This file is indexed.

/usr/include/sofa/helper/Quater.h is in libsofa1-dev 1.0~beta4-10ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                              SOFA :: Framework                              *
*                                                                             *
* Authors: M. Adam, J. Allard, B. Andre, P-J. Bensoussan, S. Cotin, C. Duriez,*
* H. Delingette, F. Falipou, F. Faure, S. Fonteneau, L. Heigeas, C. Mendoza,  *
* M. Nesme, P. Neumann, J-P. de la Plata Alcade, F. Poyer and F. Roy          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/
#ifndef SOFA_HELPER_QUATER_H
#define SOFA_HELPER_QUATER_H

#include <sofa/defaulttype/Vec.h>
#include <sofa/defaulttype/Mat.h>
#include <math.h>
#include <assert.h>
#include <iostream>

#include <sofa/helper/helper.h>

namespace sofa
{

namespace helper
{

template<class Real>
class SOFA_HELPER_API Quater
{
private:
        Real _q[4];

public:
        Quater();
        virtual ~Quater();
        Quater(Real x, Real y, Real z, Real w);
		template<class Real2>
		Quater(const Real2 q[]) { for (int i=0; i<4; i++) _q[i] = (Real)q[i]; }
		template<class Real2>
		Quater(const Quater<Real2>& q) { for (int i=0; i<4; i++) _q[i] = (Real)q[i]; }
        Quater( const defaulttype::Vec<3,Real>& axis, Real angle );
        
        static Quater identity() {
            return Quater(0,0,0,1);
        }
            

        /// Cast into a standard C array of elements.
        const Real* ptr() const
        {
            return this->_q;
        }

        /// Cast into a standard C array of elements.
        Real* ptr()
        {
            return this->_q;
        }

        /// Normalize a quaternion
        void normalize();

        void clear()
        {
                _q[0]=0.0;
                _q[1]=0.0;
                _q[2]=0.0;
                _q[3]=1.0;
        }

        void fromMatrix(const defaulttype::Matrix3 &m);

        template<class Mat33>
        void toMatrix(Mat33 &m) const
        {
                m[0][0] = (typename Mat33::Real) (1.0f - 2.0f * (_q[1] * _q[1] + _q[2] * _q[2]));
                m[0][1] = (typename Mat33::Real) (2.0f * (_q[0] * _q[1] - _q[2] * _q[3]));
                m[0][2] = (typename Mat33::Real) (2.0f * (_q[2] * _q[0] + _q[1] * _q[3]));

                m[1][0] = (typename Mat33::Real) (2.0f * (_q[0] * _q[1] + _q[2] * _q[3]));
                m[1][1] = (typename Mat33::Real) (1.0f - 2.0f * (_q[2] * _q[2] + _q[0] * _q[0]));
                m[1][2] = (typename Mat33::Real) (2.0f * (_q[1] * _q[2] - _q[0] * _q[3]));

                m[2][0] = (typename Mat33::Real) (2.0f * (_q[2] * _q[0] - _q[1] * _q[3]));
                m[2][1] = (typename Mat33::Real) (2.0f * (_q[1] * _q[2] + _q[0] * _q[3]));
                m[2][2] = (typename Mat33::Real) (1.0f - 2.0f * (_q[1] * _q[1] + _q[0] * _q[0]));
        }

        /// Apply the rotation to a given vector
        template<class Vec>
        Vec rotate( const Vec& v ) const
        {
                return Vec(
                    (typename Vec::value_type)((1.0f - 2.0f * (_q[1] * _q[1] + _q[2] * _q[2]))*v[0] + (2.0f * (_q[0] * _q[1] - _q[2] * _q[3])) * v[1] + (2.0f * (_q[2] * _q[0] + _q[1] * _q[3])) * v[2]),
                    (typename Vec::value_type)((2.0f * (_q[0] * _q[1] + _q[2] * _q[3]))*v[0] + (1.0f - 2.0f * (_q[2] * _q[2] + _q[0] * _q[0]))*v[1] + (2.0f * (_q[1] * _q[2] - _q[0] * _q[3]))*v[2]),
                    (typename Vec::value_type)((2.0f * (_q[2] * _q[0] - _q[1] * _q[3]))*v[0] + (2.0f * (_q[1] * _q[2] + _q[0] * _q[3]))*v[1] + (1.0f - 2.0f * (_q[1] * _q[1] + _q[0] * _q[0]))*v[2])
                       );

        }

        /// Apply the inverse rotation to a given vector
        template<class Vec>
        Vec inverseRotate( const Vec& v ) const
        {
                return Vec(
                    (typename Vec::value_type)((1.0f - 2.0f * (_q[1] * _q[1] + _q[2] * _q[2]))*v[0] + (2.0f * (_q[0] * _q[1] + _q[2] * _q[3])) * v[1] + (2.0f * (_q[2] * _q[0] - _q[1] * _q[3])) * v[2]),
                    (typename Vec::value_type)((2.0f * (_q[0] * _q[1] - _q[2] * _q[3]))*v[0] + (1.0f - 2.0f * (_q[2] * _q[2] + _q[0] * _q[0]))*v[1] + (2.0f * (_q[1] * _q[2] + _q[0] * _q[3]))*v[2]),
                    (typename Vec::value_type)((2.0f * (_q[2] * _q[0] + _q[1] * _q[3]))*v[0] + (2.0f * (_q[1] * _q[2] - _q[0] * _q[3]))*v[1] + (1.0f - 2.0f * (_q[1] * _q[1] + _q[0] * _q[0]))*v[2])
                       );

