/usr/include/stk/BiQuad.h is in libstk0-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | #ifndef STK_BIQUAD_H
#define STK_BIQUAD_H
#include "Filter.h"
namespace stk {
/***************************************************/
/*! \class BiQuad
\brief STK biquad (two-pole, two-zero) filter class.
This class implements a two-pole, two-zero digital filter.
Methods are provided for creating a resonance or notch in the
frequency response while maintaining a constant filter gain.
by Perry R. Cook and Gary P. Scavone, 1995--2014.
*/
/***************************************************/
class BiQuad : public Filter
{
public:
//! Default constructor creates a second-order pass-through filter.
BiQuad();
//! Class destructor.
~BiQuad();
//! A function to enable/disable the automatic updating of class data when the STK sample rate changes.
void ignoreSampleRateChange( bool ignore = true ) { ignoreSampleRateChange_ = ignore; };
//! Set all filter coefficients.
void setCoefficients( StkFloat b0, StkFloat b1, StkFloat b2, StkFloat a1, StkFloat a2, bool clearState = false );
//! Set the b[0] coefficient value.
void setB0( StkFloat b0 ) { b_[0] = b0; };
//! Set the b[1] coefficient value.
void setB1( StkFloat b1 ) { b_[1] = b1; };
//! Set the b[2] coefficient value.
void setB2( StkFloat b2 ) { b_[2] = b2; };
//! Set the a[1] coefficient value.
void setA1( StkFloat a1 ) { a_[1] = a1; };
//! Set the a[2] coefficient value.
void setA2( StkFloat a2 ) { a_[2] = a2; };
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate poles with the given \e frequency (in Hz)
and \e radius from the z-plane origin. If \e normalize is true,
the filter zeros are placed at z = 1, z = -1, and the coefficients
are then normalized to produce a constant unity peak gain
(independent of the filter \e gain parameter). The resulting
filter frequency response has a resonance at the given \e
frequency. The closer the poles are to the unit-circle (\e radius
close to one), the narrower the resulting resonance width.
An unstable filter will result for \e radius >= 1.0. The
\e frequency value should be between zero and half the sample rate.
*/
void setResonance( StkFloat frequency, StkFloat radius, bool normalize = false );
//! Set the filter coefficients for a notch at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate zeros with the given \e frequency (in Hz)
and \e radius from the z-plane origin. No filter normalization is
attempted. The \e frequency value should be between zero and half
the sample rate. The \e radius value should be positive.
*/
void setNotch( StkFloat frequency, StkFloat radius );
//! Sets the filter zeroes for equal resonance gain.
/*!
When using the filter as a resonator, zeroes places at z = 1, z
= -1 will result in a constant gain at resonance of 1 / (1 - R),
where R is the pole radius setting.
*/
void setEqualGainZeroes( void );
//! Return the last computed output value.
StkFloat lastOut( void ) const { return lastFrame_[0]; };
//! Input one sample to the filter and return a reference to one output.
StkFloat tick( StkFloat input );
//! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
/*!
The StkFrames argument reference is returned. The \c channel
argument must be less than the number of channels in the
StkFrames argument (the first channel is specified by 0).
However, range checking is only performed if _STK_DEBUG_ is
defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
//! Take a channel of the \c iFrames object as inputs to the filter and write outputs to the \c oFrames object.
/*!
The \c iFrames object reference is returned. Each channel
argument must be less than the number of channels in the
corresponding StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
protected:
virtual void sampleRateChanged( StkFloat newRate, StkFloat oldRate );
};
inline StkFloat BiQuad :: tick( StkFloat input )
{
inputs_[0] = gain_ * input;
lastFrame_[0] = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
lastFrame_[0] -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = lastFrame_[0];
return lastFrame_[0];
}
inline StkFrames& BiQuad :: tick( StkFrames& frames, unsigned int channel )
{
#if defined(_STK_DEBUG_)
if ( channel >= frames.channels() ) {
oStream_ << "BiQuad::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
unsigned int hop = frames.channels();
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
inputs_[0] = gain_ * *samples;
*samples = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
*samples -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = *samples;
}
lastFrame_[0] = outputs_[1];
return frames;
}
inline StkFrames& BiQuad :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
{
#if defined(_STK_DEBUG_)
if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
oStream_ << "BiQuad::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *iSamples = &iFrames[iChannel];
StkFloat *oSamples = &oFrames[oChannel];
unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop ) {
inputs_[0] = gain_ * *iSamples;
*oSamples = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
*oSamples -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = *oSamples;
}
lastFrame_[0] = outputs_[1];
return iFrames;
}
} // stk namespace
#endif
|