This file is indexed.

/usr/include/sofa/component/mapping/ArticulatedSystemMapping.inl is in libsofa1-dev 1.0~beta4-10ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                               SOFA :: Modules                               *
*                                                                             *
* Authors: The SOFA Team and external contributors (see Authors.txt)          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/

#ifndef SOFA_COMPONENT_MAPPING_ARTICULATEDSYSTEMMAPPING_INL
#define SOFA_COMPONENT_MAPPING_ARTICULATEDSYSTEMMAPPING_INL

#include <sofa/component/mapping/ArticulatedSystemMapping.h>
#include <sofa/simulation/common/Simulation.h>
#include <sofa/core/objectmodel/BaseContext.h>
#include <sofa/helper/gl/template.h>

namespace sofa
{

namespace component
{

namespace mapping
{

template <class BasicMapping>
ArticulatedSystemMapping<BasicMapping>::ArticulatedSystemMapping(In* from, Out* to)
: Inherit(from, to)
, rootModel(NULL), ahc(NULL)
, m_rootModelName(initData(&m_rootModelName, std::string(""), "rootModel", "Root position if a rigid root model is specified."))
{

}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::init()
{
	GNode* context = dynamic_cast<GNode*>(this->fromModel->getContext());
	context->getNodeObject(ahc);
	articulationCenters = ahc->getArticulationCenters();

	OutVecCoord& xto = *this->toModel->getX();
	InVecCoord& xfrom = *this->fromModel->getX();

	ArticulationPos.clear();
	ArticulationAxis.clear();
	ArticulationPos.resize(xfrom.size());
	ArticulationAxis.resize(xfrom.size());

	if (!m_rootModelName.getValue().empty())
	{
		std::vector< std::string > tokens(0);
		std::string str = m_rootModelName.getValue();
		std::string::size_type begin_index = 0;
		std::string::size_type end_index = 0;
    if (rootModel)
    {
		serr << "Root Model found : Name = " << rootModel->getName() << sendl;

    }
		while ( (end_index = str.find("/", begin_index)) != std::string::npos )
		{
			tokens.push_back(str.substr(begin_index, end_index - begin_index));
			begin_index = end_index + 1;
		}

		tokens.push_back(str.substr(begin_index));

		GNode* node = context;

		std::vector< std::string >::iterator it = tokens.begin();
		std::vector< std::string >::iterator itEnd = tokens.end();

		while (it != itEnd)
		{
			if ( it->compare("..") == 0 )
			{
				if (node != 0)
					node = node->parent;
			}
			else
			{
				if (node != 0)
					node = node->getChild(*it);
			}

			++it;
		}

		if (node != 0)
			node->getNodeObject(rootModel);

	}
	else
	{
		context->parent->getNodeObject(rootModel);
	}

	CoordinateBuf.clear();
	CoordinateBuf.resize(xfrom.size());
	for (unsigned int c=0; c<xfrom.size(); c++)
	{
		CoordinateBuf[c].x() = 0.0;
	}

	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.begin();
	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = articulationCenters.end();

	for (; ac != acEnd; ac++)
	{
		(*ac)->OrientationArticulationCenter.clear();
		(*ac)->DisplacementArticulationCenter.clear();
		(*ac)->Disp_Rotation.clear();

		// sout << "(*ac)->OrientationArticulationCenter : " << (*ac)->OrientationArticulationCenter << sendl;
		// todo : warning if a (*a)->articulationIndex.getValue() exceed xfrom size !
	}

	apply(xto, xfrom, (rootModel==NULL ? NULL : rootModel->getX()));

	/*
	OutVecDeriv& vto = *this->toModel->getV();
	InVecDeriv& vfrom = *this->fromModel->getV();
	applyJT(vfrom, vto);
	*/
}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::reset()
{
	init();
}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::apply( typename Out::VecCoord& out, const typename In::VecCoord& in, const typename InRoot::VecCoord* inroot  )
{
    // Copy the root position if a rigid root model is present
    if (rootModel)
    {
        out[0] = (*inroot)[rootModel->getSize()-1];
	//	sout << "Root Model Name = " << rootModel->getName() << sendl;
     //   out[0] = (*rootModel->getX())[rootModel->getSize()-1];
    }

	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.begin();
	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = articulationCenters.end();

	for (; ac != acEnd; ac++)
	{
		int parent = (*ac)->parentIndex.getValue();
		int child = (*ac)->childIndex.getValue();

