/usr/include/shogun/structure/StructuredModel.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2012 Fernando José Iglesias García
* Copyright (C) 2012 Fernando José Iglesias García
*/
#ifndef _STRUCTURED_MODEL__H__
#define _STRUCTURED_MODEL__H__
#include <shogun/base/SGObject.h>
#include <shogun/features/Features.h>
#include <shogun/labels/StructuredLabels.h>
#include <shogun/lib/common.h>
#include <shogun/lib/SGVector.h>
#include <shogun/lib/StructuredData.h>
namespace shogun
{
#define IGNORE_IN_CLASSLIST
/**
* \struct TMultipleCPinfo
* Multiple cutting plane models helper
*/
IGNORE_IN_CLASSLIST struct TMultipleCPinfo {
/** standard constructor
*
* @param from where this portion of data starts
* @param N total number of examples in portion
*/
TMultipleCPinfo(uint32_t from, uint32_t N) : m_from(from), m_N(N) { }
/** where this portion of data starts */
uint32_t m_from;
/** how many examples belong to this portion of data */
uint32_t m_N;
};
class CStructuredModel;
/** output of the argmax function */
struct CResultSet : public CSGObject
{
/** constructor */
CResultSet();
/** destructor */
virtual ~CResultSet();
/** @return name of SGSerializable */
virtual const char* get_name() const;
/** argmax */
CStructuredData* argmax;
/** joint feature vector for the given truth */
SGVector< float64_t > psi_truth;
/** joint feature vector for the prediction */
SGVector< float64_t > psi_pred;
/** \f$ \Delta(y_{pred}, y_{truth}) + \langle w,
* \Psi(x_{truth}, y_{pred}) - \Psi(x_{truth}, y_{truth}) \rangle \f$ */
float64_t score;
/** delta loss for the prediction vs. truth */
float64_t delta;
};
/**
* @brief Class CStructuredModel that represents the application specific model
* and contains most of the application dependent logic to solve structured
* output (SO) problems. The idea of this class is to be instantiated giving
* pointers to the functions that are dependent on the application, i.e. the
* combined feature representation \f$\Psi(\bold{x},\bold{y})\f$ and the argmax
* function \f$ {\arg\max} _{\bold{y} \neq \bold{y}_i} \left \langle { \bold{w},
* \Psi(\bold{x}_i,\bold{y}) } \right \rangle \f$. See: MulticlassModel.h and
* .cpp for an example of these functions implemented.
*/
class CStructuredModel : public CSGObject
{
public:
/** default constructor */
CStructuredModel();
/** constructor
*
* @param features the feature vectors
* @param labels structured labels
*/
CStructuredModel(CFeatures* features, CStructuredLabels* labels);
/** destructor */
virtual ~CStructuredModel();
/** initialize the optimization problem for primal solver
*
* @param regularization regularization strength
* @param A is [-dPsi(y) | -I_N ] with M+N columns => max. M+1 nnz per row
* @param a
* @param B
* @param b upper bounds of the constraints, Ax <= b
* @param lb lower bound for the weight vector
* @param ub upper bound for the weight vector
* @param C regularization matrix, w'Cw
*/
virtual void init_primal_opt(
float64_t regularization,
SGMatrix< float64_t > & A, SGVector< float64_t > a,
SGMatrix< float64_t > B, SGVector< float64_t > & b,
SGVector< float64_t > lb, SGVector< float64_t > ub,
SGMatrix < float64_t > & C);
/**
* return the dimensionality of the joint feature space, i.e.
* the dimension of the weight vector \f$w\f$
*/
virtual int32_t get_dim() const = 0;
/** set labels
*
* @param labs labels
*/
void set_labels(CStructuredLabels* labs);
/** get labels
*
* @return labels
*/
CStructuredLabels* get_labels();
/** create empty StructuredLabels object */
virtual CStructuredLabels* structured_labels_factory(int32_t num_labels=0);
/** set features
*
* @param feats features
*/
void set_features(CFeatures* feats);
/** get features
*
* @return features
*/
CFeatures* get_features();
/**
* gets joint feature vector
*
* \f[
* \vec{\Psi}(\bf{x}_\text{feat\_idx}, \bf{y}_\text{lab\_idx})
* \f]
*
* @param feat_idx index of the feature vector to use
* @param lab_idx index of the structured label to use
*
* @return the joint feature vector
*/
SGVector< float64_t > get_joint_feature_vector(int32_t feat_idx, int32_t lab_idx);
/**
* get joint feature vector
*
* \f[
* \vec{\Psi}(\bf{x}_\text{feat\_idx}, \bf{y})
* \f]
*
* @param feat_idx index of the feature vector to use
* @param y structured label to use
*
* @return the joint feature vector
*/
virtual SGVector< float64_t > get_joint_feature_vector(int32_t feat_idx, CStructuredData* y);
/**
* obtains the argmax of \f$ \Delta(y_{pred}, y_{truth}) +
* \langle w, \Psi(x_{truth}, y_{pred}) \rangle \f$
*
* @param w weight vector
* @param feat_idx index of the feature to compute the argmax
* @param training true if argmax is called during training.
* Then, it is assumed that the label indexed by feat_idx in
* m_labels corresponds to the true label of the corresponding
* feature vector.
*
* @return structure with the predicted output
*/
virtual CResultSet* argmax(SGVector< float64_t > w, int32_t feat_idx, bool const training = true) = 0;
/** computes \f$ \Delta(y_{\text{true}}, y_{\text{pred}}) \f$
*
* @param ytrue_idx index of the true label in labels
* @param ypred the predicted label
*
* @return loss value
*/
float64_t delta_loss(int32_t ytrue_idx, CStructuredData* ypred);
/** computes \f$ \Delta(y_{1}, y_{2}) \f$
*
* @param y1 an instance of structured data
* @param y2 another instance of structured data
*
* @return loss value
*/
virtual float64_t delta_loss(CStructuredData* y1, CStructuredData* y2);
/** @return name of SGSerializable */
virtual const char* get_name() const { return "StructuredModel"; }
/** initializes the part of the model that needs to be used during training.
* In this class this method is empty and it can be re-implemented for any
* particular StructuredModel
*/
virtual void init_training();
/**
* method to be called from a SO machine before training
* to ensure that the training data is valid (e.g. check that
* there is at least one example for every class). In this class
* the method is empty and it can be re-implemented for any
* application (e.g. HM-SVM).
*/
virtual bool check_training_setup() const;
/**
* get the number of auxiliary variables to introduce in the
* optimization problem. By default, this class do not impose
* the use of auxiliary variables and it will return zero.
* Re-implement this method subclasses to use auxiliary
* variables.
*
* return the number of auxiliary variables
*/
virtual int32_t get_num_aux() const;
/**
* get the number of auxiliary constraints to introduce in the
* optimization problem. By default, this class do not impose
* the use of any auxiliary constraints and it will return zero.
* Re-implement this method in subclasses to use auxiliary
* constraints.
*
* return the number of auxiliary constraints
*/
virtual int32_t get_num_aux_con() const;
private:
/** internal initialization */
void init();
protected:
/** structured labels */
CStructuredLabels* m_labels;
/** feature vectors */
CFeatures* m_features;
}; /* class CStructuredModel */
} /* namespace shogun */
#endif /* _STRUCTURED_MODEL__H__ */
|