This file is indexed.

/usr/include/shogun/transfer/multitask/MultitaskClusteredLogisticRegression.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Copyright (C) 2012 Sergey Lisitsyn
 */

#ifndef  MULTITASKCLUSTEREDLOGISTICREGRESSION_H_
#define  MULTITASKCLUSTEREDLOGISTICREGRESSION_H_

#include <shogun/transfer/multitask/MultitaskLogisticRegression.h>

namespace shogun
{
/** @brief class MultitaskClusteredLogisticRegression, a classifier for multitask problems.
 * Supports only task group relations. Based on solver ported from the MALSAR library.
 * Assumes task in group are related with a clustered structure.
 *
 * @see CTaskGroup
 */
class CMultitaskClusteredLogisticRegression : public CMultitaskLogisticRegression
{

	public:
		MACHINE_PROBLEM_TYPE(PT_BINARY)

		/** default constructor */
		CMultitaskClusteredLogisticRegression();

		/** constructor
		 *
		 * @param rho1 rho1 regularization coefficient
		 * @param rho2 rho2 regularization coefficient
		 * @param training_data training features
		 * @param training_labels training labels
		 * @param task_group task group
		 * @param num_clusters number of task clusters
		 */
		CMultitaskClusteredLogisticRegression(
		     float64_t rho1, float64_t rho2, CDotFeatures* training_data,
		     CBinaryLabels* training_labels, CTaskGroup* task_group,
		     int32_t num_clusters);

		/** destructor */
		virtual ~CMultitaskClusteredLogisticRegression();

		/** get rho1 regularization coefficient
		 *
		 * @return rho1 value
		 */
		int32_t get_rho1() const;

		/** set rho1
		 * @param rho1 value
		 */
		void set_rho1(float64_t rho1);

		/** get rho1
		 */
		int32_t get_rho2() const;

		/** set rho1
		 * @param rho2 value
		 */
		void set_rho2(float64_t rho2);

		/** get number of clusters
		 *
		 * @return number of clusters
		 */
		int32_t get_num_clusters() const;

		/** set number of clusters
		 * @param num_clusters number of clusters
		 */
		void set_num_clusters(int32_t num_clusters);

		/** get name
		 *
		 * @return name of the object
		 */
		virtual const char* get_name() const
		{
			return "MultitaskClusteredLogisticRegression";
		}

	protected:

		/** train machine
		 *
		 * @param data features to use for training
		 */
		virtual bool train_machine(CFeatures* data=NULL);

		/** train locked implementation
		 *
		 * @param tasks array of tasks indices
		 */
		virtual bool train_locked_implementation(SGVector<index_t>* tasks);

	protected:

		/** rho1 */
		float64_t m_rho1;

		/** rho2 */
		float64_t m_rho2;

		/** number of clusters */
		int32_t m_num_clusters;
};
}
#endif