/usr/include/tbb/flow_graph.h is in libtbb-dev 4.4~20151115-0ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 | /*
Copyright 2005-2015 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks. Threading Building Blocks is free software;
you can redistribute it and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation. Threading Building Blocks is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. You should have received a copy of
the GNU General Public License along with Threading Building Blocks; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software library without
restriction. Specifically, if other files instantiate templates or use macros or inline
functions from this file, or you compile this file and link it with other files to produce
an executable, this file does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU General Public License.
*/
#ifndef __TBB_flow_graph_H
#define __TBB_flow_graph_H
#include "tbb_stddef.h"
#include "atomic.h"
#include "spin_mutex.h"
#include "null_mutex.h"
#include "spin_rw_mutex.h"
#include "null_rw_mutex.h"
#include "task.h"
#include "cache_aligned_allocator.h"
#include "tbb_exception.h"
#include "internal/_template_helpers.h"
#include "internal/_aggregator_impl.h"
#include "tbb_profiling.h"
#if __TBB_PREVIEW_ASYNC_NODE
#include "task_arena.h"
#endif
#if TBB_DEPRECATED_FLOW_ENQUEUE
#define FLOW_SPAWN(a) tbb::task::enqueue((a))
#else
#define FLOW_SPAWN(a) tbb::task::spawn((a))
#endif
// use the VC10 or gcc version of tuple if it is available.
#if __TBB_CPP11_TUPLE_PRESENT
#include <tuple>
namespace tbb {
namespace flow {
using std::tuple;
using std::tuple_size;
using std::tuple_element;
using std::get;
}
}
#else
#include "compat/tuple"
#endif
#include<list>
#include<queue>
/** @file
\brief The graph related classes and functions
There are some applications that best express dependencies as messages
passed between nodes in a graph. These messages may contain data or
simply act as signals that a predecessors has completed. The graph
class and its associated node classes can be used to express such
applications.
*/
namespace tbb {
namespace flow {
//! An enumeration the provides the two most common concurrency levels: unlimited and serial
enum concurrency { unlimited = 0, serial = 1 };
namespace interface8 {
namespace internal {
template<typename T, typename M> class successor_cache;
template<typename T, typename M> class broadcast_cache;
template<typename T, typename M> class round_robin_cache;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
template< typename C> class edge_container;
#endif
}
//A generic null type
struct null_type {};
//! An empty class used for messages that mean "I'm done"
class continue_msg {};
template< typename T > class sender;
template< typename T > class receiver;
class continue_receiver;
//! Pure virtual template class that defines a sender of messages of type T
template< typename T >
class sender {
public:
//! The output type of this sender
typedef T output_type;
//! The successor type for this node
typedef receiver<T> successor_type;
virtual ~sender() {}
//! Add a new successor to this node
virtual bool register_successor( successor_type &r ) = 0;
//! Removes a successor from this node
virtual bool remove_successor( successor_type &r ) = 0;
//! Request an item from the sender
virtual bool try_get( T & ) { return false; }
//! Reserves an item in the sender
virtual bool try_reserve( T & ) { return false; }
//! Releases the reserved item
virtual bool try_release( ) { return false; }
//! Consumes the reserved item
virtual bool try_consume( ) { return false; }
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
//! interface to record edges for traversal & deletion
typedef typename internal::edge_container<successor_type> built_successors_type;
typedef typename built_successors_type::edge_list_type successor_list_type;
virtual built_successors_type &built_successors() = 0;
virtual void internal_add_built_successor( successor_type & ) = 0;
virtual void internal_delete_built_successor( successor_type & ) = 0;
virtual void copy_successors( successor_list_type &) = 0;
virtual size_t successor_count() = 0;
#endif
}; // class sender<T>
template< typename T > class limiter_node; // needed for resetting decrementer
template< typename R, typename B > class run_and_put_task;
static tbb::task * const SUCCESSFULLY_ENQUEUED = (task *)-1;
// flags to modify the behavior of the graph reset(). Can be combined.
enum reset_flags {
rf_reset_protocol = 0,
rf_reset_bodies = 1<<0, // delete the current node body, reset to a copy of the initial node body.
rf_clear_edges = 1<<1 // delete edges
};
// enqueue left task if necessary. Returns the non-enqueued task if there is one.
static inline tbb::task *combine_tasks( tbb::task * left, tbb::task * right) {
// if no RHS task, don't change left.
if(right == NULL) return left;
// right != NULL
if(left == NULL) return right;
if(left == SUCCESSFULLY_ENQUEUED) return right;
// left contains a task
if(right != SUCCESSFULLY_ENQUEUED) {
// both are valid tasks
FLOW_SPAWN(*left);
return right;
}
return left;
}
//! Pure virtual template class that defines a receiver of messages of type T
template< typename T >
class receiver {
public:
//! The input type of this receiver
typedef T input_type;
//! The predecessor type for this node
typedef sender<T> predecessor_type;
//! Destructor
virtual ~receiver() {}
//! Put an item to the receiver
bool try_put( const T& t ) {
task *res = try_put_task(t);
if (!res) return false;
if (res != SUCCESSFULLY_ENQUEUED) FLOW_SPAWN(*res);
return true;
}
//! put item to successor; return task to run the successor if possible.
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
virtual task *try_put_task(const T& t) = 0;
public:
//! Add a predecessor to the node
virtual bool register_predecessor( predecessor_type & ) { return false; }
//! Remove a predecessor from the node
virtual bool remove_predecessor( predecessor_type & ) { return false; }
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef typename internal::edge_container<predecessor_type> built_predecessors_type;
typedef typename built_predecessors_type::edge_list_type predecessor_list_type;
virtual built_predecessors_type &built_predecessors() = 0;
virtual void internal_add_built_predecessor( predecessor_type & ) = 0;
virtual void internal_delete_built_predecessor( predecessor_type & ) = 0;
virtual void copy_predecessors( predecessor_list_type & ) = 0;
virtual size_t predecessor_count() = 0;
#endif
protected:
//! put receiver back in initial state
template<typename U> friend class limiter_node;
virtual void reset_receiver(reset_flags f = rf_reset_protocol) = 0;
template<typename TT, typename M> friend class internal::successor_cache;
virtual bool is_continue_receiver() { return false; }
#if __TBB_PREVIEW_OPENCL_NODE
template< typename, typename > friend class proxy_dependency_receiver;
#endif /* __TBB_PREVIEW_OPENCL_NODE */
}; // class receiver<T>
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
//* holder of edges both for caches and for those nodes which do not have predecessor caches.
// C == receiver< ... > or sender< ... >, depending.
namespace internal {
template<typename C>
class edge_container {
public:
typedef std::list<C *, tbb::tbb_allocator<C *> > edge_list_type;
void add_edge( C &s) {
built_edges.push_back( &s );
}
void delete_edge( C &s) {
for ( typename edge_list_type::iterator i = built_edges.begin(); i != built_edges.end(); ++i ) {
if ( *i == &s ) {
(void)built_edges.erase(i);
return; // only remove one predecessor per request
}
}
}
void copy_edges( edge_list_type &v) {
v = built_edges;
}
size_t edge_count() {
return (size_t)(built_edges.size());
}
void clear() {
built_edges.clear();
}
// methods remove the statement from all predecessors/successors liste in the edge
// container.
template< typename S > void sender_extract( S &s );
template< typename R > void receiver_extract( R &r );
private:
edge_list_type built_edges;
}; // class edge_container
} // namespace internal
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
//! Base class for receivers of completion messages
/** These receivers automatically reset, but cannot be explicitly waited on */
class continue_receiver : public receiver< continue_msg > {
public:
//! The input type
typedef continue_msg input_type;
//! The predecessor type for this node
typedef sender< continue_msg > predecessor_type;
//! Constructor
continue_receiver( int number_of_predecessors = 0 ) {
my_predecessor_count = my_initial_predecessor_count = number_of_predecessors;
my_current_count = 0;
}
//! Copy constructor
continue_receiver( const continue_receiver& src ) : receiver<continue_msg>() {
my_predecessor_count = my_initial_predecessor_count = src.my_initial_predecessor_count;
my_current_count = 0;
}
//! Destructor
virtual ~continue_receiver() { }
//! Increments the trigger threshold
/* override */ bool register_predecessor( predecessor_type & ) {
spin_mutex::scoped_lock l(my_mutex);
++my_predecessor_count;
return true;
}
//! Decrements the trigger threshold
/** Does not check to see if the removal of the predecessor now makes the current count
exceed the new threshold. So removing a predecessor while the graph is active can cause
unexpected results. */
/* override */ bool remove_predecessor( predecessor_type & ) {
spin_mutex::scoped_lock l(my_mutex);
--my_predecessor_count;
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef internal::edge_container<predecessor_type> built_predecessors_type;
typedef built_predecessors_type::edge_list_type predecessor_list_type;
/*override*/ built_predecessors_type &built_predecessors() { return my_built_predecessors; }
/*override*/ void internal_add_built_predecessor( predecessor_type &s) {
spin_mutex::scoped_lock l(my_mutex);
my_built_predecessors.add_edge( s );
}
/*override*/ void internal_delete_built_predecessor( predecessor_type &s) {
spin_mutex::scoped_lock l(my_mutex);
my_built_predecessors.delete_edge(s);
}
/*override*/ void copy_predecessors( predecessor_list_type &v) {
spin_mutex::scoped_lock l(my_mutex);
my_built_predecessors.copy_edges(v);
}
/*override*/ size_t predecessor_count() {
spin_mutex::scoped_lock l(my_mutex);
return my_built_predecessors.edge_count();
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
// execute body is supposed to be too small to create a task for.
/* override */ task *try_put_task( const input_type & ) {
{
spin_mutex::scoped_lock l(my_mutex);
if ( ++my_current_count < my_predecessor_count )
return SUCCESSFULLY_ENQUEUED;
else
my_current_count = 0;
}
task * res = execute();
return res? res : SUCCESSFULLY_ENQUEUED;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
// continue_receiver must contain its own built_predecessors because it does
// not have a node_cache.
