/usr/include/tbb/partitioner.h is in libtbb-dev 4.4~20151115-0ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 | /*
Copyright 2005-2015 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks. Threading Building Blocks is free software;
you can redistribute it and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation. Threading Building Blocks is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. You should have received a copy of
the GNU General Public License along with Threading Building Blocks; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software library without
restriction. Specifically, if other files instantiate templates or use macros or inline
functions from this file, or you compile this file and link it with other files to produce
an executable, this file does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU General Public License.
*/
#ifndef __TBB_partitioner_H
#define __TBB_partitioner_H
#ifndef __TBB_INITIAL_CHUNKS
// initial task divisions per thread
#define __TBB_INITIAL_CHUNKS 2
#endif
#ifndef __TBB_RANGE_POOL_CAPACITY
// maximum number of elements in range pool
#define __TBB_RANGE_POOL_CAPACITY 8
#endif
#ifndef __TBB_INIT_DEPTH
// initial value for depth of range pool
#define __TBB_INIT_DEPTH 5
#endif
#ifndef __TBB_DEMAND_DEPTH_ADD
// when imbalance is found range splits this value times more
#define __TBB_DEMAND_DEPTH_ADD 2
#endif
#ifndef __TBB_STATIC_THRESHOLD
// necessary number of clocks for the work to be distributed among all tasks
#define __TBB_STATIC_THRESHOLD 40000
#endif
#if __TBB_DEFINE_MIC
#define __TBB_NONUNIFORM_TASK_CREATION 1
#ifdef __TBB_time_stamp
#define __TBB_USE_MACHINE_TIME_STAMPS 1
#define __TBB_task_duration() __TBB_STATIC_THRESHOLD
#endif // __TBB_machine_time_stamp
#endif // __TBB_DEFINE_MIC
#include "task.h"
#include "aligned_space.h"
#include "atomic.h"
#include "internal/_template_helpers.h"
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
// Workaround for overzealous compiler warnings
#pragma warning (push)
#pragma warning (disable: 4244)
#endif
namespace tbb {
class auto_partitioner;
class simple_partitioner;
#if TBB_PREVIEW_STATIC_PARTITIONER
class static_partitioner;
#endif
class affinity_partitioner;
namespace interface9 {
namespace internal {
class affinity_partition_type;
}
}
namespace internal { //< @cond INTERNAL
size_t __TBB_EXPORTED_FUNC get_initial_auto_partitioner_divisor();
//! Defines entry point for affinity partitioner into tbb run-time library.
class affinity_partitioner_base_v3: no_copy {
friend class tbb::affinity_partitioner;
friend class tbb::interface9::internal::affinity_partition_type;
//! Array that remembers affinities of tree positions to affinity_id.
/** NULL if my_size==0. */
affinity_id* my_array;
//! Number of elements in my_array.
size_t my_size;
//! Zeros the fields.
affinity_partitioner_base_v3() : my_array(NULL), my_size(0) {}
//! Deallocates my_array.
~affinity_partitioner_base_v3() {resize(0);}
//! Resize my_array.
/** Retains values if resulting size is the same. */
void __TBB_EXPORTED_METHOD resize( unsigned factor );
};
//! Provides backward-compatible methods for partition objects without affinity.
class partition_type_base {
public:
void set_affinity( task & ) {}
void note_affinity( task::affinity_id ) {}
task* continue_after_execute_range() {return NULL;}
bool decide_whether_to_delay() {return false;}
void spawn_or_delay( bool, task& b ) {
task::spawn(b);
}
};
template<typename Range, typename Body, typename Partitioner> class start_scan;
} //< namespace internal @endcond
namespace serial {
namespace interface9 {
template<typename Range, typename Body, typename Partitioner> class start_for;
}
}
namespace interface9 {
//! @cond INTERNAL
namespace internal {
using namespace tbb::internal;
template<typename Range, typename Body, typename Partitioner> class start_for;
template<typename Range, typename Body, typename Partitioner> class start_reduce;
//! Join task node that contains shared flag for stealing feedback
class flag_task: public task {
public:
tbb::atomic<bool> my_child_stolen;
flag_task() { my_child_stolen = false; }
task* execute() { return NULL; }
static void mark_task_stolen(task &t) {
tbb::atomic<bool> &flag = static_cast<flag_task*>(t.parent())->my_child_stolen;
#if TBB_USE_THREADING_TOOLS
// Threading tools respect lock prefix but report false-positive data-race via plain store
flag.fetch_and_store<release>(true);
#else
flag = true;
#endif //TBB_USE_THREADING_TOOLS
}
static bool is_peer_stolen(task &t) {
return static_cast<flag_task*>(t.parent())->my_child_stolen;
}
};
//! Depth is a relative depth of recursive division inside a range pool. Relative depth allows
//! infinite absolute depth of the recursion for heavily unbalanced workloads with range represented
//! by a number that cannot fit into machine word.