		// Before computing the child position, it is placed with the same orientation than its parent
		// and at the position compatible with the definition of the articulation center
		// (see initTranslateChild function for details...)
		Quat quat_child_buf = out[child].getOrientation();



		// The position of the articulation center can be deduced using the 6D position of the parent:
		// only useful for visualisation of the mapping => NO ! Used in applyJ and applyJT
		(*ac)->globalPosition.setValue(out[parent].getCenter() +
			out[parent].getOrientation().rotate((*ac)->posOnParent.getValue()));

		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();
		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();
		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aEnd = articulations.end();

		int process = (*ac)->articulationProcess.getValue();

		switch(process)	{
			case 0: // 0-(default) articulation are treated one by one, the axis of the second articulation is updated by the potential rotation of the first articulation
				//			   potential problems could arise when rotation exceed 90° (known problem of euler angles)
			{
				// the position of the child is reset to its rest position (based on the postion of the articulation center)
				out[child].getOrientation() = out[parent].getOrientation();
				out[child].getCenter() = out[parent].getCenter() + (*ac)->initTranslateChild(out[parent].getOrientation());

				Vec<3,OutReal> APos;
				APos = (*ac)->globalPosition.getValue();
				for (; a != aEnd; a++)
				{
					int ind = (*a)->articulationIndex.getValue();
					InCoord value = in[ind];
					Vec<3,Real> axis = out[child].getOrientation().rotate((*a)->axis.getValue());
					ArticulationAxis[ind] = axis;

					if ((*a)->rotation.getValue())
					{
						Quat dq;
						dq.axisToQuat(axis, value.x());
						out[child].getCenter() += (*ac)->translateChild(dq, out[child].getOrientation());
						out[child].getOrientation() += dq;

					}
					if ((*a)->translation.getValue())
					{
						out[child].getCenter() += axis*value.x();
						APos += axis*value.x();
					}

					ArticulationPos[ind]= APos;
				}
				break;
			}
	case 1: // the axis of the articulations are linked to the parent - rotations are treated by successive increases -
			{
				//sout<<"Case 1"<<sendl;
				// no reset of the position of the child its position is corrected at the end to respect the articulation center.

				for (; a != aEnd; a++)
				{
					int ind = (*a)->articulationIndex.getValue();
					InCoord value = in[ind];
					InCoord prev_value = CoordinateBuf[ind];
					Vec<3,Real> axis = out[parent].getOrientation().rotate((*a)->axis.getValue());
					ArticulationAxis[ind]=axis;

					// the increment of rotation and translation are stored in dq and disp
					if ((*a)->rotation.getValue() )
					{
						Quat r;
						r.axisToQuat(axis, value.x() - prev_value.x());
						// add the contribution into the quaternion that provides the actual orientation of the articulation center
						(*ac)->OrientationArticulationCenter+=r;

					}
					if ((*a)->translation.getValue())
					{
						(*ac)->DisplacementArticulationCenter+=axis*(value.x() - prev_value.x());
					}

				}

				//// in case 1: the rotation of the axis of the articulation follows the parent -> translation are treated "before":


				// step 1: compute the new position of the articulation center and the articulation pos
				//         rq: the articulation center folows the translations
				(*ac)->globalPosition.setValue(out[parent].getCenter() + out[parent].getOrientation().rotate((*ac)->posOnParent.getValue()) + (*ac)->DisplacementArticulationCenter);
				vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();

				for (; a != aEnd; a++)
				{
					Vec<3,OutReal> APos;
					APos = (*ac)->globalPosition.getValue();
					ArticulationPos[(*a)->articulationIndex.getValue()]=APos;
				}

				// step 2: compute the position of the child
				out[child].getOrientation() = out[parent].getOrientation() + (*ac)->OrientationArticulationCenter;
				out[child].getCenter() =  (*ac)->globalPosition.getValue() - out[child].getOrientation().rotate( (*ac)->posOnChild.getValue() );

				break;

