/usr/include/ThePEG/ACDC/ACDCGen.h is in libthepeg-dev 1.8.0-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 | // -*- C++ -*-
//
// ACDCGen.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ACDCGen_H
#define ACDCGen_H
#include "ACDCGenConfig.h"
#include "ACDCTraits.h"
#include "ACDCGenCell.h"
#include "ThePEG/Utilities/Exception.h"
namespace ACDCGenerator {
/**
* ACDCGen is a general class for sampling multi-dimensional
* functions. ACDCGen can sample several functions simultaneously,
* selecting different functions according to the relative
* probabilities determined by their total integrals. The functions
* are sampled on a unit hypercube. Function object of any class can
* be used as long as the ACDCFncTraits class is specialized
* correctly. ACDCFncTraits can also be used to rescale values in the
* unit hypercube to any desired range. ACDCGen needs a random number
* generator. Again, random number generators of any class can be used
* as long as the ACDCRandomTraits class is specialized correctly.
*
* To give an unweighted samlpe ACDCGen uses a compensating
* algorithm. Before the production sampling begins, the functions are
* sampled randomly in the hypercube a user-defined number of times to
* find an approximate maxumum value. The hypercube is then divided
* into cells each of which have an approximate maximum value of the
* function, to enable efficient sampling. The maxima are only
* approximate though and, if a function value is found above the
* maximum in a cell the ACDCGen will go into a compensating mode. The
* cell is then first subdivided further and in the following this
* cell will be over-sampled to compensate for that fact that it was
* under-sampled before. In this way the probability of obtaining a
* biased sample is reduced. Also rather functions with large peaks
* are then sampled rather efficiently. Functions with narrow peaks
* should, however, be avoided since there is no guarantee that the
* peack is actually hit.
*/
template <typename Rnd, typename FncPtr>
class ACDCGen {
public:
/** Template argument typedef. */
typedef Rnd RndType;
/** Template argument typedef. */
typedef ACDCRandomTraits<RndType> RndTraits;
/** Template argument typedef. */
typedef FncPtr FncPtrType;
/** A vector of cells. */
typedef vector<ACDCGenCell*> CellVector;
/** A vector of function objects. */
typedef vector<FncPtrType> FncVector;
/** A vector of integers. */
typedef vector<DimType> DimVector;
/** The size type of the vectors used. */
typedef DimVector::size_type size_type;
/** Template argument typedef. */
typedef ACDCFncTraits<FncPtrType> FncTraits;
public:
/**
* Standard constructor requiring a random generator object to be
* used.
*/
inline ACDCGen(Rnd * r);
/**
* Default Constructor.
*/
inline ACDCGen();
/**
* Destructor.
*/
inline ~ACDCGen();
/**
* Add a function of a given dimension, \a dim, according to which
* points will be generated. Note that each function, \a f, added
* like this will have its own tree of cells. The \a maxrat argument
* determines the lowest ratio of values allowed between the cell
* with lowest and highest value. If negative it is given by 1/nTry().
*/
inline bool addFunction(DimType dim, FncPtrType f, double maxrat = -1.0);
/**
* Remove all added functions and reset the generator;
*/
inline void clear();
public:
/**
* Generate a point, choosing between the different functions
* specified. The chosen function is returned, while the generated
* point is obtained by the function lastPoint().
*/
inline FncPtrType generate();
/**
* Reject the last generated point. Only used in the evaluation of
* the total integral.
*/
inline void reject();
/**
* Return the last generated point.
* @return a vector of doubles, each in the interval ]0,1[.
*/
inline const DVector & lastPoint() const;
/**
* Return the value of the last chosen function in the last point.
*/
inline double lastF() const;
/**
* Return the function chosen for the last generated point.
*/
inline FncPtrType lastFunction() const;
/**
* return the index of the function chosen for the last generated
* point.
*/
inline size_type last() const;
public:
/** @name Functions influencing the efficiency of the generation. */
//@{
/**
* Set the minimum cell size considered for this generation. The
* default is the machine limit for double precision times a
* hundred.