built_predecessors_type my_built_predecessors;
#endif
spin_mutex my_mutex;
int my_predecessor_count;
int my_current_count;
int my_initial_predecessor_count;
// the friend declaration in the base class did not eliminate the "protected class"
// error in gcc 4.1.2
template<typename U> friend class limiter_node;
/*override*/void reset_receiver( reset_flags f ) {
my_current_count = 0;
if (f & rf_clear_edges) {
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_built_predecessors.clear();
#endif
my_predecessor_count = my_initial_predecessor_count;
}
}
//! Does whatever should happen when the threshold is reached
/** This should be very fast or else spawn a task. This is
called while the sender is blocked in the try_put(). */
virtual task * execute() = 0;
template<typename TT, typename M> friend class internal::successor_cache;
/*override*/ bool is_continue_receiver() { return true; }
}; // class continue_receiver
} // interface8
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
template <typename K, typename T>
K key_from_message( const T &t ) {
return t.key();
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
using interface8::sender;
using interface8::receiver;
using interface8::continue_receiver;
} // flow
} // tbb
#include "internal/_flow_graph_trace_impl.h"
#include "internal/_tbb_hash_compare_impl.h"
namespace tbb {
namespace flow {
namespace interface8 {
#include "internal/_flow_graph_impl.h"
#include "internal/_flow_graph_types_impl.h"
using namespace internal::graph_policy_namespace;
class graph;
class graph_node;
template <typename GraphContainerType, typename GraphNodeType>
class graph_iterator {
friend class graph;
friend class graph_node;
public:
typedef size_t size_type;
typedef GraphNodeType value_type;
typedef GraphNodeType* pointer;
typedef GraphNodeType& reference;
typedef const GraphNodeType& const_reference;
typedef std::forward_iterator_tag iterator_category;
//! Default constructor
graph_iterator() : my_graph(NULL), current_node(NULL) {}
//! Copy constructor
graph_iterator(const graph_iterator& other) :
my_graph(other.my_graph), current_node(other.current_node)
{}
//! Assignment
graph_iterator& operator=(const graph_iterator& other) {
if (this != &other) {
my_graph = other.my_graph;
current_node = other.current_node;
}
return *this;
}
//! Dereference
reference operator*() const;
//! Dereference
pointer operator->() const;
//! Equality
bool operator==(const graph_iterator& other) const {
return ((my_graph == other.my_graph) && (current_node == other.current_node));
}
//! Inequality
bool operator!=(const graph_iterator& other) const { return !(operator==(other)); }
//! Pre-increment
graph_iterator& operator++() {
internal_forward();
return *this;
}
//! Post-increment
graph_iterator operator++(int) {
graph_iterator result = *this;
operator++();
return result;
}
private:
// the graph over which we are iterating
GraphContainerType *my_graph;
// pointer into my_graph's my_nodes list
pointer current_node;
//! Private initializing constructor for begin() and end() iterators
graph_iterator(GraphContainerType *g, bool begin);
void internal_forward();
}; // class graph_iterator
//! The graph class
/** This class serves as a handle to the graph */
class graph : tbb::internal::no_copy {
friend class graph_node;
template< typename Body >
class run_task : public task {
public:
run_task( Body& body ) : my_body(body) {}
task *execute() {
my_body();
return NULL;
}
private:
Body my_body;
};
template< typename Receiver, typename Body >
class run_and_put_task : public task {
public:
run_and_put_task( Receiver &r, Body& body ) : my_receiver(r), my_body(body) {}
task *execute() {
task *res = my_receiver.try_put_task( my_body() );
if (res == SUCCESSFULLY_ENQUEUED) res = NULL;
return res;
}
private:
Receiver &my_receiver;
Body my_body;
};
typedef std::list<task *> task_list_type;
#if __TBB_PREVIEW_ASYNC_NODE
class wait_functor {
task* graph_root_task;
public:
wait_functor( task* t ) : graph_root_task(t) {}
void operator()() const { graph_root_task->wait_for_all(); }
};
void prepare_task_arena() {
my_task_arena = new tbb::task_arena(tbb::internal::attach());
if (!my_task_arena->is_active())
my_task_arena->initialize(); // create a new, default-initialized arena
__TBB_ASSERT(my_task_arena->is_active(), NULL);
}
#endif
public:
//! Constructs a graph with isolated task_group_context
graph() : my_nodes(NULL), my_nodes_last(NULL) {
#if __TBB_PREVIEW_ASYNC_NODE
prepare_task_arena();
#endif
own_context = true;
cancelled = false;
caught_exception = false;
my_context = new task_group_context();
my_root_task = ( new ( task::allocate_root(*my_context) ) empty_task );
my_root_task->set_ref_count(1);
tbb::internal::fgt_graph( this );
my_is_active = true;
}
//! Constructs a graph with use_this_context as context
explicit graph(task_group_context& use_this_context) :
my_context(&use_this_context), my_nodes(NULL), my_nodes_last(NULL) {
#if __TBB_PREVIEW_ASYNC_NODE
prepare_task_arena();
#endif
own_context = false;
my_root_task = ( new ( task::allocate_root(*my_context) ) empty_task );
my_root_task->set_ref_count(1);
tbb::internal::fgt_graph( this );
my_is_active = true;
}
//! Destroys the graph.
/** Calls wait_for_all, then destroys the root task and context. */
~graph() {
wait_for_all();
my_root_task->set_ref_count(0);
task::destroy( *my_root_task );
if (own_context) delete my_context;
#if __TBB_PREVIEW_ASYNC_NODE
delete my_task_arena;
#endif
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) {
tbb::internal::fgt_graph_desc( this, name );
}
#endif
//! Used to register that an external entity may still interact with the graph.
/** The graph will not return from wait_for_all until a matching number of decrement_wait_count calls
is made. */
void increment_wait_count() {
if (my_root_task)
my_root_task->increment_ref_count();
}
//! Deregisters an external entity that may have interacted with the graph.
/** The graph will not return from wait_for_all until all the number of decrement_wait_count calls
matches the number of increment_wait_count calls. */
void decrement_wait_count() {
if (my_root_task)
my_root_task->decrement_ref_count();
}
//! Spawns a task that runs a body and puts its output to a specific receiver
/** The task is spawned as a child of the graph. This is useful for running tasks
that need to block a wait_for_all() on the graph. For example a one-off source. */
template< typename Receiver, typename Body >
void run( Receiver &r, Body body ) {
if(is_active()) {
FLOW_SPAWN( (* new ( task::allocate_additional_child_of( *root_task() ) )
run_and_put_task< Receiver, Body >( r, body )) );
}
}
//! Spawns a task that runs a function object
/** The task is spawned as a child of the graph. This is useful for running tasks
that need to block a wait_for_all() on the graph. For example a one-off source. */
template< typename Body >
void run( Body body ) {
if(is_active()) {
FLOW_SPAWN( * new ( task::allocate_additional_child_of( *root_task() ) ) run_task< Body >( body ) );
}
}
//! Wait until graph is idle and decrement_wait_count calls equals increment_wait_count calls.
/** The waiting thread will go off and steal work while it is block in the wait_for_all. */
void wait_for_all() {
cancelled = false;
caught_exception = false;
if (my_root_task) {
#if TBB_USE_EXCEPTIONS
try {
#endif
#if __TBB_PREVIEW_ASYNC_NODE
my_task_arena->execute(wait_functor(my_root_task));
#else
my_root_task->wait_for_all();
#endif
cancelled = my_context->is_group_execution_cancelled();
#if TBB_USE_EXCEPTIONS
}
catch(...) {
my_root_task->set_ref_count(1);
my_context->reset();
caught_exception = true;
cancelled = true;
throw;
}
#endif
// TODO: the "if" condition below is just a work-around to support the concurrent wait
// mode. The cancelation and exception mechanisms are still broken in this mode.
// Consider using task group not to re-implement the same functionality.
if ( !(my_context->traits() & task_group_context::concurrent_wait) ) {
my_context->reset(); // consistent with behavior in catch()
my_root_task->set_ref_count(1);
}
}
}
//! Returns the root task of the graph
task * root_task() {
return my_root_task;
}
void set_active(bool a = true) {
my_is_active = a;
}
bool is_active() {
return my_is_active;
}
void add_task_to_reset_list(task *tp) {
my_reset_task_list.push_back(tp);
}
// ITERATORS
template<typename C, typename N>
friend class graph_iterator;
// Graph iterator typedefs
typedef graph_iterator<graph,graph_node> iterator;
typedef graph_iterator<const graph,const graph_node> const_iterator;
// Graph iterator constructors
//! start iterator
iterator begin() { return iterator(this, true); }
//! end iterator
iterator end() { return iterator(this, false); }
//! start const iterator
const_iterator begin() const { return const_iterator(this, true); }
//! end const iterator
const_iterator end() const { return const_iterator(this, false); }
//! start const iterator
const_iterator cbegin() const { return const_iterator(this, true); }
//! end const iterator
const_iterator cend() const { return const_iterator(this, false); }
//! return status of graph execution
bool is_cancelled() { return cancelled; }
bool exception_thrown() { return caught_exception; }
// thread-unsafe state reset.
void reset(reset_flags f = rf_reset_protocol);
private:
task *my_root_task;
task_group_context *my_context;
bool own_context;
bool cancelled;
bool caught_exception;
bool my_is_active;
task_list_type my_reset_task_list;
graph_node *my_nodes, *my_nodes_last;
spin_mutex nodelist_mutex;
void register_node(graph_node *n);
void remove_node(graph_node *n);
#if __TBB_PREVIEW_ASYNC_NODE
template < typename Input, typename Output, typename Policy, typename Allocator >
friend class async_node;
task_arena* my_task_arena;
#endif
}; // class graph
template <typename C, typename N>
graph_iterator<C,N>::graph_iterator(C *g, bool begin) : my_graph(g), current_node(NULL)
{
if (begin) current_node = my_graph->my_nodes;
//else it is an end iterator by default
}
template <typename C, typename N>
typename graph_iterator<C,N>::reference graph_iterator<C,N>::operator*() const {
__TBB_ASSERT(current_node, "graph_iterator at end");
return *operator->();
}
template <typename C, typename N>
typename graph_iterator<C,N>::pointer graph_iterator<C,N>::operator->() const {
return current_node;
}
template <typename C, typename N>
void graph_iterator<C,N>::internal_forward() {
if (current_node) current_node = current_node->next;
}
//! The base of all graph nodes.
class graph_node : tbb::internal::no_assign {
friend class graph;
template<typename C, typename N>
friend class graph_iterator;
protected:
graph& my_graph;
graph_node *next, *prev;
public:
graph_node(graph& g) : my_graph(g) {
my_graph.register_node(this);
}
virtual ~graph_node() {
my_graph.remove_node(this);
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
virtual void set_name( const char *name ) = 0;
#endif
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
virtual void extract( ) = 0;
#endif
protected:
// performs the reset on an individual node.
virtual void reset_node(reset_flags f=rf_reset_protocol) = 0;
}; // class graph_node
inline void graph::register_node(graph_node *n) {
n->next = NULL;
{
spin_mutex::scoped_lock lock(nodelist_mutex);
n->prev = my_nodes_last;
if (my_nodes_last) my_nodes_last->next = n;
my_nodes_last = n;
if (!my_nodes) my_nodes = n;
}
}
inline void graph::remove_node(graph_node *n) {
{
spin_mutex::scoped_lock lock(nodelist_mutex);
__TBB_ASSERT(my_nodes && my_nodes_last, "graph::remove_node: Error: no registered nodes");
if (n->prev) n->prev->next = n->next;
if (n->next) n->next->prev = n->prev;
if (my_nodes_last == n) my_nodes_last = n->prev;
if (my_nodes == n) my_nodes = n->next;
}
n->prev = n->next = NULL;
}
inline void graph::reset( reset_flags f ) {
// reset context
set_active(false);
if(my_context) my_context->reset();
cancelled = false;
caught_exception = false;
// reset all the nodes comprising the graph
for(iterator ii = begin(); ii != end(); ++ii) {
graph_node *my_p = &(*ii);
my_p->reset_node(f);
}
#if __TBB_PREVIEW_ASYNC_NODE
// Reattach the arena. Might be useful to run the graph in a particular task_arena
// while not limiting graph lifetime to a single task_arena::execute() call.
delete my_task_arena;
prepare_task_arena();
#endif
set_active(true);
// now spawn the tasks necessary to start the graph
for(task_list_type::iterator rti = my_reset_task_list.begin(); rti != my_reset_task_list.end(); ++rti) {
FLOW_SPAWN(*(*rti));
}
my_reset_task_list.clear();
}
#include "internal/_flow_graph_node_impl.h"
//! An executable node that acts as a source, i.e. it has no predecessors
template < typename Output >
class source_node : public graph_node, public sender< Output > {
protected:
using graph_node::my_graph;
public:
//! The type of the output message, which is complete
typedef Output output_type;
//! The type of successors of this node
typedef receiver< Output > successor_type;
//Source node has no input type
typedef null_type input_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef typename sender<output_type>::built_successors_type built_successors_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
//! Constructor for a node with a successor
template< typename Body >
source_node( graph &g, Body body, bool is_active = true )
: graph_node(g), my_active(is_active), init_my_active(is_active),
my_body( new internal::source_body_leaf< output_type, Body>(body) ),
my_init_body( new internal::source_body_leaf< output_type, Body>(body) ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_SOURCE_NODE, &this->my_graph,
static_cast<sender<output_type> *>(this), this->my_body );
}
//! Copy constructor
source_node( const source_node& src ) :
graph_node(src.my_graph), sender<Output>(),
my_active(src.init_my_active),
init_my_active(src.init_my_active), my_body( src.my_init_body->clone() ), my_init_body(src.my_init_body->clone() ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_SOURCE_NODE, &this->my_graph,
static_cast<sender<output_type> *>(this), this->my_body );
}
//! The destructor
~source_node() { delete my_body; delete my_init_body; }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Add a new successor to this node
/* override */ bool register_successor( successor_type &r ) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.register_successor(r);
if ( my_active )
spawn_put();
return true;
}
//! Removes a successor from this node
/* override */ bool remove_successor( successor_type &r ) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.remove_successor(r);
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/ built_successors_type &built_successors() { return my_successors.built_successors(); }
/*override*/void internal_add_built_successor( successor_type &r) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.internal_add_built_successor(r);
}
/*override*/void internal_delete_built_successor( successor_type &r) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.internal_delete_built_successor(r);
}
/*override*/size_t successor_count() {
spin_mutex::scoped_lock lock(my_mutex);
return my_successors.successor_count();
}
/*override*/void copy_successors(successor_list_type &v) {
spin_mutex::scoped_lock l(my_mutex);
my_successors.copy_successors(v);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
//! Request an item from the node
/*override */ bool try_get( output_type &v ) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved )
return false;
if ( my_has_cached_item ) {
v = my_cached_item;
my_has_cached_item = false;
return true;
}
// we've been asked to provide an item, but we have none. enqueue a task to
// provide one.
spawn_put();
return false;
}
//! Reserves an item.
