FncPtr>::Slicer::
checkdiag(ACDCGenCell * cell, DimType dc, double lod, double upd) {
return;
// Look at the midpoint in the dc direction in which a cell has been
// chopped off.
if ( upd - lod <= epsilon ) return;
DVector newlo = lo;
DVector newup = up;
newlo[dc] = lod;
newup[dc] = upd;
DVector newsel = xsel;
newsel[dc] = 0.5*(lod + upd);
double newfsel = FncTraits::value(f, newsel);
double newfh = newfsel;
DVector newxsel = newsel;
vector<int> dir(D, 0);
// For each other direction look at the mid point between the point
// chosen above and the borders of the cell. Save the point which
// gives the highest function value.
for ( DimType d = 0; d < D; ++d ) {
if ( d == dc ) continue;
double xdum = 0.5*(newlo[d] + newsel[d]);
swap(xdum, newsel[d]);
double fh1 = FncTraits::value(f, newsel);
if ( fh1 > newfsel ) {
newfsel = fh1;
newxsel = newsel;
}
if ( fh1 > newfh ) dir[d] = -1;
swap(xdum, newsel[d]);
xdum = 0.5*(newsel[d] + newup[d]);
swap(xdum, newsel[d]);
double fh2 = FncTraits::value(f, newsel);
if ( fh2 > newfsel ) {
newfsel = fh2;
newxsel = newsel;
}
if ( fh2 > newfh && fh2 > fh1 ) dir[d] = 1;
swap(xdum, newsel[d]);
}
// Now check along the diagonal where we found the highest values.
for ( DimType d = 0; d < D; ++d ) {
if ( dir[d] == 0 ) continue;
if ( dir[d] > 0 ) newsel[d] = 0.5*(newsel[d] + newup[d]);
else newsel[d] = 0.5*(newlo[d] + newsel[d]);
}
newfh = FncTraits::value(f, newsel);
if ( newfh > newfsel ) {
newfsel = newfh;
newxsel = newsel;
}
if ( newfsel < cell->g() ) return;
// If this the highest value is above the overestimate, also this
// cell needs to be divided up and conquered.
wholecomp = true;
Slicer dummy(D, *this, cell, newlo, newxsel, newup, newfsel);
}
template <typename Rnd, typename FncPtr>
ACDCGen<Rnd,FncPtr>::Slicer::
Slicer(DimType Din, const Slicer & s, ACDCGenCell * cellin,
const DVector & loin, const DVector & xselin, const DVector & upin,
double fselin)
: D(Din), lo(loin), up(upin), xcl(loin), xcu(upin), xhl(loin), xhu(upin),
fhl(Din, 0.0), fhu(Din, 0.0), xsel(xselin), fsel(fselin),
current(cellin), first(cellin),
firstlo(loin), firstup(upin),f(s.f),
epsilon(s.epsilon), margin(s.margin), minf(0.0), wholecomp(false) {
divideandconquer();
}
template <typename Rnd, typename FncPtr>
template <typename POStream>
void ACDCGen<Rnd,FncPtr>::output(POStream & os) const {
os << theNAcc << theN << theEps << theMargin << theNTry << theMaxTry
<< useCheapRandom << theLast << theLastPoint << theLastF
<< theFunctions.size() << levels.size();
for ( int i = 1, N = theFunctions.size(); i < N; ++i )
os << theFunctions[i] << theDimensions [i] << theSumMaxInts[i]
<< *thePrimaryCells[i] << theNI[i] << theSumW[i] << theSumW2[i];
os << thePrimaryCells[theLast]->getIndex(theLastCell);
for ( int i = 0, N = levels.size(); i < N; ++i )
os << levels[i].lastN << levels[i].g << levels[i].index
<< levels[i].up << levels[i].lo
<< thePrimaryCells[levels[i].index]->getIndex(levels[i].cell);
}
template <typename Rnd, typename FncPtr>
template <typename PIStream>
void ACDCGen<Rnd,FncPtr>::input(PIStream & is) {
clear();
long fsize = 0;
long lsize = 0;
is >> theNAcc >> theN >> theEps >> theMargin >> theNTry >> theMaxTry
>> useCheapRandom >> theLast >> theLastPoint >> theLastF >> fsize >> lsize;
while ( --fsize ) {
theFunctions.push_back(FncPtrType());
theDimensions.push_back(DimType());
theSumMaxInts.push_back(0.0);
theNI.push_back(0);
theSumW.push_back(0.0);
theSumW2.push_back(0.0);
thePrimaryCells.push_back(new ACDCGenCell(0.0));
is >> theFunctions.back() >> theDimensions.back() >> theSumMaxInts.back()
>> *thePrimaryCells.back() >> theNI.back()
>> theSumW.back() >> theSumW2.back();
}
long index = -1;
is >> index;
theLastCell = thePrimaryCells[theLast]->getCell(index);
while ( lsize-- ) {
levels.push_back(Level());
is >> levels.back().lastN >> levels.back().g >> levels.back().index
>> levels.back().up >> levels.back().lo >> index;
levels.back().cell = thePrimaryCells[levels.back().index]->getCell(index);
}
}
}
|