/usr/include/shogun/regression/LeastSquaresRegression.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74  | /*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Copyright (C) 2012 Soeren Sonnenburg
 */
#ifndef _LEASTSQUARESREGRESSION_H__
#define _LEASTSQUARESREGRESSION_H__
#include <shogun/lib/config.h>
#include <shogun/regression/Regression.h>
#include <shogun/regression/LinearRidgeRegression.h>
#ifdef HAVE_LAPACK
#include <shogun/machine/LinearMachine.h>
namespace shogun
{
/** @brief class to perform Least Squares Regression
 *
 * Internally it is solved via minimizing the following system
 *
 * \f[
 * \frac{1}{2}\left(\sum_{i=1}^N(y_i-{\bf w}\cdot {\bf x}_i)^2\right)
 * \f]
 *
 * which boils down to solving the linear system
 *
 * \f[
 * {\bf w} = \left(\sum_{i=1}^N{\bf x}_i{\bf x}_i^T\right)^{-1}\left(\sum_{i=1}^N y_i{\bf x}_i\right)
 * \f]
 * where x are the training examples and y the vector of labels.
 *
 * The expressed solution is a linear method with bias 0 (cf. CLinearMachine).
 */
class CLeastSquaresRegression : public CLinearRidgeRegression
{
	public:
		/** problem type */
		MACHINE_PROBLEM_TYPE(PT_REGRESSION);
		/** default constructor */
		CLeastSquaresRegression();
		/** constructor
		 *
		 * @param data training data
		 * @param lab labels
		 */
		CLeastSquaresRegression(CDenseFeatures<float64_t>* data, CLabels* lab);
		virtual ~CLeastSquaresRegression() {}
		/** get classifier type
		 *
		 * @return classifier type LeastSquaresRegression
		 */
		virtual EMachineType get_classifier_type()
		{
			return CT_LEASTSQUARESREGRESSION;
		}
		/** @return object name */
		virtual const char* get_name() const { return "LeastSquaresRegression"; }
	private:
		void init();
};
}
#endif // HAVE_LAPACK
#endif // _LEASTSQUARESREGRESSION_H__
 |