/* override */ bool try_reserve( output_type &v ) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved ) {
return false;
}
if ( my_has_cached_item ) {
v = my_cached_item;
my_reserved = true;
return true;
} else {
return false;
}
}
//! Release a reserved item.
/** true = item has been released and so remains in sender, dest must request or reserve future items */
/* override */ bool try_release( ) {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "releasing non-existent reservation" );
my_reserved = false;
if(!my_successors.empty())
spawn_put();
return true;
}
//! Consumes a reserved item
/* override */ bool try_consume( ) {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "consuming non-existent reservation" );
my_reserved = false;
my_has_cached_item = false;
if ( !my_successors.empty() ) {
spawn_put();
}
return true;
}
//! Activates a node that was created in the inactive state
void activate() {
spin_mutex::scoped_lock lock(my_mutex);
my_active = true;
if ( !my_successors.empty() )
spawn_put();
}
template<typename Body>
Body copy_function_object() {
internal::source_body<output_type> &body_ref = *this->my_body;
return dynamic_cast< internal::source_body_leaf<output_type, Body> & >(body_ref).get_body();
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/void extract( ) {
my_successors.built_successors().sender_extract(*this); // removes "my_owner" == this from each successor
my_active = init_my_active;
my_reserved = false;
if(my_has_cached_item) my_has_cached_item = false;
}
#endif
protected:
//! resets the source_node to its initial state
/*override*/void reset_node( reset_flags f) {
my_active = init_my_active;
my_reserved =false;
if(my_has_cached_item) {
my_has_cached_item = false;
}
if(f & rf_clear_edges) my_successors.clear();
if(f & rf_reset_bodies) {
internal::source_body<output_type> *tmp = my_init_body->clone();
delete my_body;
my_body = tmp;
}
if(my_active)
this->my_graph.add_task_to_reset_list(create_put_task());
}
private:
spin_mutex my_mutex;
bool my_active;
bool init_my_active;
internal::source_body<output_type> *my_body;
internal::source_body<output_type> *my_init_body;
internal::broadcast_cache< output_type > my_successors;
bool my_reserved;
bool my_has_cached_item;
output_type my_cached_item;
// used by apply_body_bypass, can invoke body of node.
bool try_reserve_apply_body(output_type &v) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved ) {
return false;
}
if ( !my_has_cached_item ) {
tbb::internal::fgt_begin_body( my_body );
bool r = (*my_body)(my_cached_item);
tbb::internal::fgt_end_body( my_body );
if (r) {
my_has_cached_item = true;
}
}
if ( my_has_cached_item ) {
v = my_cached_item;
my_reserved = true;
return true;
} else {
return false;
}
}
// when resetting, and if the source_node was created with my_active == true, then
// when we reset the node we must store a task to run the node, and spawn it only
// after the reset is complete and is_active() is again true. This is why we don't
// test for is_active() here.
task* create_put_task() {
return ( new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal:: source_task_bypass < source_node< output_type > >( *this ) );
}
//! Spawns a task that applies the body
/* override */ void spawn_put( ) {
if(this->my_graph.is_active()) {
FLOW_SPAWN( *create_put_task());
}
}
friend class internal::source_task_bypass< source_node< output_type > >;
//! Applies the body. Returning SUCCESSFULLY_ENQUEUED okay; forward_task_bypass will handle it.
/* override */ task * apply_body_bypass( ) {
output_type v;
if ( !try_reserve_apply_body(v) )
return NULL;
task *last_task = my_successors.try_put_task(v);
if ( last_task )
try_consume();
else
try_release();
return last_task;
}
}; // class source_node
template<typename T>
struct allocate_buffer {
static const bool value = false;
};
template<>
struct allocate_buffer<queueing> {
static const bool value = true;
};
//! Implements a function node that supports Input -> Output
template < typename Input, typename Output = continue_msg, typename Policy = queueing, typename Allocator=cache_aligned_allocator<Input> >
class function_node : public graph_node, public internal::function_input<Input,Output,Allocator>, public internal::function_output<Output> {
public:
typedef Input input_type;
typedef Output output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef internal::function_input<input_type,output_type,Allocator> fInput_type;
typedef internal::function_input_queue<input_type, Allocator> input_queue_type;
typedef internal::function_output<output_type> fOutput_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
using typename fInput_type::predecessor_list_type;
using typename fOutput_type::successor_list_type;
#endif
using fInput_type::my_predecessors;
//! Constructor
// input_queue_type is allocated here, but destroyed in the function_input_base.
// TODO: pass the graph_buffer_policy to the function_input_base so it can all
// be done in one place. This would be an interface-breaking change.
template< typename Body >
function_node( graph &g, size_t concurrency, Body body ) :
graph_node(g), fInput_type(g, concurrency, body, allocate_buffer<Policy>::value ?
new input_queue_type( ) : NULL ) {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_FUNCTION_NODE, &this->graph_node::my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this), this->my_body );
}
//! Copy constructor
function_node( const function_node& src ) :
graph_node(src.graph_node::my_graph),
fInput_type(src, allocate_buffer<Policy>::value ? new input_queue_type : NULL),
fOutput_type() {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_FUNCTION_NODE, &this->graph_node::my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/void extract( ) {
my_predecessors.built_predecessors().receiver_extract(*this);
successors().built_successors().sender_extract(*this);
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
using fInput_type::try_put_task;
/* override */ internal::broadcast_cache<output_type> &successors () { return fOutput_type::my_successors; }
// override of graph_node's reset.
/*override*/void reset_node(reset_flags f) {
fInput_type::reset_function_input(f);
// TODO: use clear() instead.
if(f & rf_clear_edges) {
successors().clear();
my_predecessors.clear();
}
__TBB_ASSERT(!(f & rf_clear_edges) || successors().empty(), "function_node successors not empty");
__TBB_ASSERT(this->my_predecessors.empty(), "function_node predecessors not empty");
}
}; // class function_node
//! implements a function node that supports Input -> (set of outputs)
// Output is a tuple of output types.
template < typename Input, typename Output, typename Policy = queueing, typename Allocator=cache_aligned_allocator<Input> >
class multifunction_node :
public graph_node,
public internal::multifunction_input
<
Input,
typename internal::wrap_tuple_elements<
tbb::flow::tuple_size<Output>::value, // #elements in tuple
internal::multifunction_output, // wrap this around each element
Output // the tuple providing the types
>::type,
Allocator
> {
protected:
using graph_node::my_graph;
static const int N = tbb::flow::tuple_size<Output>::value;
public:
typedef Input input_type;
typedef null_type output_type;
typedef typename internal::wrap_tuple_elements<N,internal::multifunction_output, Output>::type output_ports_type;
typedef internal::multifunction_input<input_type, output_ports_type, Allocator> fInput_type;
typedef internal::function_input_queue<input_type, Allocator> input_queue_type;
private:
typedef typename internal::multifunction_input<input_type, output_ports_type, Allocator> base_type;
using fInput_type::my_predecessors;
public:
template<typename Body>
multifunction_node( graph &g, size_t concurrency, Body body ) :
graph_node(g), base_type(g,concurrency, body, allocate_buffer<Policy>::value ? new input_queue_type : NULL) {
tbb::internal::fgt_multioutput_node_with_body<N>( tbb::internal::FLOW_MULTIFUNCTION_NODE,
&this->graph_node::my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body );
}
multifunction_node( const multifunction_node &other) :
graph_node(other.graph_node::my_graph), base_type(other, allocate_buffer<Policy>::value ? new input_queue_type : NULL) {
tbb::internal::fgt_multioutput_node_with_body<N>( tbb::internal::FLOW_MULTIFUNCTION_NODE,
&this->graph_node::my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_multioutput_node_desc( this, name );
}
#endif
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
void extract( ) {
my_predecessors.built_predecessors().receiver_extract(*this);
base_type::extract();
}
#endif
// all the guts are in multifunction_input...
protected:
/*override*/void reset_node(reset_flags f) { base_type::reset(f); }
}; // multifunction_node
//! split_node: accepts a tuple as input, forwards each element of the tuple to its
// successors. The node has unlimited concurrency, so though it is marked as
// "rejecting" it does not reject inputs.
template<typename TupleType, typename Allocator=cache_aligned_allocator<TupleType> >
class split_node : public multifunction_node<TupleType, TupleType, rejecting, Allocator> {
static const int N = tbb::flow::tuple_size<TupleType>::value;
typedef multifunction_node<TupleType,TupleType,rejecting,Allocator> base_type;
public:
typedef typename base_type::output_ports_type output_ports_type;
typedef typename base_type::output_type output_type;
private:
struct splitting_body {
void operator()(const TupleType& t, output_ports_type &p) {
internal::emit_element<N>::emit_this(t, p);
}
};
public:
typedef TupleType input_type;
typedef Allocator allocator_type;
split_node(graph &g) : base_type(g, unlimited, splitting_body()) {
tbb::internal::fgt_multioutput_node<N>( tbb::internal::FLOW_SPLIT_NODE, &this->graph_node::my_graph,
static_cast<receiver<input_type> *>(this), this->output_ports() );
}
split_node( const split_node & other) : base_type(other) {
tbb::internal::fgt_multioutput_node<N>( tbb::internal::FLOW_SPLIT_NODE, &this->graph_node::my_graph,
static_cast<receiver<input_type> *>(this), this->output_ports() );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_multioutput_node_desc( this, name );
}
#endif
};
//! Implements an executable node that supports continue_msg -> Output
template <typename Output>
class continue_node : public graph_node, public internal::continue_input<Output>, public internal::function_output<Output> {
protected:
using graph_node::my_graph;
public:
typedef continue_msg input_type;
typedef Output output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef internal::continue_input<Output> fInput_type;
typedef internal::function_output<output_type> fOutput_type;
//! Constructor for executable node with continue_msg -> Output
template <typename Body >
continue_node( graph &g, Body body ) :
graph_node(g), internal::continue_input<output_type>( g, body ) {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_CONTINUE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
//! Constructor for executable node with continue_msg -> Output
template <typename Body >
continue_node( graph &g, int number_of_predecessors, Body body ) :
graph_node(g), internal::continue_input<output_type>( g, number_of_predecessors, body ) {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_CONTINUE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
//! Copy constructor
continue_node( const continue_node& src ) :
graph_node(src.graph_node::my_graph), internal::continue_input<output_type>(src),
internal::function_output<Output>() {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_CONTINUE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override graph_node*/ void extract() {
fInput_type::my_built_predecessors.receiver_extract(*this);
successors().built_successors().sender_extract(*this);
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
using fInput_type::try_put_task;
/* override */ internal::broadcast_cache<output_type> &successors () { return fOutput_type::my_successors; }
/*override*/void reset_node(reset_flags f) {
fInput_type::reset_receiver(f);
if(f & rf_clear_edges)successors().clear();
__TBB_ASSERT(!(f & rf_clear_edges) || successors().empty(), "continue_node not reset");
}
}; // continue_node
template< typename T >
class overwrite_node : public graph_node, public receiver<T>, public sender<T> {
protected:
using graph_node::my_graph;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef typename receiver<input_type>::built_predecessors_type built_predecessors_type;
typedef typename sender<output_type>::built_successors_type built_successors_type;
typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
overwrite_node(graph &g) : graph_node(g), my_buffer_is_valid(false) {
my_successors.set_owner( this );
tbb::internal::fgt_node( tbb::internal::FLOW_OVERWRITE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
// Copy constructor; doesn't take anything from src; default won't work
overwrite_node( const overwrite_node& src ) :
graph_node(src.my_graph), receiver<T>(), sender<T>(), my_buffer_is_valid(false)
{
my_successors.set_owner( this );
tbb::internal::fgt_node( tbb::internal::FLOW_OVERWRITE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
~overwrite_node() {}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
/* override */ bool register_successor( successor_type &s ) {
spin_mutex::scoped_lock l( my_mutex );
if (my_buffer_is_valid && this->my_graph.is_active()) {
// We have a valid value that must be forwarded immediately.