typedef unsigned char depth_t;
//! Range pool stores ranges of type T in a circular buffer with MaxCapacity
template <typename T, depth_t MaxCapacity>
class range_vector {
depth_t my_head;
depth_t my_tail;
depth_t my_size;
depth_t my_depth[MaxCapacity]; // relative depths of stored ranges
tbb::aligned_space<T, MaxCapacity> my_pool;
public:
//! initialize via first range in pool
range_vector(const T& elem) : my_head(0), my_tail(0), my_size(1) {
my_depth[0] = 0;
new( static_cast<void *>(my_pool.begin()) ) T(elem);//TODO: std::move?
}
~range_vector() {
while( !empty() ) pop_back();
}
bool empty() const { return my_size == 0; }
depth_t size() const { return my_size; }
//! Populates range pool via ranges up to max depth or while divisible
//! max_depth starts from 0, e.g. value 2 makes 3 ranges in the pool up to two 1/4 pieces
void split_to_fill(depth_t max_depth) {
while( my_size < MaxCapacity && is_divisible(max_depth) ) {
depth_t prev = my_head;
my_head = (my_head + 1) % MaxCapacity;
new(my_pool.begin()+my_head) T(my_pool.begin()[prev]); // copy TODO: std::move?
my_pool.begin()[prev].~T(); // instead of assignment
new(my_pool.begin()+prev) T(my_pool.begin()[my_head], split()); // do 'inverse' split
my_depth[my_head] = ++my_depth[prev];
my_size++;
}
}
void pop_back() {
__TBB_ASSERT(my_size > 0, "range_vector::pop_back() with empty size");
my_pool.begin()[my_head].~T();
my_size--;
my_head = (my_head + MaxCapacity - 1) % MaxCapacity;
}
void pop_front() {
__TBB_ASSERT(my_size > 0, "range_vector::pop_front() with empty size");
my_pool.begin()[my_tail].~T();
my_size--;
my_tail = (my_tail + 1) % MaxCapacity;
}
T& back() {
__TBB_ASSERT(my_size > 0, "range_vector::back() with empty size");
return my_pool.begin()[my_head];
}
T& front() {
__TBB_ASSERT(my_size > 0, "range_vector::front() with empty size");
return my_pool.begin()[my_tail];
}
//! similarly to front(), returns depth of the first range in the pool
depth_t front_depth() {
__TBB_ASSERT(my_size > 0, "range_vector::front_depth() with empty size");
return my_depth[my_tail];
}
depth_t back_depth() {
__TBB_ASSERT(my_size > 0, "range_vector::back_depth() with empty size");
return my_depth[my_head];
}
bool is_divisible(depth_t max_depth) {
return back_depth() < max_depth && back().is_divisible();
}
};
//! Provides default methods for partition objects and common algorithm blocks.
template <typename Partition>
struct partition_type_base {
typedef split split_type;
// decision makers
void set_affinity( task & ) {}
void note_affinity( task::affinity_id ) {}
bool check_being_stolen(task &) { return false; } // part of old should_execute_range()
bool check_for_demand(task &) { return false; }
bool is_divisible() { return true; } // part of old should_execute_range()
depth_t max_depth() { return 0; }
void align_depth(depth_t) { }
template <typename Range> split_type get_split() { return split(); }
Partition& self() { return *static_cast<Partition*>(this); } // CRTP helper
template<typename StartType, typename Range>
void work_balance(StartType &start, Range &range) {
start.run_body( range ); // simple partitioner goes always here
}
template<typename StartType, typename Range>
void execute(StartType &start, Range &range) {
// The algorithm in a few words ([]-denotes calls to decision methods of partitioner):
// [If this task is stolen, adjust depth and divisions if necessary, set flag].