*/
inline void eps(double newEps);
/**
* Set the safety margin used to multiply the highest found function
* value in a cell when setting its overestimated value. (Default is
* 1.1.)
*/
inline void margin(double newMargin);
/**
* Set the number of points (with non-zero function value) used to
* initialize the tree of cells to use in the generation for each
* function.
*/
inline void nTry(size_type newNTry);
/**
* Set the maximum number of attempts to generate a phase space
* point, or to find non-zero points in the initialization.
*/
inline void maxTry(long);
//@}
public:
/** @name Information about the current generation. */
//@{
/**
* Return the current Monte Carlo estimate of the integral of the
* specified function (or all functions if NULL) over the unit volume.
*/
inline double integral(FncPtrType f = FncPtrType()) const;
/**
* Return the error on the current Monte Carlo estimate of the
* integral of the specified function (or all functions if NULL)
* over the unit volume.
*/
inline double integralErr(FncPtrType f = FncPtrType()) const;
/**
* The number of accepted points so far.
*/
inline long n() const;
/**
* The number of calls to generate() so far. Note that the number of
* calls to the specified functions may be larger. It is up to the
* user to keep track of those.
*/
inline long N() const;
/**
* The ratio of the number of accepted and number of tried points
* n()/N();
*/
inline double efficiency() const;
/**
* Return the number of active cells created so far.
*/
inline int nBins() const;
/**
* Return the maximum depth of any tree of cells used.
*/
inline int depth() const;
/**
* Return the current overestimation of the full integral of all
* specified functions over the unit volume.
*/
inline double maxInt() const;
//@}
/** @name Access to member variables. */
//@{
/**
* The minimum cell size considered for this generation.
*/
inline double eps() const;
/**
* The safety margin used to multiply the highest found function
* value in a cell when setting its overestimated value.
*/
inline double margin() const;
/**
* The number of points used to initialize the tree of cells to use
* in the generation.
*/
inline size_type nTry() const;
/**
* The maximum number of attempts to generate a phase space point,
* or to find non-zero points in the initialization.
*/
inline long maxTry() const;
/**
* Returns true if generating random numbers are so cheap that a new
* one can be thrown everytime a sub-cell is chosen. Otherwise
* random numbers used for this will be reused.
*/
inline bool cheapRandom() const;
/**
* The number of functions used.
*/
inline size_type size() const;
/**
* Returns true if the generator is currently in a state of
* compensating an erroneous overestimation of one of the specified
* functions. If so, the integral and the generated points are not
* statistically correct.
*/
inline bool compensating();
/**
* Return an estimate of how many points need to be sampled before
* the generator finishes compensating.
*/
inline long compleft() const;
/**
* Return a vector with information about all cells.
*/
vector<ACDCGenCellInfo> extractCellInfo() const;
//@}
public:
/** @name Functions related to the random number generator. */
//@{
/**
* Set to true if generating random numbers are so cheap that a new
* one can be thrown everytime a sub-cell is chosen. Otherwise
* random numbers used for this will be reused.
*/
inline void cheapRandom(bool b);
/**
* Set a new random number generator.
*/
inline void setRnd(Rnd * r);
/**
* Double precision number in the interval ]0,1[.
*/
inline double rnd() const;
/**
* Double precision number in the interval ]lo,up[.
*/
inline double rnd(double lo, double up) const;
/**
* Fill the r vector with doubles r[i] in the interval ]lo[i],up[i][.
*/
inline void rnd(const DVector & lo, const DVector & up, DVector & r)const;
/**
* Fill the D first elements in the r vector with doubles in the
* interval ]0,1[.
*/
inline void rnd(DimType D, DVector & r) const;
/**
* Integer in the interval [0,x[
*/
inline long rndInt(long x) const;
//@}
public:
/**
* This function is to be used in ThePEG for output to
* a persistent stream and will not work properly for normal
* ostreams.