if ( s.try_put( my_buffer ) || !s.register_predecessor( *this ) ) {
// We add the successor: it accepted our put or it rejected it but won't let us become a predecessor
my_successors.register_successor( s );
} else {
// We don't add the successor: it rejected our put and we became its predecessor instead
return false;
}
} else {
// No valid value yet, just add as successor
my_successors.register_successor( s );
}
return true;
}
/* override */ bool remove_successor( successor_type &s ) {
spin_mutex::scoped_lock l( my_mutex );
my_successors.remove_successor(s);
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/built_predecessors_type &built_predecessors() { return my_built_predecessors; }
/*override*/built_successors_type &built_successors() { return my_successors.built_successors(); }
/*override*/void internal_add_built_successor( successor_type &s) {
spin_mutex::scoped_lock l( my_mutex );
my_successors.internal_add_built_successor(s);
}
/*override*/void internal_delete_built_successor( successor_type &s) {
spin_mutex::scoped_lock l( my_mutex );
my_successors.internal_delete_built_successor(s);
}
/*override*/size_t successor_count() {
spin_mutex::scoped_lock l( my_mutex );
return my_successors.successor_count();
}
/*override*/ void copy_successors(successor_list_type &v) {
spin_mutex::scoped_lock l( my_mutex );
my_successors.copy_successors(v);
}
/*override*/ void internal_add_built_predecessor( predecessor_type &p) {
spin_mutex::scoped_lock l( my_mutex );
my_built_predecessors.add_edge(p);
}
/*override*/ void internal_delete_built_predecessor( predecessor_type &p) {
spin_mutex::scoped_lock l( my_mutex );
my_built_predecessors.delete_edge(p);
}
/*override*/size_t predecessor_count() {
spin_mutex::scoped_lock l( my_mutex );
return my_built_predecessors.edge_count();
}
/*override*/void copy_predecessors(predecessor_list_type &v) {
spin_mutex::scoped_lock l( my_mutex );
my_built_predecessors.copy_edges(v);
}
/*override*/ void extract() {
my_buffer_is_valid = false;
built_successors().sender_extract(*this);
built_predecessors().receiver_extract(*this);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
/* override */ bool try_get( input_type &v ) {
spin_mutex::scoped_lock l( my_mutex );
if ( my_buffer_is_valid ) {
v = my_buffer;
return true;
}
return false;
}
bool is_valid() {
spin_mutex::scoped_lock l( my_mutex );
return my_buffer_is_valid;
}
void clear() {
spin_mutex::scoped_lock l( my_mutex );
my_buffer_is_valid = false;
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
/* override */ task * try_put_task( const input_type &v ) {
spin_mutex::scoped_lock l( my_mutex );
my_buffer = v;
my_buffer_is_valid = true;
task * rtask = my_successors.try_put_task(v);
if (!rtask) rtask = SUCCESSFULLY_ENQUEUED;
return rtask;
}
spin_mutex my_mutex;
internal::broadcast_cache< input_type, null_rw_mutex > my_successors;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
internal::edge_container<predecessor_type> my_built_predecessors;
#endif
input_type my_buffer;
bool my_buffer_is_valid;
/*override*/void reset_receiver(reset_flags /*f*/) {}
/*override*/void reset_node( reset_flags f) {
my_buffer_is_valid = false;
if (f&rf_clear_edges) {
my_successors.clear();
}
}
}; // overwrite_node
template< typename T >
class write_once_node : public overwrite_node<T> {
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
write_once_node(graph& g) : overwrite_node<T>(g) {
tbb::internal::fgt_node( tbb::internal::FLOW_WRITE_ONCE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor: call base class copy constructor
write_once_node( const write_once_node& src ) : overwrite_node<T>(src) {
tbb::internal::fgt_node( tbb::internal::FLOW_WRITE_ONCE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
/* override */ task *try_put_task( const T &v ) {
spin_mutex::scoped_lock l( this->my_mutex );
if ( this->my_buffer_is_valid ) {
return NULL;
} else {
this->my_buffer = v;
this->my_buffer_is_valid = true;
task *res = this->my_successors.try_put_task(v);
if (!res) res = SUCCESSFULLY_ENQUEUED;
return res;
}
}
};
//! Forwards messages of type T to all successors
template <typename T>
class broadcast_node : public graph_node, public receiver<T>, public sender<T> {
protected:
using graph_node::my_graph;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
private:
internal::broadcast_cache<input_type> my_successors;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
internal::edge_container<predecessor_type> my_built_predecessors;
spin_mutex pred_mutex; // serialize accesses on edge_container
#endif
public:
broadcast_node(graph& g) : graph_node(g) {
my_successors.set_owner( this );
tbb::internal::fgt_node( tbb::internal::FLOW_BROADCAST_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
// Copy constructor
broadcast_node( const broadcast_node& src ) :
graph_node(src.my_graph), receiver<T>(), sender<T>()
{
my_successors.set_owner( this );
tbb::internal::fgt_node( tbb::internal::FLOW_BROADCAST_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Adds a successor
virtual bool register_successor( receiver<T> &r ) {
my_successors.register_successor( r );
return true;
}
//! Removes s as a successor
virtual bool remove_successor( receiver<T> &r ) {
my_successors.remove_successor( r );
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef typename sender<T>::built_successors_type built_successors_type;
/*override sender*/ built_successors_type &built_successors() { return my_successors.built_successors(); }
/*override sender*/ void internal_add_built_successor(successor_type &r) {
my_successors.internal_add_built_successor(r);
}
/*override sender*/ void internal_delete_built_successor(successor_type &r) {
my_successors.internal_delete_built_successor(r);
}
/*override sender*/ size_t successor_count() {
return my_successors.successor_count();
}
/*override*/ void copy_successors(successor_list_type &v) {
my_successors.copy_successors(v);
}
typedef typename receiver<T>::built_predecessors_type built_predecessors_type;
/*override receiver*/ built_predecessors_type &built_predecessors() { return my_built_predecessors; }
/*override*/ void internal_add_built_predecessor( predecessor_type &p) {
spin_mutex::scoped_lock l(pred_mutex);
my_built_predecessors.add_edge(p);
}
/*override*/ void internal_delete_built_predecessor( predecessor_type &p) {
spin_mutex::scoped_lock l(pred_mutex);
my_built_predecessors.delete_edge(p);
}
/*override*/ size_t predecessor_count() {
spin_mutex::scoped_lock l(pred_mutex);
return my_built_predecessors.edge_count();
}
/*override*/ void copy_predecessors(predecessor_list_type &v) {
spin_mutex::scoped_lock l(pred_mutex);
my_built_predecessors.copy_edges(v);
}
/*override graph_node*/ void extract() {
my_built_predecessors.receiver_extract(*this);
my_successors.built_successors().sender_extract(*this);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
//! build a task to run the successor if possible. Default is old behavior.
/*override*/ task *try_put_task(const T& t) {
task *new_task = my_successors.try_put_task(t);
if (!new_task) new_task = SUCCESSFULLY_ENQUEUED;
return new_task;
}
/*override*/void reset_receiver(reset_flags /*f*/) {}
/*override*/void reset_node(reset_flags f) {
if (f&rf_clear_edges) {
my_successors.clear();
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_built_predecessors.clear();
#endif
}
__TBB_ASSERT(!(f & rf_clear_edges) || my_successors.empty(), "Error resetting broadcast_node");
}
}; // broadcast_node
//! Forwards messages in arbitrary order
template <typename T, typename A=cache_aligned_allocator<T> >
class buffer_node : public graph_node, public internal::reservable_item_buffer<T, A>, public receiver<T>, public sender<T> {
protected:
using graph_node::my_graph;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef buffer_node<T, A> class_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
protected:
typedef size_t size_type;
internal::round_robin_cache< T, null_rw_mutex > my_successors;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
internal::edge_container<predecessor_type> my_built_predecessors;
#endif
friend class internal::forward_task_bypass< buffer_node< T, A > >;
enum op_type {reg_succ, rem_succ, req_item, res_item, rel_res, con_res, put_item, try_fwd_task
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
, add_blt_succ, del_blt_succ,
add_blt_pred, del_blt_pred,
blt_succ_cnt, blt_pred_cnt,
blt_succ_cpy, blt_pred_cpy // create vector copies of preds and succs
#endif
};
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
// implements the aggregator_operation concept
class buffer_operation : public internal::aggregated_operation< buffer_operation > {
public:
char type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
task * ltask;
union {
input_type *elem;
successor_type *r;
predecessor_type *p;
size_t cnt_val;
successor_list_type *svec;
predecessor_list_type *pvec;
};
#else
T *elem;
task * ltask;
successor_type *r;
#endif
buffer_operation(const T& e, op_type t) : type(char(t))
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
, ltask(NULL), elem(const_cast<T*>(&e))
#else
, elem(const_cast<T*>(&e)) , ltask(NULL)
#endif
{}
buffer_operation(op_type t) : type(char(t)), ltask(NULL) {}
};
bool forwarder_busy;
typedef internal::aggregating_functor<class_type, buffer_operation> handler_type;
friend class internal::aggregating_functor<class_type, buffer_operation>;
internal::aggregator< handler_type, buffer_operation> my_aggregator;
virtual void handle_operations(buffer_operation *op_list) {
buffer_operation *tmp = NULL;
bool try_forwarding=false;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case reg_succ: internal_reg_succ(tmp); try_forwarding = true; break;
case rem_succ: internal_rem_succ(tmp); break;
case req_item: internal_pop(tmp); break;
case res_item: internal_reserve(tmp); break;
case rel_res: internal_release(tmp); try_forwarding = true; break;
case con_res: internal_consume(tmp); try_forwarding = true; break;
case put_item: internal_push(tmp); try_forwarding = (tmp->status == SUCCEEDED); break;
case try_fwd_task: internal_forward_task(tmp); break;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
// edge recording
case add_blt_succ: internal_add_built_succ(tmp); break;
case del_blt_succ: internal_del_built_succ(tmp); break;
case add_blt_pred: internal_add_built_pred(tmp); break;
case del_blt_pred: internal_del_built_pred(tmp); break;
case blt_succ_cnt: internal_succ_cnt(tmp); break;
case blt_pred_cnt: internal_pred_cnt(tmp); break;
case blt_succ_cpy: internal_copy_succs(tmp); break;
case blt_pred_cpy: internal_copy_preds(tmp); break;
#endif
}
}
if (try_forwarding && !forwarder_busy) {
if(this->my_graph.is_active()) {
forwarder_busy = true;
task *new_task = new(task::allocate_additional_child_of(*(this->my_graph.root_task()))) internal::
forward_task_bypass
< buffer_node<input_type, A> >(*this);
// tmp should point to the last item handled by the aggregator. This is the operation
// the handling thread enqueued. So modifying that record will be okay.