// If range is divisible {
// Spread the work while [initial divisions left];
// Create trap task [if necessary];
// }
// If not divisible or [max depth is reached], execute, else do the range pool part
if ( range.is_divisible() ) {
if ( self().is_divisible() ) {
do { // split until is divisible
typename Partition::split_type split_obj = self().template get_split<Range>();
start.offer_work( split_obj );
} while ( range.is_divisible() && self().is_divisible() );
}
}
self().work_balance(start, range);
}
};
//! Provides default splitting strategy for partition objects.
template <typename Partition>
struct adaptive_mode : partition_type_base<Partition> {
typedef Partition my_partition;
using partition_type_base<Partition>::self; // CRTP helper to get access to derived classes
size_t my_divisor;
// For affinity_partitioner, my_divisor indicates the number of affinity array indices the task reserves.
// A task which has only one index must produce the right split without reserved index in order to avoid
// it to be overwritten in note_affinity() of the created (right) task.
// I.e. a task created deeper than the affinity array can remember must not save its affinity (LIFO order)
static const unsigned factor = 1;
adaptive_mode() : my_divisor(tbb::internal::get_initial_auto_partitioner_divisor() / 4 * my_partition::factor) {}
adaptive_mode(adaptive_mode &src, split) : my_divisor(do_split(src, split())) {}
adaptive_mode(adaptive_mode &src, const proportional_split& split_obj) : my_divisor(do_split(src, split_obj)) {}
/*! Override do_split methods in order to specify splitting strategy */
size_t do_split(adaptive_mode &src, split) {
return src.my_divisor /= 2u;
}
size_t do_split(adaptive_mode &src, const proportional_split& split_obj) {
#if __TBB_ENABLE_RANGE_FEEDBACK
size_t portion = size_t(float(src.my_divisor) * float(split_obj.right())
/ float(split_obj.left() + split_obj.right()) + 0.5f);
#else
size_t portion = split_obj.right() * my_partition::factor;
#endif
portion = (portion + my_partition::factor/2) & (0ul - my_partition::factor);
#if __TBB_ENABLE_RANGE_FEEDBACK
/** Corner case handling */
if (!portion)
portion = my_partition::factor;
else if (portion == src.my_divisor)
portion = src.my_divisor - my_partition::factor;
#endif
src.my_divisor -= portion;
return portion;
}
bool is_divisible() { // part of old should_execute_range()
return my_divisor > my_partition::factor;
}
};
//! Provides default linear indexing of partitioner's sequence
template <typename Partition>
struct linear_affinity_mode : adaptive_mode<Partition> {
using adaptive_mode<Partition>::my_divisor;
size_t my_head;
using adaptive_mode<Partition>::self;
linear_affinity_mode() : adaptive_mode<Partition>(), my_head(0) {}
linear_affinity_mode(linear_affinity_mode &src, split) : adaptive_mode<Partition>(src, split())
, my_head(src.my_head + src.my_divisor) {}
linear_affinity_mode(linear_affinity_mode &src, const proportional_split& split_obj) : adaptive_mode<Partition>(src, split_obj)
, my_head(src.my_head + src.my_divisor) {}
void set_affinity( task &t ) {
if( my_divisor )
t.set_affinity( affinity_id(my_head) + 1 );
}
};
//! Class determines whether template parameter has static boolean constant
//! 'is_splittable_in_proportion' initialized with value of 'true' or not.
/** If template parameter has such field that has been initialized with non-zero
* value then class field will be set to 'true', otherwise - 'false'
*/
template <typename Range>
class is_splittable_in_proportion {
private:
typedef char yes[1];
typedef char no [2];
template <typename range_type> static yes& decide(typename enable_if<range_type::is_splittable_in_proportion>::type *);
template <typename range_type> static no& decide(...);
public:
// equals to 'true' if and only if static const variable 'is_splittable_in_proportion' of template parameter
// initialized with the value of 'true'
static const bool value = (sizeof(decide<Range>(0)) == sizeof(yes));
};
//! Provides default methods for non-balancing partition objects.
template<class Mode>
struct unbalancing_partition_type : Mode {
using Mode::self;
unbalancing_partition_type() : Mode() {}
unbalancing_partition_type(unbalancing_partition_type& p, split) : Mode(p, split()) {}
unbalancing_partition_type(unbalancing_partition_type& p, const proportional_split& split_obj) : Mode(p, split_obj) {}
#if _MSC_VER && !defined(__INTEL_COMPILER)
// Suppress "conditional expression is constant" warning.