*/
template <typename POStream>
void output(POStream &) const;
/**
* This function is to be used in ThePEG for input from a persistent
* stream and will not work properly for normal istreams.
*/
template <typename PIStream>
void input(PIStream &);
private:
/**
* Calculate the overestimated integral for all functions.
*/
inline double doMaxInt();
/**
* Return the vector of functions.
*/
inline const FncVector & functions() const;
/**
* Return the i'th function.
*/
inline FncPtrType function(size_type i) const;
/**
* Return a vector with the dimensions of all functions.
*/
inline const DimVector & dimensions() const;
/**
* Return the dimension of the i'th function.
*/
inline DimType dimension(size_type i) const;
/**
* Return the dimension of the function chosen for the last
* generated point.
*/
inline DimType lastDimension() const;
/**
* Return the roots of all cell trees.
*/
inline const CellVector & cells() const;
/**
* Return the root cell for the i'th function.
*/
inline ACDCGenCell * cell(size_type i) const;
/**
* Return the root cell for the function chosen for the last
* generated point.
*/
inline ACDCGenCell * lastPrimary() const;
/**
* Return a vector with the incremental sum of overestimated
* integrals for each function.
*/
inline const DVector & sumMaxInts() const;
/**
* Return the cell chosen for the last generated point.
*/
inline ACDCGenCell * lastCell() const;
/**
* Choose a function according to its overestimated integral and
* choose a cell to generate a point in.
*/
inline void chooseCell(DVector & lo, DVector & up);
/**
* Start the compensation procedure for the last chosen cell when a
* function velue has been found which exceeds the previous
* overestimation.
*/
inline void compensate(const DVector & lo, const DVector & up);
private:
/**
* The random number generator to be used for this Generator.
*/
RndType * theRnd;
/**
* The number of accepted points (weight > 0) so far.
*/
long theNAcc;
/**
* The number of attempted points so far.
*/
long theN;
/**
* The number of attempts per function so far.
*/
vector<long> theNI;
/**
* The summed weights per function so far.
*/
DVector theSumW;
/**
* The summed squared weights per function so far.
*/
DVector theSumW2;
/**
* The smallest possible division allowed.
*/
double theEps;
/**
* The factor controlling the loss of efficiency when compensating.
*/
double theMargin;
/**
* The number of points to use to find initial average.
*/
size_type theNTry;
/**
* The maximum number of attempts to generate a phase space point,
* or to find non-zero points in the initialization.
*/
long theMaxTry;
/**
* True if generating random numbers are so cheap that a new one can
* be thrown everytime a sub-cell is chosen. Otherwise random
* numbers used for this will be reused.
*/
bool useCheapRandom;
/**
* A vector of functions.
*/
FncVector theFunctions;
/**
* The dimensions of the functions in theFunctions.
*/
DimVector theDimensions;
/**
* The root of the cell tree for the functions in theFunctions.
*/
CellVector thePrimaryCells;
/**
* The accumulated sum of overestimated integrals of the functions
* in theFunctions.
*/
DVector theSumMaxInts;
/**
* The last index chosen
*/
size_type theLast;
/**
* The last cell chosen.
*/
ACDCGenCell * theLastCell;
/**
* The last point generated.
*/
DVector theLastPoint;
/**
* The function value of the last point.
*/
double theLastF;
/**
* A helper struct representing a level of compensation.
*/
struct Level {
/**
* The number of attempts after which this level disapprears.
*/
long lastN;
/**
* The previous max value in the Cell to compensate.
*/
double g;
/**
* The cell which is being compensated.
*/
ACDCGenCell * cell;
/**
* The index corresponding to the cell being compensated.
*/
size_type index;
/**
* The integration limits for the cell being compensated.
*/
DVector up;
/**
* The integration limits for the cell being compensated.