tbb::task *z = tmp->ltask;
tmp->ltask = combine_tasks(z, new_task); // in case the op generated a task
}
}
} // handle_operations
inline task *grab_forwarding_task( buffer_operation &op_data) {
return op_data.ltask;
}
inline bool enqueue_forwarding_task(buffer_operation &op_data) {
task *ft = grab_forwarding_task(op_data);
if(ft) {
FLOW_SPAWN(*ft);
return true;
}
return false;
}
//! This is executed by an enqueued task, the "forwarder"
virtual task *forward_task() {
buffer_operation op_data(try_fwd_task);
task *last_task = NULL;
do {
op_data.status = WAIT;
op_data.ltask = NULL;
my_aggregator.execute(&op_data);
tbb::task *xtask = op_data.ltask;
last_task = combine_tasks(last_task, xtask);
} while (op_data.status == SUCCEEDED);
return last_task;
}
//! Register successor
virtual void internal_reg_succ(buffer_operation *op) {
my_successors.register_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
//! Remove successor
virtual void internal_rem_succ(buffer_operation *op) {
my_successors.remove_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef typename sender<T>::built_successors_type built_successors_type;
/*override sender*/ built_successors_type &built_successors() { return my_successors.built_successors(); }
virtual void internal_add_built_succ(buffer_operation *op) {
my_successors.internal_add_built_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_del_built_succ(buffer_operation *op) {
my_successors.internal_delete_built_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
typedef typename receiver<T>::built_predecessors_type built_predecessors_type;
/*override receiver*/ built_predecessors_type &built_predecessors() { return my_built_predecessors; }
virtual void internal_add_built_pred(buffer_operation *op) {
my_built_predecessors.add_edge(*(op->p));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_del_built_pred(buffer_operation *op) {
my_built_predecessors.delete_edge(*(op->p));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_succ_cnt(buffer_operation *op) {
op->cnt_val = my_successors.successor_count();
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_pred_cnt(buffer_operation *op) {
op->cnt_val = my_built_predecessors.edge_count();
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_copy_succs(buffer_operation *op) {
my_successors.copy_successors(*(op->svec));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_copy_preds(buffer_operation *op) {
my_built_predecessors.copy_edges(*(op->pvec));
__TBB_store_with_release(op->status, SUCCEEDED);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
//! Tries to forward valid items to successors
virtual void internal_forward_task(buffer_operation *op) {
if (this->my_reserved || !this->my_item_valid(this->my_tail-1)) {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
return;
}
T i_copy;
task * last_task = NULL;
size_type counter = my_successors.size();
// Try forwarding, giving each successor a chance
while (counter>0 && !this->buffer_empty() && this->my_item_valid(this->my_tail-1)) {
this->copy_back(i_copy);
task *new_task = my_successors.try_put_task(i_copy);
if(new_task) {
last_task = combine_tasks(last_task, new_task);
this->destroy_back();
}
--counter;
}
op->ltask = last_task; // return task
if (last_task && !counter) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, FAILED);
forwarder_busy = false;
}
}
virtual void internal_push(buffer_operation *op) {
this->push_back(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_pop(buffer_operation *op) {
if(this->pop_back(*(op->elem))) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, FAILED);
}
}
virtual void internal_reserve(buffer_operation *op) {
if(this->reserve_front(*(op->elem))) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, FAILED);
}
}
virtual void internal_consume(buffer_operation *op) {
this->consume_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_release(buffer_operation *op) {
this->release_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
public:
//! Constructor
buffer_node( graph &g ) : graph_node(g), internal::reservable_item_buffer<T>(),
forwarder_busy(false) {
my_successors.set_owner(this);
my_aggregator.initialize_handler(handler_type(this));
tbb::internal::fgt_node( tbb::internal::FLOW_BUFFER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
buffer_node( const buffer_node& src ) : graph_node(src.my_graph),
internal::reservable_item_buffer<T>(), receiver<T>(), sender<T>() {
forwarder_busy = false;
my_successors.set_owner(this);
my_aggregator.initialize_handler(handler_type(this));
tbb::internal::fgt_node( tbb::internal::FLOW_BUFFER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
virtual ~buffer_node() {}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//
// message sender implementation
//
//! Adds a new successor.
/** Adds successor r to the list of successors; may forward tasks. */
/* override */ bool register_successor( successor_type &r ) {
buffer_operation op_data(reg_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/ void internal_add_built_successor( successor_type &r) {
buffer_operation op_data(add_blt_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
}
/*override*/ void internal_delete_built_successor( successor_type &r) {
buffer_operation op_data(del_blt_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
}
/*override*/ void internal_add_built_predecessor( predecessor_type &p) {
buffer_operation op_data(add_blt_pred);
op_data.p = &p;
my_aggregator.execute(&op_data);
}
/*override*/ void internal_delete_built_predecessor( predecessor_type &p) {
buffer_operation op_data(del_blt_pred);
op_data.p = &p;
my_aggregator.execute(&op_data);
}
/*override*/ size_t predecessor_count() {
buffer_operation op_data(blt_pred_cnt);
my_aggregator.execute(&op_data);
return op_data.cnt_val;
}
/*override*/ size_t successor_count() {
buffer_operation op_data(blt_succ_cnt);
my_aggregator.execute(&op_data);
return op_data.cnt_val;
}
/*override*/ void copy_predecessors( predecessor_list_type &v ) {
buffer_operation op_data(blt_pred_cpy);
op_data.pvec = &v;
my_aggregator.execute(&op_data);
}
/*override*/ void copy_successors( successor_list_type &v ) {
buffer_operation op_data(blt_succ_cpy);
op_data.svec = &v;
my_aggregator.execute(&op_data);
}
#endif
//! Removes a successor.
/** Removes successor r from the list of successors.
It also calls r.remove_predecessor(*this) to remove this node as a predecessor. */
/* override */ bool remove_successor( successor_type &r ) {
r.remove_predecessor(*this);
buffer_operation op_data(rem_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
// even though this operation does not cause a forward, if we are the handler, and
// a forward is scheduled, we may be the first to reach this point after the aggregator,
// and so should check for the task.
(void)enqueue_forwarding_task(op_data);
return true;
}
//! Request an item from the buffer_node
/** true = v contains the returned item<BR>
false = no item has been returned */
/* override */ bool try_get( T &v ) {
buffer_operation op_data(req_item);
op_data.elem = &v;
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return (op_data.status==SUCCEEDED);
}
//! Reserves an item.
/** false = no item can be reserved<BR>
true = an item is reserved */
/* override */ bool try_reserve( T &v ) {
buffer_operation op_data(res_item);
op_data.elem = &v;
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return (op_data.status==SUCCEEDED);
}
//! Release a reserved item.
/** true = item has been released and so remains in sender */
/* override */ bool try_release() {
buffer_operation op_data(rel_res);
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return true;
}
//! Consumes a reserved item.
/** true = item is removed from sender and reservation removed */
/* override */ bool try_consume() {
buffer_operation op_data(con_res);
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return true;
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
//! receive an item, return a task *if possible
/* override */ task *try_put_task(const T &t) {
buffer_operation op_data(t, put_item);
my_aggregator.execute(&op_data);
task *ft = grab_forwarding_task(op_data);
// sequencer_nodes can return failure (if an item has been previously inserted)
// We have to spawn the returned task if our own operation fails.
if(ft && op_data.status == FAILED) {
// we haven't succeeded queueing the item, but for some reason the
// call returned a task (if another request resulted in a successful
// forward this could happen.) Queue the task and reset the pointer.
FLOW_SPAWN(*ft); ft = NULL;
}
else if(!ft && op_data.status == SUCCEEDED) {
ft = SUCCESSFULLY_ENQUEUED;
}
return ft;
}
/*override*/void reset_receiver(reset_flags /*f*/) { }
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
public:
/* override*/ void extract() {
my_built_predecessors.receiver_extract(*this);
my_successors.built_successors().sender_extract(*this);
}
#endif
protected:
/*override*/void reset_node( reset_flags f) {
internal::reservable_item_buffer<T, A>::reset();
// TODO: just clear structures
if (f&rf_clear_edges) {
my_successors.clear();
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_built_predecessors.clear();
#endif
}
forwarder_busy = false;
}
}; // buffer_node
//! Forwards messages in FIFO order
template <typename T, typename A=cache_aligned_allocator<T> >
class queue_node : public buffer_node<T, A> {
protected:
typedef buffer_node<T, A> base_type;
typedef typename base_type::size_type size_type;
typedef typename base_type::buffer_operation queue_operation;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
/* override */ void internal_forward_task(queue_operation *op) {
if (this->my_reserved || !this->my_item_valid(this->my_head)) {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
return;
}
T i_copy;
task *last_task = NULL;
size_type counter = this->my_successors.size();
// Keep trying to send items while there is at least one accepting successor
while (counter>0 && this->my_item_valid(this->my_head)) {
this->copy_front(i_copy);
task *new_task = this->my_successors.try_put_task(i_copy);
if(new_task) {
this->destroy_front();
last_task = combine_tasks(last_task, new_task);
}
--counter;
}
op->ltask = last_task;
if (last_task && !counter)
__TBB_store_with_release(op->status, SUCCEEDED);
else {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
}
}
/* override */ void internal_pop(queue_operation *op) {
if ( this->my_reserved || !this->my_item_valid(this->my_head)){
__TBB_store_with_release(op->status, FAILED);
}
else {
this->pop_front(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
}
}
/* override */ void internal_reserve(queue_operation *op) {
if (this->my_reserved || !this->my_item_valid(this->my_head)) {
__TBB_store_with_release(op->status, FAILED);
}
else {
this->reserve_front(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
}
}
/* override */ void internal_consume(queue_operation *op) {
this->consume_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
queue_node( graph &g ) : base_type(g) {
tbb::internal::fgt_node( tbb::internal::FLOW_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
queue_node( const queue_node& src) : base_type(src) {
tbb::internal::fgt_node( tbb::internal::FLOW_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
/*override*/void reset_node( reset_flags f) {
base_type::reset_node(f);
}
}; // queue_node
//! Forwards messages in sequence order
template< typename T, typename A=cache_aligned_allocator<T> >
class sequencer_node : public queue_node<T, A> {
internal::function_body< T, size_t > *my_sequencer;
// my_sequencer should be a benign function and must be callable
// from a parallel context. Does this mean it needn't be reset?
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
template< typename Sequencer >
sequencer_node( graph &g, const Sequencer& s ) : queue_node<T, A>(g),
my_sequencer(new internal::function_body_leaf< T, size_t, Sequencer>(s) ) {
tbb::internal::fgt_node( tbb::internal::FLOW_SEQUENCER_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
sequencer_node( const sequencer_node& src ) : queue_node<T, A>(src),
my_sequencer( src.my_sequencer->clone() ) {
tbb::internal::fgt_node( tbb::internal::FLOW_SEQUENCER_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Destructor
~sequencer_node() { delete my_sequencer; }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
typedef typename buffer_node<T, A>::size_type size_type;
typedef typename buffer_node<T, A>::buffer_operation sequencer_operation;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
private:
/* override */ void internal_push(sequencer_operation *op) {
size_type tag = (*my_sequencer)(*(op->elem));
#if !TBB_DEPRECATED_SEQUENCER_DUPLICATES
if(tag < this->my_head) {
// have already emitted a message with this tag
__TBB_store_with_release(op->status, FAILED);
return;
}
#endif
// cannot modify this->my_tail now; the buffer would be inconsistent.
size_t new_tail = (tag+1 > this->my_tail) ? tag+1 : this->my_tail;
if(this->size(new_tail) > this->capacity()) {
this->grow_my_array(this->size(new_tail));
}
this->my_tail = new_tail;
if(this->place_item(tag,*(op->elem))) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
// already have a message with this tag
__TBB_store_with_release(op->status, FAILED);
}
}
}; // sequencer_node
//! Forwards messages in priority order
template< typename T, typename Compare = std::less<T>, typename A=cache_aligned_allocator<T> >
class priority_queue_node : public buffer_node<T, A> {
public:
typedef T input_type;
typedef T output_type;
typedef buffer_node<T,A> base_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
priority_queue_node( graph &g ) : buffer_node<T, A>(g), mark(0) {
tbb::internal::fgt_node( tbb::internal::FLOW_PRIORITY_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
priority_queue_node( const priority_queue_node &src ) : buffer_node<T, A>(src), mark(0) {
tbb::internal::fgt_node( tbb::internal::FLOW_PRIORITY_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
/*override*/void reset_node( reset_flags f) {
mark = 0;
base_type::reset_node(f);
}
typedef typename buffer_node<T, A>::size_type size_type;
typedef typename buffer_node<T, A>::item_type item_type;
typedef typename buffer_node<T, A>::buffer_operation prio_operation;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
/* override */ void handle_operations(prio_operation *op_list) {
prio_operation *tmp = op_list /*, *pop_list*/ ;
bool try_forwarding=false;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case buffer_node<T, A>::reg_succ: this->internal_reg_succ(tmp); try_forwarding = true; break;
case buffer_node<T, A>::rem_succ: this->internal_rem_succ(tmp); break;
case buffer_node<T, A>::put_item: internal_push(tmp); try_forwarding = true; break;
case buffer_node<T, A>::try_fwd_task: internal_forward_task(tmp); break;
case buffer_node<T, A>::rel_res: internal_release(tmp); try_forwarding = true; break;
case buffer_node<T, A>::con_res: internal_consume(tmp); try_forwarding = true; break;
case buffer_node<T, A>::req_item: internal_pop(tmp); break;
case buffer_node<T, A>::res_item: internal_reserve(tmp); break;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
case buffer_node<T, A>::add_blt_succ: this->internal_add_built_succ(tmp); break;
case buffer_node<T, A>::del_blt_succ: this->internal_del_built_succ(tmp); break;
case buffer_node<T, A>::add_blt_pred: this->internal_add_built_pred(tmp); break;
case buffer_node<T, A>::del_blt_pred: this->internal_del_built_pred(tmp); break;
case buffer_node<T, A>::blt_succ_cnt: this->internal_succ_cnt(tmp); break;
case buffer_node<T, A>::blt_pred_cnt: this->internal_pred_cnt(tmp); break;
case buffer_node<T, A>::blt_succ_cpy: this->internal_copy_succs(tmp); break;
case buffer_node<T, A>::blt_pred_cpy: this->internal_copy_preds(tmp); break;
#endif
}
}
// process pops! for now, no special pop processing
// concurrent_priority_queue handles pushes first, then pops.