#pragma warning( push )
#pragma warning( disable: 4127 )
#endif
template <typename Range>
proportional_split get_split() {
if (is_splittable_in_proportion<Range>::value) {
size_t size = self().my_divisor / Mode::my_partition::factor;
#if __TBB_NONUNIFORM_TASK_CREATION
size_t right = (size + 2) / 3;
#else
size_t right = size / 2;
#endif
size_t left = size - right;
return proportional_split(left, right);
} else {
return proportional_split(1, 1);
}
}
#if _MSC_VER && !defined(__INTEL_COMPILER)
#pragma warning( pop )
#endif // warning 4127 is back
};
/*! Determine work-balance phase implementing splitting & stealing actions */
template<class Mode>
struct balancing_partition_type : unbalancing_partition_type<Mode> {
using Mode::self;
#ifdef __TBB_USE_MACHINE_TIME_STAMPS
tbb::internal::machine_tsc_t my_dst_tsc;
#endif
enum {
begin = 0,
run,
pass
} my_delay;
depth_t my_max_depth;
static const unsigned range_pool_size = __TBB_RANGE_POOL_CAPACITY;
balancing_partition_type(): unbalancing_partition_type<Mode>()
#ifdef __TBB_USE_MACHINE_TIME_STAMPS
, my_dst_tsc(0)
#endif
, my_delay(begin)
, my_max_depth(__TBB_INIT_DEPTH) {}
balancing_partition_type(balancing_partition_type& p, split)
: unbalancing_partition_type<Mode>(p, split())
#ifdef __TBB_USE_MACHINE_TIME_STAMPS
, my_dst_tsc(0)
#endif
, my_delay(pass)
, my_max_depth(p.my_max_depth) {}
balancing_partition_type(balancing_partition_type& p, const proportional_split& split_obj)
: unbalancing_partition_type<Mode>(p, split_obj)
#ifdef __TBB_USE_MACHINE_TIME_STAMPS
, my_dst_tsc(0)
#endif
, my_delay(begin)
, my_max_depth(p.my_max_depth) {}
bool check_being_stolen( task &t) { // part of old should_execute_range()
if( !(self().my_divisor / Mode::my_partition::factor) ) { // if not from the top P tasks of binary tree
self().my_divisor = 1; // TODO: replace by on-stack flag (partition_state's member)?
if( t.is_stolen_task() && t.parent()->ref_count() >= 2 ) { // runs concurrently with the left task
#if TBB_USE_EXCEPTIONS
// RTTI is available, check whether the cast is valid
__TBB_ASSERT(dynamic_cast<flag_task*>(t.parent()), 0);
// correctness of the cast relies on avoiding the root task for which:
// - initial value of my_divisor != 0 (protected by separate assertion)
// - is_stolen_task() always returns false for the root task.
#endif
flag_task::mark_task_stolen(t);
if( !my_max_depth ) my_max_depth++;
my_max_depth += __TBB_DEMAND_DEPTH_ADD;
return true;
}
}
return false;
}
depth_t max_depth() { return my_max_depth; }
void align_depth(depth_t base) {
__TBB_ASSERT(base <= my_max_depth, 0);
my_max_depth -= base;
}
template<typename StartType, typename Range>
void work_balance(StartType &start, Range &range) {
if( !range.is_divisible() || !self().max_depth() ) {
start.run_body( range ); // simple partitioner goes always here
}
else { // do range pool
internal::range_vector<Range, range_pool_size> range_pool(range);
do {
range_pool.split_to_fill(self().max_depth()); // fill range pool
if( self().check_for_demand( start ) ) {
if( range_pool.size() > 1 ) {
start.offer_work( range_pool.front(), range_pool.front_depth() );
range_pool.pop_front();
continue;
}
if( range_pool.is_divisible(self().max_depth()) ) // was not enough depth to fork a task
continue; // note: next split_to_fill() should split range at least once
}
start.run_body( range_pool.back() );
range_pool.pop_back();
} while( !range_pool.empty() && !start.is_cancelled() );
}
}
bool check_for_demand( task &t ) {
if( pass == my_delay ) {
if( self().my_divisor > 1 ) // produce affinitized tasks while they have slot in array
return true; // do not do my_max_depth++ here, but be sure range_pool is splittable once more
else if( self().my_divisor && my_max_depth ) { // make balancing task
self().my_divisor = 0; // once for each task; depth will be decreased in align_depth()
return true;
}
else if( flag_task::is_peer_stolen(t) ) {
my_max_depth += __TBB_DEMAND_DEPTH_ADD;
return true;
}
} else if( begin == my_delay ) {
#ifndef __TBB_USE_MACHINE_TIME_STAMPS
my_delay = pass;
#else
my_dst_tsc = __TBB_time_stamp() + __TBB_task_duration();
my_delay = run;
