/usr/include/sofa/component/constraint/ParabolicConstraint.inl is in libsofa1-dev 1.0~beta4-10ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | /******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#ifndef SOFA_COMPONENT_CONSTRAINT_PARABOLICCONSTRAINT_INL
#define SOFA_COMPONENT_CONSTRAINT_PARABOLICCONSTRAINT_INL
#include <sofa/component/constraint/ParabolicConstraint.h>
#include <sofa/helper/gl/template.h>
namespace sofa
{
namespace component
{
namespace constraint
{
using namespace sofa::defaulttype;
using namespace sofa::helper;
template <class DataTypes>
ParabolicConstraint<DataTypes>::ParabolicConstraint()
:core::componentmodel::behavior::Constraint<DataTypes>(NULL)
, m_indices( initData(&m_indices,"indices","Indices of the constrained points") )
, m_P1(initData(&m_P1,"P1","first point of the parabol") )
, m_P2(initData(&m_P2,"P2","second point of the parabol") )
, m_P3(initData(&m_P3,"P3","third point of the parabol") )
, m_tBegin(initData(&m_tBegin,"BeginTime","Begin Time of the motion") )
, m_tEnd(initData(&m_tEnd,"EndTime","End Time of the motion") )
{
}
template <class DataTypes>
ParabolicConstraint<DataTypes>::ParabolicConstraint(core::componentmodel::behavior::MechanicalState<DataTypes>* mstate)
: core::componentmodel::behavior::Constraint<DataTypes>(mstate)
, m_indices( initData(&m_indices,"indices","Indices of the constrained points") )
, m_P1(initData(&m_P1,"P1","first point of the parabol") )
, m_P2(initData(&m_P2,"P2","second point of the parabol") )
, m_P3(initData(&m_P3,"P3","third point of the parabol") )
, m_tBegin(initData(&m_tBegin,"BeginTime","Begin Time of the motion") )
, m_tEnd(initData(&m_tEnd,"EndTime","End Time of the motion") )
{
}
template <class DataTypes>
ParabolicConstraint<DataTypes>::~ParabolicConstraint()
{
}
template <class DataTypes>
void ParabolicConstraint<DataTypes>::addConstraint(unsigned index)
{
m_indices.beginEdit()->push_back(index);
m_indices.endEdit();
}
template <class DataTypes>
void ParabolicConstraint<DataTypes>::init()
{
this->core::componentmodel::behavior::Constraint<DataTypes>::init();
Vec3R P1 = m_P1.getValue();
Vec3R P2 = m_P2.getValue();
Vec3R P3 = m_P3.getValue();
//compute the projection to go in the parabol plan,
//such as P1 is the origin, P1P3 vector is the x axis, and P1P2 is in the xy plan
//by the way the computation of the parabol equation is much easier
if(P1 != P2 && P1 != P3 && P2 != P3){
Vec3R P1P2 = P2 - P1;
Vec3R P1P3 = P3 - P1;
Vec3R ax = P1P3;
Vec3R az = cross(P1P3, P1P2);
Vec3R ay = cross(az, ax);
ax.normalize();
ay.normalize();
az.normalize();
Mat<3,3,Real> Mrot(ax, ay, az);
Mat<3,3,Real> Mrot2;
Mrot2.transpose(Mrot);
m_projection.fromMatrix(Mrot2);
m_projection.normalize();
m_locP1 = Vec3R();
m_locP2 = m_projection.inverseRotate(P1P2);
m_locP3 = m_projection.inverseRotate(P1P3);
}
}
template <class DataTypes>
void ParabolicConstraint<DataTypes>::reinit()
{
init();
}
template <class DataTypes>
void ParabolicConstraint<DataTypes>::projectResponse(VecDeriv& dx)
{
Real t = (Real) getContext()->getTime();
if ( t >= m_tBegin.getValue() && t <= m_tEnd.getValue())
{
const SetIndexArray & indices = m_indices.getValue().getArray();
for(SetIndexArray::const_iterator it = indices.begin(); it != indices.end(); ++it)
dx[*it] = Deriv();
}
}
template <class DataTypes>