// that is the genesis of this comment
if (mark<this->my_tail) heapify();
__TBB_ASSERT(mark == this->my_tail, "mark unequal after heapify");
if (try_forwarding && !this->forwarder_busy) { // could we also test for this->my_tail (queue non-empty)?
if(this->my_graph.is_active()) {
this->forwarder_busy = true;
task *new_task = new(task::allocate_additional_child_of(*(this->my_graph.root_task()))) internal::
forward_task_bypass
< buffer_node<input_type, A> >(*this);
// tmp should point to the last item handled by the aggregator. This is the operation
// the handling thread enqueued. So modifying that record will be okay.
tbb::task *tmp1 = tmp->ltask;
tmp->ltask = combine_tasks(tmp1, new_task);
}
}
}
//! Tries to forward valid items to successors
/* override */ void internal_forward_task(prio_operation *op) {
T i_copy;
task * last_task = NULL; // flagged when a successor accepts
size_type counter = this->my_successors.size();
if (this->my_reserved || this->my_tail == 0) {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
return;
}
// Keep trying to send while there exists an accepting successor
while (counter>0 && this->my_tail > 0) {
prio_copy(i_copy);
task * new_task = this->my_successors.try_put_task(i_copy);
if ( new_task ) {
last_task = combine_tasks(last_task, new_task);
prio_pop();
}
--counter;
}
op->ltask = last_task;
if (last_task && !counter)
__TBB_store_with_release(op->status, SUCCEEDED);
else {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
}
}
/* override */ void internal_push(prio_operation *op) {
prio_push(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
}
/* override */ void internal_pop(prio_operation *op) {
// if empty or already reserved, don't pop
if ( this->my_reserved == true || this->my_tail == 0 ) {
__TBB_store_with_release(op->status, FAILED);
return;
}
prio_copy(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
prio_pop();
}
// pops the highest-priority item, saves copy
/* override */ void internal_reserve(prio_operation *op) {
if (this->my_reserved == true || this->my_tail == 0) {
__TBB_store_with_release(op->status, FAILED);
return;
}
this->my_reserved = true;
prio_copy(*(op->elem));
reserved_item = *(op->elem);
__TBB_store_with_release(op->status, SUCCEEDED);
prio_pop();
}
/* override */ void internal_consume(prio_operation *op) {
__TBB_store_with_release(op->status, SUCCEEDED);
this->my_reserved = false;
reserved_item = input_type();
}
/* override */ void internal_release(prio_operation *op) {
__TBB_store_with_release(op->status, SUCCEEDED);
prio_push(reserved_item);
this->my_reserved = false;
reserved_item = input_type();
}
private:
Compare compare;
size_type mark;
input_type reserved_item;
// in case a reheap has not been done after a push, check if the mark item is higher than the 0'th item
bool prio_use_tail() {
__TBB_ASSERT(mark <= this->my_tail, "mark outside bounds before test");
return mark < this->my_tail && compare(this->get_my_item(0), this->get_my_item(this->my_tail - 1));
}
// prio_push: checks that the item will fit, expand array if necessary, put at end
void prio_push(const T &src) {
if ( this->my_tail >= this->my_array_size )
this->grow_my_array( this->my_tail + 1 );
(void) this->place_item(this->my_tail, src);
++(this->my_tail);
__TBB_ASSERT(mark < this->my_tail, "mark outside bounds after push");
}
// prio_pop: deletes highest priority item from the array, and if it is item
// 0, move last item to 0 and reheap. If end of array, just destroy and decrement tail
// and mark. Assumes the array has already been tested for emptiness; no failure.
void prio_pop() {
if (prio_use_tail()) {
// there are newly pushed elems; last one higher than top
// copy the data
this->destroy_item(this->my_tail-1);
--(this->my_tail);
__TBB_ASSERT(mark <= this->my_tail, "mark outside bounds after pop");
return;
}
this->destroy_item(0);
if(this->my_tail > 1) {
// push the last element down heap
__TBB_ASSERT(this->my_item_valid(this->my_tail - 1), NULL);
this->move_item(0,this->my_tail - 1);
}
--(this->my_tail);
if(mark > this->my_tail) --mark;
if (this->my_tail > 1) // don't reheap for heap of size 1
reheap();
__TBB_ASSERT(mark <= this->my_tail, "mark outside bounds after pop");
}
void prio_copy(T &res) {
if (prio_use_tail()) {
res = this->get_my_item(this->my_tail - 1);
}
else {
res = this->get_my_item(0);
}
}
// turn array into heap
void heapify() {
if(this->my_tail == 0) {
mark = 0;
return;
}
if (!mark) mark = 1;
for (; mark<this->my_tail; ++mark) { // for each unheaped element
size_type cur_pos = mark;
input_type to_place;
this->fetch_item(mark,to_place);
do { // push to_place up the heap
size_type parent = (cur_pos-1)>>1;
if (!compare(this->get_my_item(parent), to_place))
break;
this->move_item(cur_pos, parent);
cur_pos = parent;
} while( cur_pos );
(void) this->place_item(cur_pos, to_place);
}
}
// otherwise heapified array with new root element; rearrange to heap
void reheap() {
size_type cur_pos=0, child=1;
while (child < mark) {
size_type target = child;
if (child+1<mark &&
compare(this->get_my_item(child),
this->get_my_item(child+1)))
++target;
// target now has the higher priority child
if (compare(this->get_my_item(target),
this->get_my_item(cur_pos)))
break;
// swap
this->swap_items(cur_pos, target);
cur_pos = target;
child = (cur_pos<<1)+1;
}
}
}; // priority_queue_node
//! Forwards messages only if the threshold has not been reached
/** This node forwards items until its threshold is reached.
It contains no buffering. If the downstream node rejects, the
message is dropped. */
template< typename T >
class limiter_node : public graph_node, public receiver< T >, public sender< T > {
protected:
using graph_node::my_graph;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef typename receiver<input_type>::built_predecessors_type built_predecessors_type;
typedef typename sender<output_type>::built_successors_type built_successors_type;
typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif
private:
size_t my_threshold;
size_t my_count; //number of successful puts
size_t my_tries; //number of active put attempts
internal::reservable_predecessor_cache< T, spin_mutex > my_predecessors;
spin_mutex my_mutex;
internal::broadcast_cache< T > my_successors;
int init_decrement_predecessors;
friend class internal::forward_task_bypass< limiter_node<T> >;
// Let decrementer call decrement_counter()
friend class internal::decrementer< limiter_node<T> >;
bool check_conditions() { // always called under lock
return ( my_count + my_tries < my_threshold && !my_predecessors.empty() && !my_successors.empty() );
}
// only returns a valid task pointer or NULL, never SUCCESSFULLY_ENQUEUED
task *forward_task() {
input_type v;
task *rval = NULL;
bool reserved = false;
{
spin_mutex::scoped_lock lock(my_mutex);
if ( check_conditions() )
++my_tries;
else
return NULL;
}
//SUCCESS
// if we can reserve and can put, we consume the reservation
// we increment the count and decrement the tries
if ( (my_predecessors.try_reserve(v)) == true ){
reserved=true;
if ( (rval = my_successors.try_put_task(v)) != NULL ){
{
spin_mutex::scoped_lock lock(my_mutex);
++my_count;
--my_tries;
my_predecessors.try_consume();
if ( check_conditions() ) {
if ( this->my_graph.is_active() ) {
task *rtask = new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass< limiter_node<T> >( *this );
FLOW_SPAWN (*rtask);
}
}
}
return rval;
}
}
//FAILURE
//if we can't reserve, we decrement the tries
//if we can reserve but can't put, we decrement the tries and release the reservation
{
spin_mutex::scoped_lock lock(my_mutex);
--my_tries;
if (reserved) my_predecessors.try_release();
if ( check_conditions() ) {
if ( this->my_graph.is_active() ) {
task *rtask = new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass< limiter_node<T> >( *this );
__TBB_ASSERT(!rval, "Have two tasks to handle");
return rtask;
}
}
return rval;
}
}
void forward() {
__TBB_ASSERT(false, "Should never be called");
return;
}
task * decrement_counter() {
{
spin_mutex::scoped_lock lock(my_mutex);
if(my_count) --my_count;
}
return forward_task();
}
public:
//! The internal receiver< continue_msg > that decrements the count
internal::decrementer< limiter_node<T> > decrement;
//! Constructor
limiter_node(graph &g, size_t threshold, int num_decrement_predecessors=0) :
graph_node(g), my_threshold(threshold), my_count(0), my_tries(0),
init_decrement_predecessors(num_decrement_predecessors),
decrement(num_decrement_predecessors)
{
my_predecessors.set_owner(this);
my_successors.set_owner(this);
decrement.set_owner(this);
tbb::internal::fgt_node( tbb::internal::FLOW_LIMITER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<receiver<continue_msg> *>(&decrement),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
limiter_node( const limiter_node& src ) :
graph_node(src.my_graph), receiver<T>(), sender<T>(),
my_threshold(src.my_threshold), my_count(0), my_tries(0),
init_decrement_predecessors(src.init_decrement_predecessors),
decrement(src.init_decrement_predecessors)
{
my_predecessors.set_owner(this);
my_successors.set_owner(this);
decrement.set_owner(this);
tbb::internal::fgt_node( tbb::internal::FLOW_LIMITER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<receiver<continue_msg> *>(&decrement),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Replace the current successor with this new successor
/* override */ bool register_successor( receiver<output_type> &r ) {
spin_mutex::scoped_lock lock(my_mutex);
bool was_empty = my_successors.empty();
my_successors.register_successor(r);
//spawn a forward task if this is the only successor
if ( was_empty && !my_predecessors.empty() && my_count + my_tries < my_threshold ) {
if ( this->my_graph.is_active() ) {
FLOW_SPAWN( (* new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass < limiter_node<T> >( *this ) ) );
}
}
return true;
}
//! Removes a successor from this node
/** r.remove_predecessor(*this) is also called. */
/* override */ bool remove_successor( receiver<output_type> &r ) {
r.remove_predecessor(*this);
my_successors.remove_successor(r);
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/ built_successors_type &built_successors() { return my_successors.built_successors(); }
/*override*/ built_predecessors_type &built_predecessors() { return my_predecessors.built_predecessors(); }
/*override*/void internal_add_built_successor(receiver<output_type> &src) {
my_successors.internal_add_built_successor(src);
}
/*override*/void internal_delete_built_successor(receiver<output_type> &src) {
my_successors.internal_delete_built_successor(src);
}
/*override*/size_t successor_count() { return my_successors.successor_count(); }
/*override*/ void copy_successors(successor_list_type &v) {
my_successors.copy_successors(v);
}
/*override*/void internal_add_built_predecessor(sender<output_type> &src) {
my_predecessors.internal_add_built_predecessor(src);
}
/*override*/void internal_delete_built_predecessor(sender<output_type> &src) {
my_predecessors.internal_delete_built_predecessor(src);
}
/*override*/size_t predecessor_count() { return my_predecessors.predecessor_count(); }
/*override*/ void copy_predecessors(predecessor_list_type &v) {
my_predecessors.copy_predecessors(v);
}
/*override*/void extract() {
my_count = 0;
my_successors.built_successors().sender_extract(*this);
my_predecessors.built_predecessors().receiver_extract(*this);
decrement.built_predecessors().receiver_extract(decrement);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
//! Adds src to the list of cached predecessors.
/* override */ bool register_predecessor( predecessor_type &src ) {
spin_mutex::scoped_lock lock(my_mutex);
my_predecessors.add( src );
if ( my_count + my_tries < my_threshold && !my_successors.empty() && this->my_graph.is_active() ) {
FLOW_SPAWN( (* new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass < limiter_node<T> >( *this ) ) );
}
return true;
}
//! Removes src from the list of cached predecessors.