        }

        /// Given two quaternions, add them together to get a third quaternion.
        /// Adding quaternions to get a compound rotation is analagous to adding
        /// translations to get a compound translation.
        //template <class T>
        //friend Quater<T> operator+(Quater<T> q1, Quater<T> q2);
		Quater<Real> operator+(const Quater<Real> &q1) const;

		Quater<Real> operator*(const Quater<Real> &q1) const;

    Quater<Real> operator*(const Real &r) const;
	Quater<Real> operator/(const Real &r) const;
	void operator*=(const Real &r);
	void operator/=(const Real &r);

        /// Given two Quaters, multiply them together to get a third quaternion.
        //template <class T>
        //friend Quater<T> operator*(const Quater<T>& q1, const Quater<T>& q2);

        Quater quatVectMult(const defaulttype::Vec<3,Real>& vect);

        Quater vectQuatMult(const defaulttype::Vec<3,Real>& vect);

        Real& operator[](int index)
        {
                assert(index >= 0 && index < 4);
                return _q[index];
        }

        const Real& operator[](int index) const
        {
                assert(index >= 0 && index < 4);
                return _q[index];
        }

        Quater inverse() const;

		defaulttype::Vec<3,Real> toEulerVector() const;

        // A useful function, builds a rotation matrix in Matrix based on
        // given quaternion.

	void buildRotationMatrix(Real m[4][4]) const;
	void writeOpenGlMatrix( double* m ) const; 
        void writeOpenGlMatrix( float* m ) const; 

        //void buildRotationMatrix(MATRIX4x4 m);

        //void buildRotationMatrix(Matrix &m);

        // This function computes a quaternion based on an axis (defined by
        // the given vector) and an angle about which to rotate.  The angle is
        // expressed in radians.
        Quater axisToQuat(defaulttype::Vec<3,Real> a, Real phi);

        /// Create using rotation vector (axis*angle) given in parent coordinates
        template<class V>
        static Quater createFromRotationVector(const V& a)
        {
                Real phi = (Real)sqrt(a*a);
                if( phi < 1.0e-5 )
                        return Quater(0,0,0,1);
                else {
                        Real nor = 1/phi;
                        Real s = (Real)sin(phi/2);
                        return Quater( a[0]*s*nor, a[1]*s*nor,a[2]*s*nor, (Real)cos(phi/2) );
                }
        }
	
	/// Create a quaternion from Euler
	static Quater createQuaterFromEuler( defaulttype::Vec<3,Real> v) {
	  Real quat[4];      Real a0 = v.elems[0];
	  Real a1 = v.elems[1];
	  Real a2 = v.elems[2];
	  quat[3] = cos(a0/2)*cos(a1/2)*cos(a2/2) + sin(a0/2)*sin(a1/2)*sin(a2/2);
	  quat[0] = sin(a0/2)*cos(a1/2)*cos(a2/2) - cos(a0/2)*sin(a1/2)*sin(a2/2);
	  quat[1] = cos(a0/2)*sin(a1/2)*cos(a2/2) + sin(a0/2)*cos(a1/2)*sin(a2/2);
	  quat[2] = cos(a0/2)*cos(a1/2)*sin(a2/2) - sin(a0/2)*sin(a1/2)*cos(a2/2);
	  Quater quatResult( quat[0], quat[1], quat[2], quat[3] );     
	  return quatResult;
	}
	
        /// Create using the entries of a rotation vector (axis*angle) given in parent coordinates
        template<class T>
        static Quater createFromRotationVector(T a0, T a1, T a2 )
        {
            Real phi = (Real)sqrt((Real)(a0*a0+a1*a1+a2*a2));
            if( phi < 1.0e-5 )
                return Quater(0,0,0,1);
            else {
                Real nor = 1/phi;
                Real s = (Real)sin(phi/2.0);
                return Quater( a0*s*nor, a1*s*nor,a2*s*nor, (Real)cos(phi/2.0) );
            }
        }
       /// Create using rotation vector (axis*angle) given in parent coordinates
        template<class V>
        static Quater set(const V& a){ return createFromRotationVector(a); }

       /// Create using using the entries of a rotation vector (axis*angle) given in parent coordinates
        template<class T>
        static Quater set(T a0, T a1, T a2){ return createFromRotationVector(a0,a1,a2); }


        // Print the quaternion
//         inline friend std::ostream& operator<<(std::ostream& out, Quater Q)
// 		{
// 			return (out << "(" << Q._q[0] << "," << Q._q[1] << "," << Q._q[2] << ","
// 				<< Q._q[3] << ")");
// 		}

        // Print the quaternion (C style)
        void print();

        void operator+=(const Quater& q2);
        void operator*=(const Quater& q2);

		bool operator==(const Quater& q) const
		{
			for (int i=0;i<4;i++)
				if ( fabs( _q[i] - q._q[i] ) > EQUALITY_THRESHOLD ) return false;
			return true;
		}

		bool operator!=(const Quater& q) const
		{
			for (int i=0;i<4;i++)
				if ( fabs( _q[i] - q._q[i] ) > EQUALITY_THRESHOLD ) return true;
			return false;
		}
        
        /// write to an output stream
        inline friend std::ostream& operator << ( std::ostream& out, const Quater& v ){
            out<<v._q[0]<<" "<<v._q[1]<<" "<<v._q[2]<<" "<<v._q[3];
            return out;
        }
        /// read from an input stream
        inline friend std::istream& operator >> ( std::istream& in, Quater& v ){
            in>>v._q[0]>>v._q[1]>>v._q[2]>>v._q[3];
            return in;
        }

		static unsigned int size(){return 4;};
};

//typedef Quater<double> Quat; ///< alias
//typedef Quater<float> Quatf; ///< alias
//typedef Quater<double> Quaternion; ///< alias

} // namespace helper

} // namespace sofa

#endif