			}


			case 2: // the axis of the articulations are linked to the child (previous pos) - rotations are treated by successive increases -
			{
				//sout<<"Case 2"<<sendl;
				// no reset of the position of the child its position is corrected at the end to respect the articulation center.
				//Quat dq(0,0,0,1);
				Vec<3,Real> disp(0,0,0);


				for (; a != aEnd; a++)
				{
					int ind = (*a)->articulationIndex.getValue();
					InCoord value = in[ind];
					InCoord prev_value = CoordinateBuf[ind];
					Vec<3,Real> axis = quat_child_buf.rotate((*a)->axis.getValue());
					ArticulationAxis[ind]=axis;





					// the increment of rotation and translation are stored in dq and disp
					if ((*a)->rotation.getValue() )
					{
						Quat r;
						r.axisToQuat(axis, value.x() - prev_value.x());
						// add the contribution into the quaternion that provides the actual orientation of the articulation center
						(*ac)->OrientationArticulationCenter+=r;
					}
					if ((*a)->translation.getValue())
					{
						disp += axis*(value.x()) ;

					}

					//// in case 2: the rotation of the axis of the articulation follows the child -> translation are treated "after"
					//// ArticulationPos do not move
					Vec<3,OutReal> APos;
					APos = (*ac)->globalPosition.getValue();
					ArticulationPos[(*a)->articulationIndex.getValue()]=APos;

				}
				(*ac)->DisplacementArticulationCenter=disp;

				out[child].getOrientation() = out[parent].getOrientation() + (*ac)->OrientationArticulationCenter;
				out[child].getCenter() =  (*ac)->globalPosition.getValue() - out[child].getOrientation().rotate((*ac)->posOnChild.getValue());
				out[child].getCenter() += (*ac)->DisplacementArticulationCenter;

				break;

			}

		}
	}

	//////////////////// buf the actual position of the articulations ////////////////////

	CoordinateBuf.clear();
	CoordinateBuf.resize(in.size());
	for (unsigned int c=0; c<in.size(); c++)
	{
		CoordinateBuf[c].x() = in[c].x();
	}


}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::applyJ( typename Out::VecDeriv& out, const typename In::VecDeriv& in, const typename InRoot::VecDeriv* inroot )
{

	//sout<<" \n ApplyJ ";
	OutVecCoord& xto = *this->toModel->getX();

	out.clear();
	out.resize(xto.size());

    // Copy the root position if a rigid root model is present
    if (inroot)
    {
		// sout << "Root Model Name = " << rootModel->getName() << sendl;
        out[0] = (*inroot)[inroot->size()-1];
    }
    else
		out[0] = OutDeriv();



	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.begin();
	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = articulationCenters.end();

	int i = 0;

	for (; ac != acEnd; ac++)
	{
		int parent = (*ac)->parentIndex.getValue();
		int child = (*ac)->childIndex.getValue();

		out[child].getVOrientation() += out[parent].getVOrientation();
		Vec<3,OutReal> P = xto[parent].getCenter();
		Vec<3,OutReal> C = xto[child].getCenter();
		out[child].getVCenter() = out[parent].getVCenter() + cross(P-C, out[parent].getVOrientation());
		//sout<<"P:"<< P  <<"- C: "<< C;

		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();
		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();
		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aEnd = articulations.end();

		for (; a != aEnd; a++)
		{
			int ind = (*a)->articulationIndex.getValue();
			InCoord value = in[ind];
			Vec<3,OutReal> axis = ArticulationAxis[ind];
			Vec<3,OutReal> A = ArticulationPos[ind];


			if ((*a)->rotation.getValue())
			{
				out[child].getVCenter() += cross(A-C, axis*value.x());
				out[child].getVOrientation() += axis*value.x();
			}
			if ((*a)->translation.getValue())
			{
				out[child].getVCenter() += axis*value.x();
			}
			i++;

		}
	}
}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::applyJT( typename In::VecDeriv& out, const typename Out::VecDeriv& in, typename InRoot::VecDeriv* outroot )
{

	//sout<<"\n ApplyJt";
	OutVecCoord& xto = *this->toModel->getX();
//	InVecCoord &xfrom= *this->fromModel->getX();

	//apply(xto,xfrom);


	OutVecDeriv fObjects6DBuf = in;

	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.end();
	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acBegin = articulationCenters.begin();

	int i=ArticulationAxis.size();
	while (ac != acBegin)
	{
		ac--;
		int parent = (*ac)->parentIndex.getValue();
		int child = (*ac)->childIndex.getValue();

		fObjects6DBuf[parent].getVCenter() += fObjects6DBuf[child].getVCenter();
		Vec<3,OutReal> P = xto[parent].getCenter();
		Vec<3,OutReal> C = xto[child].getCenter();
		fObjects6DBuf[parent].getVOrientation() += fObjects6DBuf[child].getVOrientation() + cross(C-P,  fObjects6DBuf[child].getVCenter());