/* override */ bool remove_predecessor( predecessor_type &src ) {
my_predecessors.remove( src );
return true;
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
//! Puts an item to this receiver
/* override */ task *try_put_task( const T &t ) {
{
spin_mutex::scoped_lock lock(my_mutex);
if ( my_count + my_tries >= my_threshold )
return NULL;
else
++my_tries;
}
task * rtask = my_successors.try_put_task(t);
if ( !rtask ) { // try_put_task failed.
spin_mutex::scoped_lock lock(my_mutex);
--my_tries;
if ( check_conditions() && this->my_graph.is_active() ) {
rtask = new ( task::allocate_additional_child_of( *(this->my_graph.root_task()) ) )
internal::forward_task_bypass< limiter_node<T> >( *this );
}
}
else {
spin_mutex::scoped_lock lock(my_mutex);
++my_count;
--my_tries;
}
return rtask;
}
/*override*/void reset_receiver(reset_flags /*f*/) {
__TBB_ASSERT(false,NULL); // should never be called
}
/*override*/void reset_node( reset_flags f) {
my_count = 0;
if(f & rf_clear_edges) {
my_predecessors.clear();
my_successors.clear();
}
else
{
my_predecessors.reset( );
}
decrement.reset_receiver(f);
}
}; // limiter_node
#include "internal/_flow_graph_join_impl.h"
using internal::reserving_port;
using internal::queueing_port;
using internal::key_matching_port;
using internal::input_port;
using internal::tag_value;
template<typename OutputTuple, typename JP=queueing> class join_node;
template<typename OutputTuple>
class join_node<OutputTuple,reserving>: public internal::unfolded_join_node<tbb::flow::tuple_size<OutputTuple>::value, reserving_port, OutputTuple, reserving> {
private:
static const int N = tbb::flow::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, reserving_port, OutputTuple, reserving> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_type input_ports_type;
join_node(graph &g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_RESERVING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
join_node(const join_node &other) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_RESERVING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename OutputTuple>
class join_node<OutputTuple,queueing>: public internal::unfolded_join_node<tbb::flow::tuple_size<OutputTuple>::value, queueing_port, OutputTuple, queueing> {
private:
static const int N = tbb::flow::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, queueing_port, OutputTuple, queueing> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_type input_ports_type;
join_node(graph &g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_QUEUEING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
join_node(const join_node &other) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_QUEUEING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
// template for key_matching join_node
// tag_matching join_node is a specialization of key_matching, and is source-compatible.
template<typename OutputTuple, typename K, typename KHash>
class join_node<OutputTuple, key_matching<K, KHash> > : public internal::unfolded_join_node<tbb::flow::tuple_size<OutputTuple>::value,
key_matching_port, OutputTuple, key_matching<K,KHash> > {
private:
static const int N = tbb::flow::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, key_matching_port, OutputTuple, key_matching<K,KHash> > unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_type input_ports_type;
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
join_node(graph &g) : unfolded_type(g) {}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename __TBB_B0, typename __TBB_B1>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1) : unfolded_type(g, b0, b1) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2) : unfolded_type(g, b0, b1, b2) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3) : unfolded_type(g, b0, b1, b2, b3) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4) :
unfolded_type(g, b0, b1, b2, b3, b4) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_VARIADIC_MAX >= 6
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5) :
unfolded_type(g, b0, b1, b2, b3, b4, b5) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 7
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6) :
unfolded_type(g, b0, b1, b2, b3, b4, b5, b6) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 8
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6, typename __TBB_B7>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
__TBB_B7 b7) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 9
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6, typename __TBB_B7, typename __TBB_B8>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
__TBB_B7 b7, __TBB_B8 b8) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 10
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6, typename __TBB_B7, typename __TBB_B8, typename __TBB_B9>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
__TBB_B7 b7, __TBB_B8 b8, __TBB_B9 b9) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
join_node(const join_node &other) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
// indexer node
#include "internal/_flow_graph_indexer_impl.h"
template<typename T0, typename T1=null_type, typename T2=null_type, typename T3=null_type,
typename T4=null_type, typename T5=null_type, typename T6=null_type,
typename T7=null_type, typename T8=null_type, typename T9=null_type> class indexer_node;
//indexer node specializations
template<typename T0>
class indexer_node<T0> : public internal::unfolded_indexer_node<tuple<T0> > {
private:
static const int N = 1;
public:
typedef tuple<T0> InputTuple;
typedef typename internal::tagged_msg<size_t, T0> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1>
class indexer_node<T0, T1> : public internal::unfolded_indexer_node<tuple<T0, T1> > {
private:
static const int N = 2;
public:
typedef tuple<T0, T1> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1, typename T2>
class indexer_node<T0, T1, T2> : public internal::unfolded_indexer_node<tuple<T0, T1, T2> > {
private:
static const int N = 3;
public:
typedef tuple<T0, T1, T2> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1, typename T2, typename T3>
class indexer_node<T0, T1, T2, T3> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3> > {
private:
static const int N = 4;
public:
typedef tuple<T0, T1, T2, T3> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1, typename T2, typename T3, typename T4>
class indexer_node<T0, T1, T2, T3, T4> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4> > {
private:
static const int N = 5;
public:
typedef tuple<T0, T1, T2, T3, T4> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#if __TBB_VARIADIC_MAX >= 6
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
class indexer_node<T0, T1, T2, T3, T4, T5> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5> > {
private:
static const int N = 6;
public:
typedef tuple<T0, T1, T2, T3, T4, T5> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 6
#if __TBB_VARIADIC_MAX >= 7
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
class indexer_node<T0, T1, T2, T3, T4, T5, T6> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6> > {
private:
static const int N = 7;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 7
#if __TBB_VARIADIC_MAX >= 8
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7>
class indexer_node<T0, T1, T2, T3, T4, T5, T6, T7> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6, T7> > {
private:
static const int N = 8;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 8
#if __TBB_VARIADIC_MAX >= 9
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8>
class indexer_node<T0, T1, T2, T3, T4, T5, T6, T7, T8> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> > {
private:
static const int N = 9;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7, T8> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 9
#if __TBB_VARIADIC_MAX >= 10
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9>
class indexer_node/*default*/ : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> > {
private:
static const int N = 10;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 10
//! Makes an edge between a single predecessor and a single successor
template< typename T >
inline void make_edge( sender<T> &p, receiver<T> &s ) {
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
s.internal_add_built_predecessor(p);
p.internal_add_built_successor(s);
#endif
p.register_successor( s );
tbb::internal::fgt_make_edge( &p, &s );
}
#if __TBB_FLOW_GRAPH_CPP11_FEATURES
//Makes an edge from port 0 of a multi-output predecessor to port 0 of a multi-input successor.
template< typename T, typename V,
typename = typename T::output_ports_type, typename = typename V::input_ports_type >
inline void make_edge( T& output, V& input) {
make_edge(get<0>(output.output_ports()), get<0>(input.input_ports()));
}
//Makes an edge from port 0 of a multi-output predecessor to a receiver.
template< typename T, typename R,
typename = typename T::output_ports_type >
inline void make_edge( T& output, receiver<R>& input) {
make_edge(get<0>(output.output_ports()), input);
}
//Makes an edge from a sender to port 0 of a multi-input successor.
template< typename S, typename V,
typename = typename V::input_ports_type >
inline void make_edge( sender<S>& output, V& input) {
make_edge(output, get<0>(input.input_ports()));
}
#endif
//! Removes an edge between a single predecessor and a single successor
template< typename T >
inline void remove_edge( sender<T> &p, receiver<T> &s ) {
p.remove_successor( s );
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
// TODO: should we try to remove p from the predecessor list of s, in case the edge is reversed?
p.internal_delete_built_successor(s);
s.internal_delete_built_predecessor(p);
#endif
tbb::internal::fgt_remove_edge( &p, &s );
}
#if __TBB_FLOW_GRAPH_CPP11_FEATURES
//Removes an edge between port 0 of a multi-output predecessor and port 0 of a multi-input successor.
template< typename T, typename V,
typename = typename T::output_ports_type, typename = typename V::input_ports_type >
inline void remove_edge( T& output, V& input) {
remove_edge(get<0>(output.output_ports()), get<0>(input.input_ports()));
}
//Removes an edge between port 0 of a multi-output predecessor and a receiver.
template< typename T, typename R,
typename = typename T::output_ports_type >
inline void remove_edge( T& output, receiver<R>& input) {
remove_edge(get<0>(output.output_ports()), input);
}
//Removes an edge between a sender and port 0 of a multi-input successor.
template< typename S, typename V,
typename = typename V::input_ports_type >
inline void remove_edge( sender<S>& output, V& input) {
remove_edge(output, get<0>(input.input_ports()));
}
#endif
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
template<typename C >
template< typename S >
void internal::edge_container<C>::sender_extract( S &s ) {
edge_list_type e = built_edges;
for ( typename edge_list_type::iterator i = e.begin(); i != e.end(); ++i ) {
remove_edge(s, **i);
}
}
template<typename C >
template< typename R >
void internal::edge_container<C>::receiver_extract( R &r ) {
edge_list_type e = built_edges;
for ( typename edge_list_type::iterator i = e.begin(); i != e.end(); ++i ) {
remove_edge(**i, r);
}
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
//! Returns a copy of the body from a function or continue node
template< typename Body, typename Node >
Body copy_body( Node &n ) {
return n.template copy_function_object<Body>();
}
#if __TBB_FLOW_GRAPH_CPP11_FEATURES
//composite_node
template< typename InputTuple, typename OutputTuple > class composite_node;
template< typename... InputTypes, typename... OutputTypes>
class composite_node <tbb::flow::tuple<InputTypes...>, tbb::flow::tuple<OutputTypes...> > : public graph_node, tbb::internal::no_copy {
public:
typedef tbb::flow::tuple< receiver<InputTypes>&... > input_ports_type;
typedef tbb::flow::tuple< sender<OutputTypes>&... > output_ports_type;
private:
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
const char *my_type_name;
#endif
input_ports_type *my_input_ports;
output_ports_type *my_output_ports;
static const size_t NUM_INPUTS = sizeof...(InputTypes);
static const size_t NUM_OUTPUTS = sizeof...(OutputTypes);
protected:
/*override*/void reset_node(reset_flags) {}
public:
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
composite_node( graph &g, const char *type_name = "composite_node") : graph_node(g), my_type_name(type_name), my_input_ports(NULL), my_output_ports(NULL) {
tbb::internal::itt_make_task_group( tbb::internal::ITT_DOMAIN_FLOW, this, tbb::internal::FLOW_NODE, &g, tbb::internal::FLOW_GRAPH, tbb::internal::FLOW_COMPOSITE_NODE );
tbb::internal::fgt_multiinput_multioutput_node_desc( this, my_type_name );
}
#else
composite_node( graph &g) : graph_node(g), my_input_ports(NULL), my_output_ports(NULL) {}
#endif
template<typename T1, typename T2>
void set_external_ports(T1&& input_ports_tuple, T2&& output_ports_tuple) {
__TBB_STATIC_ASSERT(NUM_INPUTS == tbb::flow::tuple_size<input_ports_type>::value, "number of arguments does not match number of input ports");
__TBB_STATIC_ASSERT(NUM_OUTPUTS == tbb::flow::tuple_size<output_ports_type>::value, "number of arguments does not match number of output ports");
my_input_ports = new input_ports_type(std::forward<T1>(input_ports_tuple));
my_output_ports = new output_ports_type(std::forward<T2>(output_ports_tuple));
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
tbb::internal::fgt_internal_input_helper<T1, NUM_INPUTS>::register_port( this, input_ports_tuple);
tbb::internal::fgt_internal_output_helper<T2, NUM_OUTPUTS>::register_port( this, output_ports_tuple);
#endif