void ParabolicConstraint<DataTypes>::projectVelocity(VecDeriv& dx)
{
Real t = (Real) getContext()->getTime();
Real dt = (Real) getContext()->getDt();
if ( t >= m_tBegin.getValue() && t <= m_tEnd.getValue() )
{
Real relativeTime = (t - m_tBegin.getValue() ) / (m_tEnd.getValue() - m_tBegin.getValue());
const SetIndexArray & indices = m_indices.getValue().getArray();
for(SetIndexArray::const_iterator it = indices.begin(); it != indices.end(); ++it)
{
//compute velocity by doing v = dx/dt
Real pxP = m_locP3.x()*relativeTime;
Real pyP = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (pxP *pxP) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * pxP;
relativeTime = (t+dt - m_tBegin.getValue() ) / (m_tEnd.getValue() - m_tBegin.getValue());
Real pxN = m_locP3.x()*relativeTime;
Real pyN = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (pxN *pxN) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * pxN;
Vec3R locVel = Vec3R( (pxN-pxP)/dt, (pyN-pyP)/dt, 0.0);
Vec3R worldVel = m_projection.rotate(locVel);
dx[*it] = worldVel;
}
}
}
template <class DataTypes>
void ParabolicConstraint<DataTypes>::projectPosition(VecCoord& x)
{
Real t = (Real) getContext()->getTime();
if ( t >= m_tBegin.getValue() && t <= m_tEnd.getValue() )
{
Real relativeTime = (t - m_tBegin.getValue() ) / (m_tEnd.getValue() - m_tBegin.getValue());
const SetIndexArray & indices = m_indices.getValue().getArray();
for(SetIndexArray::const_iterator it = indices.begin(); it != indices.end(); ++it)
{
//compute position from the equation of the parabol : Y = -y2/(x3*x2-x2²) * X² + (x3*y2)/(x3*x2-x2²) * X
//with P1:(0,0,0), P2:(x2,y2,z2), P3:(x3,y3,z3) , projected in parabol plan
Real px = m_locP3.x()*relativeTime;
Real py = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (px *px) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * px;
Vec3R locPos( px , py, 0.0);
//projection to world coordinates
Vec3R worldPos = m_P1.getValue() + m_projection.rotate(locPos);
x[*it] = worldPos;
}
}
}
template <class DataTypes>
void ParabolicConstraint<DataTypes>::draw()
{
if (!getContext()->getShowBehaviorModels()) return;
Real dt = (Real) getContext()->getDt();
Real t = m_tEnd.getValue() - m_tBegin.getValue();
Real nbStep = t/dt;
glDisable (GL_LIGHTING);
glPointSize(5);
glColor4f (1,0.5,0.5,1);
glBegin (GL_LINES);
for (unsigned int i=0 ; i< nbStep ; i++){
//draw lines between each step of the parabolic trajectory
//so, the smaller is dt, the finer is the parabol
Real relativeTime = i/nbStep;
Real px = m_locP3.x()*relativeTime;
Real py = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (px *px) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * px;
Vec3R locPos( px , py, 0.0);
Vec3R worldPos = m_P1.getValue() + m_projection.rotate(locPos);
gl::glVertexT(worldPos);
relativeTime = (i+1)/nbStep;
px = m_locP3.x()*relativeTime;
py = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (px *px) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * px;
locPos = Vec3R( px , py, 0.0);
worldPos = m_P1.getValue() + m_projection.rotate(locPos);
gl::glVertexT(worldPos);
}
glEnd();
//draw points for the 3 control points
glBegin(GL_POINTS);
gl::glVertexT(m_P1.getValue());
gl::glVertexT(m_P2.getValue());
gl::glVertexT(m_P3.getValue());
glEnd();
}
} // namespace constraint
} // namespace component
} // namespace sofa
#endif
|