		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();

		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.end();
		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aBegin = articulations.begin();

		while (a != aBegin)
		{
			a--;
			i--;
			int ind = (*a)->articulationIndex.getValue();
			Vec<3,OutReal> axis = ArticulationAxis[ind];
			Vec<3,Real> A = ArticulationPos[ind] ;
			OutDeriv T;
			T.getVCenter() = fObjects6DBuf[child].getVCenter();
			T.getVOrientation() = fObjects6DBuf[child].getVOrientation() + cross(C-A, fObjects6DBuf[child].getVCenter());



			if ((*a)->rotation.getValue())
			{
				out[ind].x() += (Real)dot(axis, T.getVOrientation());
			}
			if ((*a)->translation.getValue())
			{
				out[ind].x() += (Real)dot(axis, T.getVCenter());
			}
		}
	}

	if (outroot)
	{
		(*outroot)[outroot->size()-1] += fObjects6DBuf[0];
	}
}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::applyJT( typename In::VecConst& out, const typename Out::VecConst& in, typename InRoot::VecConst* outRoot )
{
//	sout << "ApplyJT const  - size in = " << in.size() << sendl;

	OutVecCoord& xto = *this->toModel->getX();

	out.resize(in.size());
	unsigned int sizeOutRoot =0;

	if (rootModel!=NULL)
	{
		sizeOutRoot = outRoot->size();
		outRoot->resize(in.size() + sizeOutRoot); // the constraints are all transmitted to the root
	}


	for(unsigned int i=0; i<in.size(); i++)
	{
                OutConstraintIterator itOut;
                for (itOut=in[i].getData().begin();itOut!=in[i].getData().end();itOut++)
		{
			int childIndex = itOut->first;
			const OutDeriv valueConst = (OutDeriv) itOut->second;
			Vec<3,OutReal> C = xto[childIndex].getCenter();
			vector<ArticulatedHierarchyContainer::ArticulationCenter*> ACList = ahc->getAcendantList(childIndex);

			vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = ACList.begin();
			vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = ACList.end();


			int ii=0;

			for (; ac != acEnd; ac++)
			{

				vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();
				vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();
				vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aEnd = articulations.end();


				for (; a != aEnd; a++)
					{
					int ind=	(*a)->articulationIndex.getValue();
					InDeriv data;

					Vec<3,OutReal> axis = ArticulationAxis[ind]; // xto[parent].getOrientation().rotate((*a)->axis.getValue());
					Vec<3,Real> A = ArticulationPos[ind] ; // Vec<3,OutReal> posAc = (*ac)->globalPosition.getValue();
					OutDeriv T;
					T.getVCenter() = valueConst.getVCenter();
					T.getVOrientation() = valueConst.getVOrientation() + cross(C - A, valueConst.getVCenter());



					if ((*a)->rotation.getValue())
					{
						data = (Real)dot(axis, T.getVOrientation());
					}
					if ((*a)->translation.getValue())
					{
						data = (Real)dot(axis, T.getVCenter());
						//printf("\n weightedNormalArticulation : %f", constArt.data);
					}
					out[i].insert(ind,data);
					ii++;
				}
			}

			if (rootModel!=NULL)
			{
				unsigned int indexT = rootModel->getSize()-1; // On applique sur le dernier noeud
				Vec<3,OutReal> posRoot = xto[indexT].getCenter();
				OutDeriv T;
				T.getVCenter() = valueConst.getVCenter();
				T.getVOrientation() = valueConst.getVOrientation() + cross(C - posRoot, valueConst.getVCenter());

				(*outRoot)[sizeOutRoot+i].insert(indexT,T);
				//sout<< "constraintT = data : "<< T << "index : "<< indexT<<sendl;
				//(*outRoot)[i].push_back(constraintT);
			//	sout<< "constraintT = data : "<< T << "index : "<< indexT<<sendl;
			}
		}
	}

//	sout<<"End ApplyJT const"<<sendl;