} else if( run == my_delay ) {
if( __TBB_time_stamp() < my_dst_tsc ) {
__TBB_ASSERT(my_max_depth > 0, NULL);
my_max_depth--; // increase granularity since tasks seem having too small work
return false;
}
my_delay = pass;
return true;
#endif // __TBB_USE_MACHINE_TIME_STAMPS
}
return false;
}
};
class auto_partition_type: public balancing_partition_type<adaptive_mode<auto_partition_type> > {
public:
auto_partition_type( const auto_partitioner& )
: balancing_partition_type<adaptive_mode<auto_partition_type> >() {
my_divisor *= __TBB_INITIAL_CHUNKS;
}
auto_partition_type( auto_partition_type& src, split)
: balancing_partition_type<adaptive_mode<auto_partition_type> >(src, split()) {}
bool is_divisible() { // part of old should_execute_range()
if( my_divisor > 1 ) return true;
if( my_divisor && my_max_depth ) { // can split the task. TODO: on-stack flag instead
// keep same fragmentation while splitting for the local task pool
my_max_depth--;
my_divisor = 0; // decrease max_depth once per task
return true;
} else return false;
}
bool check_for_demand(task &t) {
if( flag_task::is_peer_stolen(t) ) {
my_max_depth += __TBB_DEMAND_DEPTH_ADD;
return true;
} else return false;
}
};
class simple_partition_type: public partition_type_base<simple_partition_type> {
public:
simple_partition_type( const simple_partitioner& ) {}
simple_partition_type( const simple_partition_type&, split ) {}
//! simplified algorithm
template<typename StartType, typename Range>
void execute(StartType &start, Range &range) {
split_type split_obj = split(); // start.offer_work accepts split_type as reference
while( range.is_divisible() )
start.offer_work( split_obj );
start.run_body( range );
}
};
#if TBB_PREVIEW_STATIC_PARTITIONER
#ifndef __TBB_STATIC_PARTITIONER_BASE_TYPE
#define __TBB_STATIC_PARTITIONER_BASE_TYPE unbalancing_partition_type
#endif
class static_partition_type : public __TBB_STATIC_PARTITIONER_BASE_TYPE<linear_affinity_mode<static_partition_type> > {
public:
typedef proportional_split split_type;
static_partition_type( const static_partitioner& )
: __TBB_STATIC_PARTITIONER_BASE_TYPE<linear_affinity_mode<static_partition_type> >() {}
static_partition_type( static_partition_type& p, split )
: __TBB_STATIC_PARTITIONER_BASE_TYPE<linear_affinity_mode<static_partition_type> >(p, split()) {}
static_partition_type( static_partition_type& p, const proportional_split& split_obj )
: __TBB_STATIC_PARTITIONER_BASE_TYPE<linear_affinity_mode<static_partition_type> >(p, split_obj) {}
};
#undef __TBB_STATIC_PARTITIONER_BASE_TYPE
#endif
class affinity_partition_type : public balancing_partition_type<linear_affinity_mode<affinity_partition_type> > {
static const unsigned factor_power = 4; // TODO: get a unified formula based on number of computing units
tbb::internal::affinity_id* my_array;
public:
static const unsigned factor = 1 << factor_power; // number of slots in affinity array per task
typedef proportional_split split_type;
affinity_partition_type( tbb::internal::affinity_partitioner_base_v3& ap )
: balancing_partition_type<linear_affinity_mode<affinity_partition_type> >() {
__TBB_ASSERT( (factor&(factor-1))==0, "factor must be power of two" );
ap.resize(factor);
my_array = ap.my_array;
my_max_depth = factor_power + 1;
__TBB_ASSERT( my_max_depth < __TBB_RANGE_POOL_CAPACITY, 0 );
}
affinity_partition_type(affinity_partition_type& p, split)
: balancing_partition_type<linear_affinity_mode<affinity_partition_type> >(p, split())
, my_array(p.my_array) {}
affinity_partition_type(affinity_partition_type& p, const proportional_split& split_obj)
: balancing_partition_type<linear_affinity_mode<affinity_partition_type> >(p, split_obj)
, my_array(p.my_array) {}
void set_affinity( task &t ) {
if( my_divisor ) {
if( !my_array[my_head] )
// TODO: consider new ideas with my_array for both affinity and static partitioner's, then code reuse
t.set_affinity( affinity_id(my_head / factor + 1) );
else
t.set_affinity( my_array[my_head] );
}
}
void note_affinity( task::affinity_id id ) {
if( my_divisor )
my_array[my_head] = id;
}
};
//! Backward-compatible partition for auto and affinity partition objects.