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
template< typename... NodeTypes >
void add_visible_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, true, n...); }
template< typename... NodeTypes >
void add_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, false, n...); }
#else
template<typename... Nodes> void add_nodes(Nodes&...) { }
template<typename... Nodes> void add_visible_nodes(Nodes&...) { }
#endif
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_multiinput_multioutput_node_desc( this, name );
}
#endif
input_ports_type input_ports() {
__TBB_ASSERT(my_input_ports, "input ports not set, call set_external_ports to set input ports");
return *my_input_ports;
}
output_ports_type output_ports() {
__TBB_ASSERT(my_output_ports, "output ports not set, call set_external_ports to set output ports");
return *my_output_ports;
}
virtual ~composite_node() {
if(my_input_ports) delete my_input_ports;
if(my_output_ports) delete my_output_ports;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/void extract() {
__TBB_ASSERT(false, "Current composite_node implementation does not support extract");
}
#endif
}; // class composite_node
//composite_node with only input ports
template< typename... InputTypes>
class composite_node <tbb::flow::tuple<InputTypes...>, tbb::flow::tuple<> > : public graph_node, tbb::internal::no_copy {
public:
typedef tbb::flow::tuple< receiver<InputTypes>&... > input_ports_type;
private:
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
const char *my_type_name;
#endif
input_ports_type *my_input_ports;
static const size_t NUM_INPUTS = sizeof...(InputTypes);
protected:
/*override*/void reset_node(reset_flags) {}
public:
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
composite_node( graph &g, const char *type_name = "composite_node") : graph_node(g), my_type_name(type_name), my_input_ports(NULL) {
tbb::internal::itt_make_task_group( tbb::internal::ITT_DOMAIN_FLOW, this, tbb::internal::FLOW_NODE, &g, tbb::internal::FLOW_GRAPH, tbb::internal::FLOW_COMPOSITE_NODE );
tbb::internal::fgt_multiinput_multioutput_node_desc( this, my_type_name );
}
#else
composite_node( graph &g) : graph_node(g), my_input_ports(NULL) {}
#endif
template<typename T>
void set_external_ports(T&& input_ports_tuple) {
__TBB_STATIC_ASSERT(NUM_INPUTS == tbb::flow::tuple_size<input_ports_type>::value, "number of arguments does not match number of input ports");
my_input_ports = new input_ports_type(std::forward<T>(input_ports_tuple));
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
tbb::internal::fgt_internal_input_helper<T, NUM_INPUTS>::register_port( this, std::forward<T>(input_ports_tuple));
#endif
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
template< typename... NodeTypes >
void add_visible_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, true, n...); }
template< typename... NodeTypes >
void add_nodes( const NodeTypes&... n) { internal::add_nodes_impl(this, false, n...); }
#else
template<typename... Nodes> void add_nodes(Nodes&...) {}
template<typename... Nodes> void add_visible_nodes(Nodes&...) {}
#endif
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_multiinput_multioutput_node_desc( this, name );
}
#endif
input_ports_type input_ports() {
__TBB_ASSERT(my_input_ports, "input ports not set, call set_external_ports to set input ports");
return *my_input_ports;
}
virtual ~composite_node() {
if(my_input_ports) delete my_input_ports;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/void extract() {
__TBB_ASSERT(false, "Current composite_node implementation does not support extract");
}
#endif
}; // class composite_node
//composite_nodes with only output_ports
template<typename... OutputTypes>
class composite_node <tbb::flow::tuple<>, tbb::flow::tuple<OutputTypes...> > : public graph_node, tbb::internal::no_copy {
public:
typedef tbb::flow::tuple< sender<OutputTypes>&... > output_ports_type;
private:
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
const char *my_type_name;
#endif
output_ports_type *my_output_ports;
static const size_t NUM_OUTPUTS = sizeof...(OutputTypes);
protected:
/*override*/void reset_node(reset_flags) {}
public:
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
composite_node( graph &g, const char *type_name = "composite_node") : graph_node(g), my_type_name(type_name), my_output_ports(NULL) {
tbb::internal::itt_make_task_group( tbb::internal::ITT_DOMAIN_FLOW, this, tbb::internal::FLOW_NODE, &g, tbb::internal::FLOW_GRAPH, tbb::internal::FLOW_COMPOSITE_NODE );
tbb::internal::fgt_multiinput_multioutput_node_desc( this, my_type_name );
}
#else
composite_node( graph &g) : graph_node(g), my_output_ports(NULL) {}
#endif
template<typename T>
void set_external_ports(T&& output_ports_tuple) {
__TBB_STATIC_ASSERT(NUM_OUTPUTS == tbb::flow::tuple_size<output_ports_type>::value, "number of arguments does not match number of output ports");
my_output_ports = new output_ports_type(std::forward<T>(output_ports_tuple));
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
tbb::internal::fgt_internal_output_helper<T, NUM_OUTPUTS>::register_port( this, std::forward<T>(output_ports_tuple));
#endif
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
template<typename... NodeTypes >
void add_visible_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, true, n...); }
template<typename... NodeTypes >
void add_nodes(const NodeTypes&... n) { internal::add_nodes_impl(this, false, n...); }
#else
template<typename... Nodes> void add_nodes(Nodes&...) {}
template<typename... Nodes> void add_visible_nodes(Nodes&...) {}
#endif
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_multiinput_multioutput_node_desc( this, name );
}
#endif
output_ports_type output_ports() {
__TBB_ASSERT(my_output_ports, "output ports not set, call set_external_ports to set output ports");
return *my_output_ports;
}
virtual ~composite_node() {
if(my_output_ports) delete my_output_ports;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/void extract() {
__TBB_ASSERT(false, "Current composite_node implementation does not support extract");
}
#endif
}; // class composite_node
#endif // __TBB_FLOW_GRAPH_CPP11_FEATURES
#if __TBB_PREVIEW_ASYNC_NODE
namespace internal {
//! Pure virtual template class that defines interface for async communication
template < typename Output >
class async_gateway {
public:
typedef Output output_type;
//! Submit signal from an asynchronous activity to FG
virtual bool async_try_put( const output_type &i ) = 0;
//! Increment reference count of graph to prevent premature return from wait_for_all
virtual void async_reserve() = 0;
//! Decrement reference count of graph to allow return from wait_for_all
virtual void async_commit() = 0;
virtual ~async_gateway() {}
};
template<typename Input, typename Ports, typename AsyncGateway, typename Body>
class async_body {
public:
typedef AsyncGateway async_gateway_type;
async_body(const Body &body, async_gateway_type *gateway) : my_body(body), my_async_gateway(gateway) { }
async_body(const async_body &other) : my_body(other.my_body), my_async_gateway(other.my_async_gateway) { }
void operator()( const Input &v, Ports & ) {
my_body(v, *my_async_gateway);
}
Body get_body() { return my_body; }
void set_async_gateway(async_gateway_type *gateway) {
my_async_gateway = gateway;
}
private:
Body my_body;
async_gateway_type *my_async_gateway;
};
}
//! Implements async node
template < typename Input, typename Output, typename Policy = queueing, typename Allocator=cache_aligned_allocator<Input> >
class async_node : public multifunction_node< Input, tuple< Output >, Policy, Allocator >, public internal::async_gateway<Output>, public sender< Output > {
protected:
typedef multifunction_node< Input, tuple< Output >, Policy, Allocator > base_type;
public:
typedef Input input_type;
typedef Output output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef internal::async_gateway< output_type > async_gateway_type;
protected:
typedef typename internal::multifunction_input<Input, typename base_type::output_ports_type, Allocator> mfn_input_type;
struct try_put_functor {
typedef internal::multifunction_output<Output> output_port_type;
output_port_type *port;
const Output *value;
bool result;
try_put_functor(output_port_type &p, const Output &v) : port(&p), value(&v), result(false) { }
void operator()() {
result = port->try_put(*value);
}
};
public:
template<typename Body>
async_node( graph &g, size_t concurrency, Body body ) :
base_type( g, concurrency, internal::async_body<Input, typename base_type::output_ports_type, async_gateway_type, Body>(body, this) ) {
tbb::internal::fgt_multioutput_node<1>( tbb::internal::FLOW_ASYNC_NODE,
&this->graph_node::my_graph,
static_cast<receiver<input_type> *>(this),
this->output_ports() );
}
async_node( const async_node &other ) : base_type(other) {
typedef internal::multifunction_body<input_type, typename base_type::output_ports_type> mfn_body_type;
mfn_body_type &body_ref = *this->my_body;
body_ref.set_gateway(static_cast<async_gateway_type *>(this));
mfn_body_type &init_body_ref = *this->my_init_body;
init_body_ref.set_gateway(static_cast<async_gateway_type *>(this));
tbb::internal::fgt_multioutput_node<1>( tbb::internal::FLOW_ASYNC_NODE, &this->graph_node::my_graph, static_cast<receiver<input_type> *>(this), this->output_ports() );
}
virtual ~async_node() {}
/* override */ async_gateway_type& async_gateway() {
return static_cast< async_gateway_type& >(*this);
}
//! Implements async_gateway::async_try_put for an external activity to submit a message to FG
/*override*/ bool async_try_put(const output_type &i ) {
internal::multifunction_output<output_type> &port_0 = internal::output_port<0>(*this);
graph &g = this->graph_node::my_graph;
tbb::internal::fgt_async_try_put_begin(static_cast<receiver<input_type> *>(this), &port_0);
__TBB_ASSERT(g.my_task_arena && g.my_task_arena->is_active(), NULL);
try_put_functor tpf(port_0, i);
g.my_task_arena->execute(tpf);
tbb::internal::fgt_async_try_put_end(static_cast<receiver<input_type> *>(this), &port_0);
return tpf.result;
}
/*override*/ void async_reserve() {
this->graph_node::my_graph.increment_wait_count();
tbb::internal::fgt_async_reserve(static_cast<receiver<input_type> *>(this), &this->graph_node::my_graph);
}
/*override*/ void async_commit() {
this->graph_node::my_graph.decrement_wait_count();
tbb::internal::fgt_async_commit(static_cast<receiver<input_type> *>(this), &this->graph_node::my_graph);
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
// Define sender< Output >
//! Add a new successor to this node
/* override */ bool register_successor( successor_type &r ) {
return internal::output_port<0>(*this).register_successor(r);
}
//! Removes a successor from this node
/* override */ bool remove_successor( successor_type &r ) {
return internal::output_port<0>(*this).remove_successor(r);
}
template<typename Body>
Body copy_function_object() {
typedef internal::multifunction_body<input_type, typename base_type::output_ports_type> mfn_body_type;
typedef internal::async_body<Input, typename base_type::output_ports_type, async_gateway_type, Body> async_body_type;
mfn_body_type &body_ref = *this->my_body;
async_body_type ab = dynamic_cast< internal::multifunction_body_leaf<input_type, typename base_type::output_ports_type, async_body_type> & >(body_ref).get_body();
return ab.get_body();
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
//! interface to record edges for traversal & deletion
typedef typename internal::edge_container<successor_type> built_successors_type;
typedef typename built_successors_type::edge_list_type successor_list_type;
/* override */ built_successors_type &built_successors() {
return internal::output_port<0>(*this).built_successors();
}
/* override */ void internal_add_built_successor( successor_type &r ) {
internal::output_port<0>(*this).internal_add_built_successor(r);
}
/* override */ void internal_delete_built_successor( successor_type &r ) {
internal::output_port<0>(*this).internal_delete_built_successor(r);
}
/* override */ void copy_successors( successor_list_type &l ) {
internal::output_port<0>(*this).copy_successors(l);
}
/* override */ size_t successor_count() {
return internal::output_port<0>(*this).successor_count();
}
#endif
protected:
/*override*/ void reset_node( reset_flags f) {
base_type::reset_node(f);
}
};
#endif // __TBB_PREVIEW_ASYNC_NODE
} // interface8
using interface8::reset_flags;
using interface8::rf_reset_protocol;
using interface8::rf_reset_bodies;
using interface8::rf_clear_edges;
using interface8::graph;
using interface8::graph_node;
using interface8::continue_msg;
using interface8::source_node;
using interface8::function_node;
using interface8::multifunction_node;
using interface8::split_node;
using interface8::internal::output_port;
using interface8::indexer_node;
using interface8::internal::tagged_msg;
using interface8::internal::cast_to;
using interface8::internal::is_a;
using interface8::continue_node;
using interface8::overwrite_node;
using interface8::write_once_node;
using interface8::broadcast_node;
using interface8::buffer_node;
using interface8::queue_node;
using interface8::sequencer_node;
using interface8::priority_queue_node;
using interface8::limiter_node;
using namespace interface8::internal::graph_policy_namespace;
using interface8::join_node;
using interface8::input_port;
using interface8::copy_body;
using interface8::make_edge;
using interface8::remove_edge;
using interface8::internal::tag_value;
#if __TBB_FLOW_GRAPH_CPP11_FEATURES
using interface8::composite_node;
#endif
#if __TBB_PREVIEW_ASYNC_NODE
using interface8::async_node;
#endif
} // flow
} // tbb
#undef __TBB_PFG_RESET_ARG
#undef __TBB_COMMA
#endif // __TBB_flow_graph_H
|