}


template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::propagateX()
{
	if (this->fromModel!=NULL && this->toModel->getX()!=NULL && this->fromModel->getX()!=NULL)
		apply(*this->toModel->getX(), *this->fromModel->getX(), (rootModel==NULL ? NULL : rootModel->getX()));
}

template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::propagateXfree()
{
	if (this->fromModel!=NULL && this->toModel->getXfree()!=NULL && this->fromModel->getXfree()!=NULL)
		apply(*this->toModel->getXfree(), *this->fromModel->getXfree(), (rootModel==NULL ? NULL : rootModel->getXfree()));
}


template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::propagateV()
{
	if (this->fromModel!=NULL && this->toModel->getV()!=NULL && this->fromModel->getV()!=NULL)
		applyJ(*this->toModel->getV(), *this->fromModel->getV(), (rootModel==NULL ? NULL : rootModel->getV()));
}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::propagateDx()
{
	if (this->fromModel!=NULL && this->toModel->getDx()!=NULL && this->fromModel->getDx()!=NULL)
		applyJ(*this->toModel->getDx(), *this->fromModel->getDx(), (rootModel==NULL ? NULL : rootModel->getDx()));
}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::accumulateForce()
{
	if (this->fromModel!=NULL && this->toModel->getF()!=NULL && this->fromModel->getF()!=NULL)
		applyJT(*this->fromModel->getF(), *this->toModel->getF(), (rootModel==NULL ? NULL : rootModel->getF()));
}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::accumulateDf()
{
	if (this->fromModel!=NULL && this->toModel->getF()!=NULL && this->fromModel->getF()!=NULL)
		applyJT(*this->fromModel->getF(), *this->toModel->getF(), (rootModel==NULL ? NULL : rootModel->getF()));
}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::accumulateConstraint()
{
	if (this->fromModel!=NULL && this->toModel->getC()!=NULL && this->fromModel->getC()!=NULL)
	{
		applyJT(*this->fromModel->getC(), *this->toModel->getC(), (rootModel==NULL ? NULL : rootModel->getC()));

		// Accumulate contacts indices through the MechanicalMapping
		std::vector<unsigned int>::iterator it = this->toModel->getConstraintId().begin();
		std::vector<unsigned int>::iterator itEnd = this->toModel->getConstraintId().end();

		while (it != itEnd)
		{
			this->fromModel->setConstraintId(*it);
			// in case of a "multi-mapping" (the articulation system is placede on a  simulated object)
			// the constraints are transmitted to the rootModle (the <rigidtype> object which is the root of the articulated system)
			if (rootModel!=NULL)
				rootModel->setConstraintId(*it);
			it++;
		}
	}
}



template <class BasicMapping>
void ArticulatedSystemMapping<BasicMapping>::draw()
{

	if (!this->getShow()) return;
	std::vector< Vector3 > points;
	std::vector< Vector3 > pointsLine;

	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator ac = articulationCenters.begin();
	vector<ArticulatedHierarchyContainer::ArticulationCenter*>::const_iterator acEnd = articulationCenters.end();
	unsigned int i=0;
	for (; ac != acEnd; ac++)
	{
//		int parent = (*ac)->parentIndex.getValue();
//		int child = (*ac)->childIndex.getValue();
		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*> articulations = (*ac)->getArticulations();
		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator a = articulations.begin();
		vector<ArticulatedHierarchyContainer::ArticulationCenter::Articulation*>::const_iterator aEnd = articulations.end();
		for (; a != aEnd; a++)
		{

			// Articulation Pos and Axis are based on the configuration of the parent
			int ind= (*a)->articulationIndex.getValue();
			points.push_back(ArticulationPos[ind]);

			pointsLine.push_back(ArticulationPos[ind]);
			Vec<3,OutReal> Pos_axis = ArticulationPos[ind] + ArticulationAxis[ind];
			pointsLine.push_back(Pos_axis);

			i++;
		}
	}

	simulation::getSimulation()->DrawUtility.drawPoints(points, 10, Vec<4,float>(1,0.5,0.5,1));
	simulation::getSimulation()->DrawUtility.drawLines(pointsLine, 1, Vec<4,float>(0,0,1,1));





	//
	//OutVecCoord& xto = *this->toModel->getX();
	//glDisable (GL_LIGHTING);
	//glPointSize(2);
}

} // namespace mapping

} // namespace component

} // namespace sofa

#endif