class old_auto_partition_type: public tbb::internal::partition_type_base {
size_t num_chunks;
static const size_t VICTIM_CHUNKS = 4;
public:
bool should_execute_range(const task &t) {
if( num_chunks<VICTIM_CHUNKS && t.is_stolen_task() )
num_chunks = VICTIM_CHUNKS;
return num_chunks==1;
}
old_auto_partition_type( const auto_partitioner& )
: num_chunks(internal::get_initial_auto_partitioner_divisor()*__TBB_INITIAL_CHUNKS/4) {}
old_auto_partition_type( const affinity_partitioner& )
: num_chunks(internal::get_initial_auto_partitioner_divisor()*__TBB_INITIAL_CHUNKS/4) {}
old_auto_partition_type( old_auto_partition_type& pt, split ) {
num_chunks = pt.num_chunks = (pt.num_chunks+1u) / 2u;
}
};
} // namespace interfaceX::internal
//! @endcond
} // namespace interfaceX
//! A simple partitioner
/** Divides the range until the range is not divisible.
@ingroup algorithms */
class simple_partitioner {
public:
simple_partitioner() {}
private:
template<typename Range, typename Body, typename Partitioner> friend class serial::interface9::start_for;
template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_for;
template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_reduce;
template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
// backward compatibility
class partition_type: public internal::partition_type_base {
public:
bool should_execute_range(const task& ) {return false;}
partition_type( const simple_partitioner& ) {}
partition_type( const partition_type&, split ) {}
};
// new implementation just extends existing interface
typedef interface9::internal::simple_partition_type task_partition_type;
// TODO: consider to make split_type public
typedef interface9::internal::simple_partition_type::split_type split_type;
};
//! An auto partitioner
/** The range is initial divided into several large chunks.
Chunks are further subdivided into smaller pieces if demand detected and they are divisible.
@ingroup algorithms */
class auto_partitioner {
public:
auto_partitioner() {}
private:
template<typename Range, typename Body, typename Partitioner> friend class serial::interface9::start_for;
template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_for;
template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_reduce;
template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
// backward compatibility
typedef interface9::internal::old_auto_partition_type partition_type;
// new implementation just extends existing interface
typedef interface9::internal::auto_partition_type task_partition_type;
// TODO: consider to make split_type public
typedef interface9::internal::auto_partition_type::split_type split_type;
};
#if TBB_PREVIEW_STATIC_PARTITIONER
//! A static partitioner
class static_partitioner {
public:
static_partitioner() {}
private:
template<typename Range, typename Body, typename Partitioner> friend class serial::interface9::start_for;
template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_for;
template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_reduce;
template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
// backward compatibility
typedef interface9::internal::old_auto_partition_type partition_type;
// new implementation just extends existing interface
typedef interface9::internal::static_partition_type task_partition_type;
// TODO: consider to make split_type public
typedef interface9::internal::static_partition_type::split_type split_type;
};
#endif
//! An affinity partitioner
class affinity_partitioner: internal::affinity_partitioner_base_v3 {
public:
affinity_partitioner() {}
private:
template<typename Range, typename Body, typename Partitioner> friend class serial::interface9::start_for;
template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_for;
template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_reduce;
template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
// backward compatibility - for parallel_scan only
typedef interface9::internal::old_auto_partition_type partition_type;
// new implementation just extends existing interface
typedef interface9::internal::affinity_partition_type task_partition_type;
// TODO: consider to make split_type public
typedef interface9::internal::affinity_partition_type::split_type split_type;
};
} // namespace tbb
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
#pragma warning (pop)
#endif // warning 4244 is back
#undef __TBB_INITIAL_CHUNKS
#undef __TBB_RANGE_POOL_CAPACITY
#undef __TBB_INIT_DEPTH
#endif /* __TBB_partitioner_H */
|