*/
DVector lo;
};
/**
* A vector (stack) of levels
*/
typedef vector<Level> LevelVector;
/**
* The vector (stack) of levels
*/
LevelVector levels;
/**
* This is a help struct to perform the divide-and-conquer slicing
* of cells before starting the compensation procedure.
*/
struct Slicer {
/**
* The constructor takes the number of dimensions of the function
* approximated by the current cell, the ACDCGen object
* controlling the generation and the lower-left and upper-right
* corners of the cell to be sliced.
*/
Slicer(DimType, ACDCGen &, const DVector &, const DVector &);
/**
* The constructor used internally when diagonally chopped-off
* cells need to be sliced themselves.
*/
Slicer(DimType Din, const Slicer & s, ACDCGenCell * cellin,
const DVector & loin, const DVector & xselin, const DVector & upin,
double fselin);
/**
* Destructor.
*/
~Slicer();
/**
* Called from both constructors to do the actual work.
*/
void divideandconquer();
/**
* Initialize the procedure, finding the slicing points around the
* current point
*/
void init();
/**
* Do the slicing and increase the overestimate of the function in
* the resulting cell. If a point with a higher function value has
* been found repeat the slicing around that point etc.
*/
void slice();
/**
* After slicing a cell, find the maximum function value found in
* the resulting cell. Also set the minimum value found.
*/
double shiftmaxmin();
/**
* Find the slice point of the current cell in the direction given.
*/
void dohalf(DimType);
/**
* If split is in more than one dimensions check the overestimate
* for the chopped-off cell.
*/
void checkdiag(ACDCGenCell * cell, DimType d, double lod, double upd);
/**
* The dimension of the cell to be sliced.
*/
DimType D;
/**
* The lower-left corner of the current cell.
*/
DVector lo;
/**
* The upper-right corner of the current cell.
*/
DVector up;
/**
* The lower-left point found closest to the current
* point which gives a function value below the overestimate.
*/
DVector xcl;
/**
* The upper-right point found closest to the current point which
* gives a function value below the overestimate.
*/
DVector xcu;
/**
* The lower-left point furthest away from the
* current point which gives a function value abov the
* overestimate.
*/
DVector xhl;
/**
* The upper-right point furthest away from the
* current point which gives a function value abov the
* overestimate.
*/
DVector xhu;
/**
* The function values found for the xhl point.
*/
DVector fhl;
/**
* The function values found for the xhu point.
*/
DVector fhu;
/**
* The current point around which we are slicing.
*/
DVector xsel;
/**
* The function value in the current point.
*/
double fsel;
/**
* The current cell.
*/
ACDCGenCell * current;
/**
* The cell which resulted from the first slicing procedure. This
* is the first one to get an increased overestimate and is the
* one to be compensated. All other cells with increased
* overestimates are sub-cells to this one
*/
ACDCGenCell * first;
/**
* The lower-left corner of the 'first' cell.
*/
DVector firstlo;
/**
* The upper-right corner of the 'first' cell.
*/
DVector firstup;
/**
* A pointer to the function to be used.
*/
FncPtr f;
/**
* The epsilon() value obtained from the controlling
* ACDCGen object.
*/
double epsilon;
/**
* The margin() value obtained from the controlling
* ACDCGen object.
*/
double margin;
/**
* The dimensions to slice in rated by the resulting fractional
* volume of the resulting slice. If the dimension is negative it
* means that the cell should be slized from below.
*/
multimap<double,DimType> rateslice;
/**
* The minimu function value found in the current sliced cell (set
* by shiftmaxmin()).
*/
double minf;
/**
* If true, then the whole original cell should compensated in the
* continued generation.
*/
bool wholecomp;
};
public:
/** The maximum recursion depth of the compensation so far. */
static size_type maxsize;
private:
/**
* Copy constructor is private and not implemented.
*/
ACDCGen(const ACDCGen &);
/**
* Assignment is private and not implemented.
*/
ACDCGen & operator=(const ACDCGen &);
};
}
#include "ACDCGen.icc"
#endif
|